
PnocBEDINGS oF TIrE IvrBnxarIoNAL
Conw'nRENCE ou PnnlLLEL AND DlsrmgurED
PnocBssING TEcTnnQUES AND Appl,rcATlol\s

PDPTA'98

Volume IV

Editor:
H. R. Arabnia

Las Vegas, Nevada' USA
July 13 - 16, 1998

CSREA Press

i{

i
:,1

:i.

$

s
t.
E

F
6

b;i
nl
i;"

&-r,

r-'
F-,€it'
tu',

W
,ml-sl
Itr

\.,
:*s
i *ii
K
KE

:*

i

111

ii
t.a

a::

.ltts

&
1s
?-?

!;j
i,.

^t;:
,t

i1

j

:
:S.ffi
firr*
.r#

r
.:

i.!

alliances are often confronied with an informa-
tion system in which data are stored in more
than one source. In many cases, these data
sources are separale, independently operated
relational databases that are inter-connected
through a network. It is imperative for the
system to provide users with the global quet'y
feature: the capability of drawing and integrai-
ing ciata from multipie data sources.

One common approach to supporring global
queries is to configure the environment as a fed-
erated database system lI). In this approach,
an augmented DBMS called "federal DBMS"
is adopted to handie global queries. The fed-
eral DBMS draws data from oiher DBlvISs
(through their naiive SQL interfaces) and per-
forms the final incegraiion. nameiy the join op-
eration. at its own site. The federal DBMS,
equipped with iis own data storage system
and query processor. may optimize the join
operation internaily as necessary. For exam-
ple, it may pipeline the join with the incom-
ing stream of a remote table that is imported
across the network. The centralized process-
ing nature of global queries, however, makes
the federal DBMS a potential bottleneck un-
der heavy query ioads.

Alternativeiy, one may use the multidatabase
approach [2], which relies completely on the
SQL query facilities of the member DBMSs to
process global queries. The common practice is

to attach a lightweight "gateway" software to
each member DBMS. This software translates
daia and SQL queries from a foreign formai

Flagmented Join: A Pipelined Multidatabase Join
Method *

Chung-Min Chen Naphtali Rishe
High Performance Database Research Center

School of Computer Science

Florida Internationai University
Miami, FL, U.S.A.

e-mail: hpdrc@cs.fiu.edu, URL: http://hpdrc.cs.fiu.edu

Abstract
This paper describes a pipelined query process-

ing technique for speeding up cross-database queries

- queries that join tables t'rom distributed, au-

tonornous relational databases. This new jozn

method, called "fragmented join", reduces query

response and tuntaround t'ime by ouerlapping

database access and communication at the applica-

tion leuel. The Jragmented jozn algorithm, along

with a perfor-nance testbed. is irnplemented in a

rnultidatabase enu-ir-onment. Preliminary results

from ezperiments show that the fragrnented join
substantially reduces the turnaround tirne of large

queries. In certain cases, the reduction could be as

Iarge as /t0% oJ the turnaround time of a traditional
non-pipelined appro ach.

K eywords : distributed databases. muitidatabases,

query processing

1 trntroduction

The great success of relational database tech-
nology has spawned a database industry flour-
ishing with many vendors of database man-
agement systems (DBMS). As a consequence,

large enterprises and looseiy-coupled business

'This research was suoported in part by AFRL
(F30602-98-C-0037), NASA (under grants NAGW-
4080, NAG5-5095, and NRA-97-MTP+05), NSF
(CDA-9711582, IRI-9409661, and HRD-9707076),
ARO (DAAHO4-96-1-0049 and DAAHO4-96-1-0278),
DoI (CA-5280-4-9044), NATO (HTECH.LG 931449),
Geonet Limited L.P.. and State of Florida.

to supporting global queries in loosely-coupled
multidatabases. Section 3 describes the frag-
mented join aigorithm in details. The prin-
ciples and some detaiis of the fragment size

determination algorithm is described in Sec-

tion 4. The results of an empirical performance
studl'are presented in Section 5. Section 6 con-
cludes the paper and indicates possible future
extensions.

to one understood by the local host. Flom the
view of the host DBMS, the gateway software is
nothing but an application program that talks
in SQL. To perform a cross-database join, one
of the sites that host the operand tabies is se-

lected as the join site. All operand tables re-
mote to the join site are then imported into the
DBMS at the join site (subject to some a-prior
select'i,ons or projections). Once this is done,
the gateway software at ihe join site issues an
SQL statement to the local DBMS, rendering
the actual join operation among the tables.

