
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

11-8-2011

Scaling Geospatial Searches in Large Spatial
Databases
Ariel Cary
Florida International University, acary001@fiu.edu

Follow this and additional works at: http://digitalcommons.fiu.edu/etd

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Cary, Ariel, "Scaling Geospatial Searches in Large Spatial Databases" (2011). FIU Electronic Theses and Dissertations. Paper 548.
http://digitalcommons.fiu.edu/etd/548

http://digitalcommons.fiu.edu?utm_source=digitalcommons.fiu.edu%2Fetd%2F548&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F548&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F548&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F548&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd/548?utm_source=digitalcommons.fiu.edu%2Fetd%2F548&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

SCALING GEOSPATIAL SEARCHES IN LARGE SPATIAL DATABASES

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Ariel Cary

2011

To: Dean Amir Mirmiran
College of Engineering and Computing

This dissertation, written by Ariel Cary, and entitled Scaling geospatial searches in
large spatial databases, having been approved in respect to style and intellectual
content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Vagelis Hristidis

Raju Rangaswami

Malek Adjouadi

Naphtali Rishe, Major Professor

Date of Defense: November 8, 2011

The dissertation of Ariel Cary is approved.

Dean Amir Mirmiran

College of Engineering and Computing

Dean Lakshmi N. Reddi

University Graduate School

Florida International University, 2011

ii

c© Copyright 2011 by Ariel Cary

All rights reserved.

iii

DEDICATION

To my parents and grandfather.

iv

ACKNOWLEDGMENTS

I was privileged to be advised by quite a few professors at Florida International

University (FIU) during the course of my doctoral program. I am thankful to my

major advisor for his encouragement on my work. Dr. Vagelis Hristidis’ experienced

advise helped outline my research in many ways. I am immensely thankful to

Dr. Raju Rangaswami for the insightful discussions we had, for making himself

available at all times when I required his thoughtful opinions, and for turning my

overall research experience an excellent and memorable process. Dr. Rangaswami

is an exceptional person with high ethical standards that has certainly influenced

my research style and critical thinking. I am also deeply thankful to Dr. Tao Li

for his generosity in sharing his research experience and valuable feedback on my

research ideas. Dr. Peter Clarke and Dr. Masoud Sadjadi were very kind in providing

academic support and being always willing to discuss about research topics.

Without the support of my family and friends, this work could not have been

completed at all. My wholehearted thank you to my parents and family for their

emotional support that motivated me to hang in there. A very special appreciation

to Gonzalo Argote and Rene Bueno, long time friends like no other, who have been

with me in the ups and downs. I am also grateful to my lab mates for exchanging

thoughts and the laughter that made the doctoral experience very lively.

Finally, I want to acknowledge the financial support that I received from the

School of Computing and Information Sciences at FIU, The National Science Foun-

dation (NSF), and a FIU Dissertation Year Fellowship awarded in the last year of

my doctoral program.

v

ABSTRACT OF THE DISSERTATION

SCALING GEOSPATIAL SEARCHES IN LARGE SPATIAL DATABASES

by

Ariel Cary

Florida International University, 2011

Miami, Florida

Professor Naphtali Rishe, Major Professor

Modern geographical databases, which are at the core of geographic information

systems (GIS), store a rich set of aspatial attributes in addition to geographic data.

Typically, aspatial information comes in textual and numeric format. Retrieving

information constrained on spatial and aspatial data from geodatabases provides GIS

users the ability to perform more interesting spatial analyses, and for applications to

support composite location-aware searches; for example, in a real estate database:

“Find the nearest homes for sale to my current location that have backyard and

whose prices are between $50,000 and $80,000”. Efficient processing of such queries

require combined indexing strategies of multiple types of data. Existing spatial

query engines commonly apply a two-filter approach (spatial filter followed by non-

spatial filter, or viceversa), which can incur large performance overheads. On the

other hand, more recently, the amount of geolocation data has grown rapidly in

databases due in part to advances in geolocation technologies (e.g., GPS-enabled

smartphones) that allow users to associate location data to objects or events. The

latter poses potential data ingestion challenges of large data volumes for practical

GIS databases.

In this dissertation, we first show how indexing spatial data with R-trees (a

typical data pre-processing task) can be scaled in MapReduce – a widely-adopted

parallel programming model for data intensive problems. The evaluation of our

vi

algorithms in a Hadoop cluster showed close to linear scalability in building R-tree

indexes. Subsequently, we develop efficient algorithms for processing spatial queries

with aspatial conditions. Novel techniques for simultaneously indexing spatial with

textual and numeric data are developed to that end. Experimental evaluations

with real-world, large spatial datasets measured query response times within the

sub-second range for most cases, and up to a few seconds for a small number of

cases, which is reasonable for interactive applications. Overall, the previous results

show that the MapReduce parallel model is suitable for indexing tasks in spatial

databases, and the adequate combination of spatial and aspatial attribute indexes

can attain acceptable response times for interactive spatial queries with constraints

on aspatial data.

vii

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION . 1

2. RESEARCH PROBLEM . 3
2.1 Research Statement . 3
2.2 Motivation . 3
2.3 Geospatial Data Model . 4
2.4 Assumptions . 5

3. SCALING SPATIAL DATA INDEXING 6
3.1 Introduction . 6
3.2 Preliminaries . 7
3.2.1 R-tree Index Overview . 7
3.2.2 MapReduce Overview . 8
3.2.3 MapReduce in Practice . 10
3.3 Building R-trees with MapReduce . 11
3.3.1 Problem Statement . 11
3.3.2 Approach Overview . 12
3.3.3 Data Partitioning . 14
3.3.4 R-tree Construction . 17
3.4 Experimental Evaluation . 18
3.4.1 Datasets and Setup . 18
3.4.2 Performance Evaluation . 19
3.4.3 Quality of Generated R-trees . 26
3.5 Related