In comparison to the federated approach,
muitidatabase systems achieve better load
balance, because the global query load
is distributed among the member DBMSs.
Pipelined processing, however, is not applica-
bie in the multidatabase approach because the
handling of a global query does not go beyond
the SQL levei. This impiies that ali remote
operand tabies of a globai join query must be

fully imported into a temporary table at the
join site before the final local SQL join query
can be issued.

In this paper, we argue that the inappiica-
bilit"r' of pipelined processing in muitidatabase
systems is the resuit of lacking appropriate
support. rather than an inherent shortcoming.
With appropriate support and opiimization at
the SQL level, rve show that pipelined pro-
cessing and, thus. substantial performance im-
provement can be achieved for global queries.
We present a novel technique, called frag-
mented jo'ins, that exploits application-ievel
pipeline. The idea is to divide the remote table
into a number of smaller fragments and issue

an SQL join query as soon as a fragment ar-
rives at theioin site. A double buffer technique
is devised to make possible the overlap between
the execution of the SQL query at the join site
and the transfer of the remote table. This tech-
nique also demands iess storage space for tem-
porary tables. Finally. for the fragmented join
to work efficientiy, the size of the fragments
must be properiy chosen. This is determined
by a sophisticated aigorithm with the goal of
minimizing query turnaround time.

The rest of the paper is organized as foliows:
Section 2 overviews the traditional approach

2 Tbaditional Strategies for
Cross-Database Joins

Throughout the paper, we consider a loosely-
coupled multidatabase environment, in which
a gate*'ay software is used to reconciie cross-
database join queries (i.e., no federal DBMS is

used). First. we examine how cross-database
joins are currently being handled by the state-
of-the-art multidatabase systems. Consider a
join querl'Bt X Bz, where tables R1 and R2 re-
side, respectively, at sites D,S1 and D^92. With-
out loss of generalit]', we assume E1 to be the
outer relatton - the one to be sent across the
network to the join site, and -Rz to be the inner
reiation - the one residing at the join site. To
perform the join, Rr is first extracted from D,51

and imported into a temporary table, say ?,
in DSz. Then an SQL query is issued against
DS2 to perform the join T x R2. In this sce-

nario, the SQL query can not be submitted un-
til R1 is completely imported into T. Appar-
ently, the totai turnaround time for the query
is the time span of the two sequential steps:
table staging (i.e., extracting r?1 and import-
ing into ?, denoted T +- R1) and the local
joi,n (i.e., T x R2). For historical reasons, we
call the above sequential execution scheme the
join-whole strategy [3], indicating that operand
R1 is transferred fi.rst, and then joined as a
whole with R2.

We argue that the join-n'hole strategy does
not make the best utilization of the system
resources. To see this, observe that (1) ta-
ble staging incurs substantial communication
and CPU overhead (due to network protocol
stacks, data format conversion, and repetitive
SQL "INSERT" commands needed to populate

1652 PDPTA'98 Internatinnal Conference

Figure 1: The execution of a fragmented join
algorithm: fragments of .R1 are imported into
buffers T6 and ft alternately; the joins between
-Rz and the buffers are executed as local SQL
queries at the join site D52.

?), and (2) local join is normally I/O intensive,
invoiving lots of disk operations. The result is
that in eiiher phase, either the disk drive (in
the tabie staging pha;se) or the CPU (in the Io-

cal join phase) is mostly idling and. thus, un-
derutilized.

An immediate attempt one may think of to
over).ap both phases is to simulate the ship-
tuple technique [3] - a tuple-level pipeiined join
processing technique thai has been widely used

in homogeneous distributed database systems.
The difference now is that the pipeline has io
be applied at the SQL levei. no ionger inter-
nally handled by the DBMS. It works as fol-
iows: As soon as a tuple of R1 , say f;, arrives
at the join site, an SQL query is issued to select
from -Rz those tuples whose value on the join
attribute matches that of t;. A buffer is needed
at the join site to hoid the tuples extracted
from .R1. Ship-tuple strateg.v provides a maxi-
mum degree of pipeline at the tuple granular-
ity. Unfortunately. ship-tuple turns out to be
a poor strategy because there is a substantial
SQL overhead associated w'ith each extracted
outer tuple. As will be shown iater, the ac-

cumulated SQL and database access overhead
can easily offset the benefit of pipeline. In
most cases, the accumulated overhead is pro-
hibitively large.

The trbagmented Join Algo-
rithm

The problem of the ship-tuple strategy is the
wrong choice of the pipeline granularity - tu-
ple, which causes the excessive SQL overhead.
The lragmented join is devised to avoid such
problem by using a granularity that is larger
than tuples. The idea is to divide the outer re-
lation, .R1, into a sequence of smaller, fixed-size
tables called fragrnents. The original join then
is carried out in terms of a sequence of joins
betrveen the fragments and the inner relation.
R2. The pipeline is realized at the granuiarity
of fragments, rather than tuples. This reduces
the number of SQL join queries executed at the
join site and, thus, the total overhead.

Figure 1 shows the environment of the frag-
mented join. Subsequent fragments of R1 are
imported. alternateiy, into two temporary ta-
bies, ?6 and ?r, at the join siie DS2. When a
buffer. say T, (i :0 or l), is fllled up with a
fragmenr, an SQL query is issued against the
DBIvIS at D52 toperformthejoinC x fi2. We
call such a join an F-join. While fl is engaged
in the F-join. the other buffer 7r-; is used to
import the next fragment from R1. When both
of the current F-join and import processes are
finished. the two buffers switch roles (i.e. fi-;
becomes an operand of the next F-join arc,d Ti
becomes the placeholder for the next fragment
to be imported). This procedure repeats until
all fragments of Rt are processed. The answer
to the original query is simply the union of the
results of all the F-joins.

Processes, F-JOINO and IMPORTO are out-
lined in Figure 2. There are several issues
worth mention. First. the processes must syn-
chronize the access to the double buffers, en-

suring that the faster process would not step
into the buffer of the slower process that is still
in progress. W'e have used the signal mecha-
nism for this purpose in our implementation,
though any mutual exciusion primitive can be

used instead. The signal primitive SendSig
(x, y) sends a signal y to process x: the prim-
iiive WaitSi-g (x, y) rvaits to receive a sig-

nal y from process x. Second, when an F-join

PD PTA'98 I nternati.onal C'

fr
r.il

'i]
d

t1

-n

s
I

,.ii
r&l
,s
:,rs

a:1i

,,![i
.g
,;tI
F
'sj
,&

s4
,,\.1

F
H
el
d
i3

::i:

t',,;

..l

:;l

#
.t+r.:3

;

processIMP0RT () {
const m; f * fragment size x/
int i

=
0; l* buffer index initialization */

while (more R1 tuples remain)
Fill f, u'ith next m tuples from Rr.
SendSig (F-JOIN, bufJull);
WaitSig (F-J0IN, buf-ernpty);
i: | - i: /* su,'itch buffer */

end;
SendSig (F-J0IN, kill); /* kill F-JOIN0 +/;

]

processF-J0lN () {
int i: L; l* buffer index initialization */

while (true)
SendSig (iMP0RT, buf-enpty);
HaitSig (IMP0RT, buf-fulL):
i = 1 - j; /* su-itch bufi'er */
Issue a local SQL query to perform T; x Rz;
Upon receipt of the entire result, emprl' [:

end

i

Figure 2: Outline of the two concurrent pro-
cesses : IMPORTO imports the next fragment:
F-JOINO executes an local SQL join query

Ti >< R2 completes. the tuples in ?l must be
discarded so that T; cari be used to import
the next fragment of -Rr. This can be done
by issuing a "DELETE * from fl" SQL com-
mand to delete all the tuples in T;. Or one
may simply drop the table and re-create a new
one with the same name by issuing the foilow-
ing SQL commands in sequence: "DROP TABLE

4", "CREATE TABLE 4". We have chosen this
approach as it appears to be more emcient than
using the "DELETE *" command (Dropping
and creating tables usually involve only system
direccory updates, while deleting ali tuples of
a table may require a visit to each tuple). The
third issue, determination of a proper fragment
size, is so important a factor on the perfor-
mance that we discuss it separately in ihe next
section.

4 fYagment Size Determina-
tion

The fragment size has a profound impact on
ihe total query turnaround time. The smaller
the fragment size, the greater degree of paral-
lelism, but more SQL overhead would be in-
curred. On the other hard, a larger fragment
size would incur less SQL overhead, but would
resuit in a lower degree of parallelism. At one
extreme. setting a fragment size of one tuple
is equivaient to the ship-tuple strategy; at the
other extreme. using a fragment the same size

as the remote table degrades to ihe join-whole
strategy. Finding the optimal fragment size is
difficuit due to the autonomy of the member
database systems. Nonetheiess, we have de-
vised a constant-time heuristic algorithm that
computes a "good" fragment size, based on a
calibrated linear cost model. The complete
algorithm is somehow tedious, ciue to several
conditions needed to be considered. In the fol-
lo*'ing we present only one case of the algo.
rithm. Derir,ations for other cases can be rea-
soned in a similar manner [4].

Fk i?r and Ez, and let variable c be the
fragment size of R1 (i.e. buft-er ? would con-
tain r tuples). It is suggested in [5] ihat the
cost of a join between two locai tables, regard-
less of the join method being used, catr be ap-
proximated by a generic expression, which is a
linear function of the sizes of both tables. Ac-
cordingiy. it was argued in [4] thai the time it
takes to evaluate the SQL query corresponding
to 7 x R2, where ? contains c tupies, can be
estimated as :

tr-jotn(r): oo * e). . 8,

in rvhich a6 and a1 zl€ some constanis. Simi-
larly, the time it takes to import a single frag-
ment of s\ze r into a buffer (temporary table)
can be expressed as:

t;^p(r): bo * bt- r,

where b6 and b1 are some constants. Estimates
of o6, ar,b1, and b1 can be obtained using a
feedback technique similar to that proposed in
[6], or using calibration methods such as those

t
i,
m
e

(x;*t, i*)
I
I

A6

(xi,z, i,z)

t
aO

TR(x)

x-ax1s

IMPORT

F-JOIN

pN
x (fragment size)

Figure 3: The case when tp_io6(r) and
hr"p(.r) intersects between r : L and r : i/,
where l/ is the cardinaiity of the outer relation
(note a1 (6r in this case.)

Figure 5: TR(x): fragmented join turnaround
time as a function of fragment size; ffi(c): an
approximation to f R@)

AS

TR(r) : ba * bp+ t{loo + arl/
T

Instead of finding the optimal u that mini-
mizes TR(x), which is extremely difficuit. we
used an approximate solution. Consider a sim-
pler form of TR(r) in which the ceiling is
dropped:

rnd) : bs i b1t+
Noo

-.r- o1:v.
x

Figure 5 shows the curves of TR(r) and Tft(c)
under the real domain. It is not hard to see

that TR(r) is an "IJ-shape" function with a
giobal minimum at

which is obtained by solving the equation

dT-A@)lax : O.

TR(x) is a piecewise iinear function with
each "piece" being a line segment of slope
b1. These segments are labeled from left to
right as u)0,ur,...,?rJN-1. The left/right end-
points of segment wi are labeled as (c;, g;) and
/L(ri-t

' al+t).
f n1"7 is a reasonable approxirnation to

TR(r) because 0 < TR(r) - TR(r) (o6, for
I (r (lv, and a6 is typically smail. W-e can
therefore seek an "good" fragment size as one
that would minimize T R(r). There are two
immediate candidates :

fc.l and fr.l.
Recall that r* is the real domain solution for

-:^,minimizing 'l'H(r). Now suppose that c; (

f-i-i

Figure 4: Progress overlap of processes F-
JOIN and IMPORT along the timeiine. when
tp-jo;n(r)) t;*r(r)

proposed in [7. 8]. In the discussion that fol-
lows. rve assume the estimates for these cost
parameters have been obtained.

Figure 3 shows one possibie case of the cost
functions. in this czs€, o1 (b1 and ihe lines
corresponding to tp-jotn(r) and t,-o(c) cross
over at r : p, where 1 < p < l/. tV is the
number of tupies in .R1. It is not hard to derive
that

p: (ao - bo)l(h - o,).

The algorithm finds the best fragment size by
considering two disjoint ranges of. r : 11 : [1, p]
and 12 : [p, i/]. Here we resrrict the discussion
to the case of x € 11.

When r €. 11, tF-joa(r) > tnp@) holds.
This means the import process (of the next
fragment) always finishes before the F-join
process (of the current fragment). Figure 4

overlaps the progress of both processes along
the timeline. The discontinuity of the import
process signifies its need to wait for the F-join
process. The total turnaround time, therefore,
is the time span belween the beginning of the
IIvIPORT process and the ending of the F-
JOIN process. The turnaround time, as a func-
iion of the fragment size c. can be expressed

\5

TR(x)

/i'p (x1

Nasf h,

PD PTA' 9 8 I nte r natin nzl C o nfere nc e

,W,
jllli-

rirl.;
ir<i'

&
_r*'
*ff.

ffi
rtrltt .

twi
ffi;::ffi'
;s*..,
r,qi".

:iff':

L".j < r;a1 for some i (i.e. lc..J is covered by
segmentTr;). An insight look reveals that fz;'l
is a better size than lc*J because

"ft(fr;'l)
<

TR(lr.l) ["rl can be computed as a function
of r*, p(r-), where p(r) is defined as follows:

p(r): [N/[.^7Lr]ll

We then select between p(r.) and [r.l the one
that f ields the smalier value of ?rt(r). We
express the selection as {(r-), where

(,
,i,/-)_) o@) ffrRQ@)) <"R(frl)Y*'/

[lrl otherwise

Note that rx'hen a tie occurs in the above ex-
pression. the smaller fragment size, p(r*), is
favored.

Finally, it may happen that d(c-) falis out-
side the range of 1r. If Q@-) < 1, rve choose
1 as the fragment size; if ,b@-) > p. rve choose
p(p) as the fragment size. This is based on the
observation that Tfi(z) is an "Li-shape" curve
in general. To summarize. the fragment size
selected for the sub-range 11, cienoted ci,. is

computed as:

Tabie 1:

500

450
o
.E

; 400

fI(E 350c
:

300

250

Data statistics of table -Rr and .Rz

o246810121416
fragment size (x 1000 tuples)

Figure 6: Comparison of actual and projected
turnaround time as a function of fragment size.

Two s1'nthetic tables were creared and im-
ported into sepaiate servers. Table 1 shows the
data statistics of the tabies. W'e varied the car-
dinalitl' (number of tuples) of -R1, ranging from
100 io 16,000 tuples, in certain experiment set-
tings. The join selectivity between the tables
was chosen so that the number of tuples in the
result is about 30% of the cardinality of .rR1.

The values of the join attribute of J?1 is ran-
domly distributed over ail tupies of the table.
In all queries, B1 is the outer relation. The
cost parameters for the F-join and import pro.
cesses (see Section 4) were estimated a prior by
running some sampie queries.

ci : max (min(d(,ffiJa;,p(5&t), r)1r . .,,v ,,,,,bt_at

A compiete algorithm that includes ali other
cases not covered here can be found in [].

5 Performance Evaluation

W-e have implemented the fragmented join al-
gorithm in a multidatabase environment that
contains two autonomous ORACLE 7 servers.
One server runs on a Sun Uitra-2 machine;
the other runs on a Sun Sparc 10 workstation.
Both rvorkstations reside within the premise of
an Ethernet network. The programs were writ-
ten in C, and used embedded SQL to inter-
act with the ORACLE servers. The "cursor"
mechanism is used to fetch the resultant tu-
ples returned by the server. Communications
between the gateway programs (IMPORTO at
the join site and EXTRACTO at the outer rela-
tion site) are implemented using Unix socket
APIs.

relation cardinality tuple size (bytes)
Rr 100 -16,000 40
Rz 12,000 150

5.1 Validation of the Cost Model

The accuracy of the cost model is essential
to the effectiveness of the fragment size de-
termination algorithm. To validate this, we
set R1 to 16,000 tupies, and tested with dif-
ferent fragment sizes. For each fragment size,
we gauged the actual query turnaround time
(measured in wali-clock time), and compared
it with the projected turnaround time that is
calculated using the cost functions. Figure 6

shows the result. The figure shows that the
projected time is close to and exhibits the same

lHrl 100 200 400 1000 2000 4000
frag. size i00 100 200 334 500 800

400

6000 8000 10000 12000 14000 16000
1000 1143 1250 i500 1556 1600

Table 2: Fiagment sizes calculated for differeni
outer table sizes

trend as the actual time when the fragment
size varies. We applied the fragment size d+.
termination aigorithm using the data and cost
parameters, and obtained a fragment size of
1,600 tuples for R1. In the figure, this size
falls just around the corner where the actual
turnaround time drops to the minimum. The
sensitivity of the turnaround time with respect
to the fragment size, as evidenced by the steep
"U-shape" curves in the figure, hasjustified the
use of the fine-tuneci fragment size determina-
tion algorithm.

5.2 Comparison with join-whole and
ship-tuple Strategies

In another experiment setting, we compared
the performance among the fragmented join
algorithm (FJ), the join-whole (JW) strategy,
and the ship-tuple (ST) strategy. The size of
the outer relation (-R1) was ranied from 100 to
16,000 tuples. In the ST algorithm, a selection
query was issued against R2 for each tuple ex-
tracted from -R1. The selection is based on the
value of the join attribute of the B1-tuple. No
temporary tables were created and no inser-
tions were performed. For the FJ algorithm.
Table 2 shows the fragment sizes computed
by the fragment size determination algorithm.
for different sizes of R1.

Figure 7 compares the turnaround time
among the three algorithms. The performance
of ST is completely unacceptable. Such is true
even for a small Rr that contains as few as
1000 tuples. Tire fragmented join constantly
outperforms JW, with an improvement of up
to 40Ya. The performance improvemeni of FJ
over JW increases as the size of R1 grows. We
found ihat this effect is in part attributed to
the buffering mechanism of the DBMS at the

350

300

250

100

46810121416
Cardinality (x 1000 tuples)

Figure 7: Tbrnaround time comparison among
fragmented join (FJ), join-whole (JW) and
ship-tupie (ST), for various outer reiation sizes.

150

50

d
c)
6

E

c

=

02
R1

200

180
.1 60

E 140

a 12O
E'= 100
q)

E80oo- Ana"-
c)-40

20

0

ST -x-
JW -e--
FJ -+-

246810121416
R1 cardinality (x 1000 tuples)

Figure 8: Response time comparison among
fragmented join (FJ), join-whole (JW) and
shiptupie (ST), for various outer relation sizes.

join site. For smaller R1, both strategies have
a good chance of caching ihe table in the mem-
ory buffer. When ,R1 is large. JW is unable to
cache the entire table in memory. As a result,
extra I/O operations are needed to write and
read the table from the disk. The fragmented
join does not have this probiem because it de-
composes -R1 into smailer fragments, each of
which may stili fit into the memory buffer.

Figure 8 compares the response time - the
wall-clock elapsed time between the submission
of the original query and the availability cf the
fi.rst result tuple. The fragmented join algo-
ritirm has a much lower and flatter response
lime curve than the join-whole strategy. This

is a direct consequence of using smailer frag-
ments. The ship-tuple yieids the least response
time: the first result tuple would be produced
shortly after the first tuple of .R1 has arrived at
the join site. However, the prohibitively long
delay of the turnaround time makes ship-tuple
a forbidden choice. FinallS we note that the
fragmented join algorithm consumes less stor-
age space (twice the fragment size) than does

the join-whole strategy (which requires a space

for the entire outer table). This can be vali-
dated by comparing the size of R1 and the cor-
responding fragment size, as shown in Table 2.

6 Conclusions

The traditional strategy to evaluate a cross-

database join query in a loosely-coupied muiit-
database system suffers a long delay due to the
sequential execution of table staging and join
operation. In this paper we have proposed a

neq' technique called fragmented join, u'hich
reduces the delay by overlapping table staging
with iocal join at ihe SQL level. A fragment
size determination algorithm is aiso devised to
avoid excessive SQL and database access over-
head, which would otherwise offsei the perfor-
mance gain of the pipelined processing. Ex-
perimental results show that the fragmented
join produces shorter query turnaround time
and response time than the sequential execu-
tion, and requires much less storage space for
temporary tables.

Presently, we are expanding the fragmented
join technique to handle multi-way cross-
database joins. An adaptive method to esti-
mate the cost parameters on-the-fly is also un-
der investigation. This eliminates the need of
running sample queries to calibrate the cost
parameters. and allows the fragment size to
self-adjust based on the feedback ofcost statis-
tics. Finaily, we are interested in applying
the concept of fragmented joins to more com-
plex queries (such as those containing nested

queries, aggregate functions, or membership
operators), and to other rnultidatabase join
methods (such as those proposed in [9, 10])'

Acknowledgment

We thank Ruibiao Qiu for impiementing an
early version of the fragmented join programs
and testbed.

References

A. Sheth and J. La.rson.. Federated Database
Systems for Managing Distributed, Hetero-
geneous, and Autonomous Databases. ACM
Computing Surteys, 22(3), 1990.

A.R. Hurson, M.W.Bright, and S. Pakzad, ed-
itors. Multidatabase systems : an aduanced
solution for global information sharing. IEEE
Press,1994.

L.F. It4ackert and G.M. Lohman. R' optimizer
r.alidation and performance eraiuation for dis-
tributed queries. In Procs. of the 12th Intl.
ConJ. on Very Large Data Bases, 1986.

C.-1t4. Chen, R. Qiu, and N. Rishe. A studl'
on appiying fragmented joins to mulcidatabase
queries. Technical report, School of Computer
Science, Florida Internationai University. Mi-
ami FL, 1997.

H. Boral R. Krishnamurthy and C. Zanioio.
Optimization of nonrecursive queries. In
Procs. of the 12th Intl. Conf. on VLDB,pages
128-137, Kyoio, Japan, 1986.

C.-N{. Chen and N. Roussopouios. Adaptive
selectivity estimation using query feedback. In
Procs. of the ACM SIGMOD Intl. Conf. on
Management of Doto, 7994.

W. Du, R. Krishnamurthy, and M.-C. Shan.

Query optimization in heterogeneous DBMS.
In Procs. of the 18th VLDB Conference,7992.

Q. Zhu and P.-A. Larson. Building regres-
sion cost models for multidatabase systems. In
Procs. of the 4th IntI. Conf. on PardIIeI and
Distributed Inf ortnotion SE stems, L996.

U. Dayal. Query processing in multidatabase
system. In Kim, Batory, and Reiner, edi-
tors, Query Processing in Database Systerns.
Springer-!'eriag, 1 985.

A. Chen. Outerjoin optimization in multi-
da.babase systems. In Procs. of the Distributed
and Parallel Database Systems, Dublin, Ire-
land, 1990.

i1l

12)

f r'l
Ldl

[4]

LD]

lbl

17l

t8l

tel

ila

r.
gi:

4
,i
l
I
.l

'j

I
;i
,i

,i

;
:l'l
,!
ti
1

i
tii

-a

[10]

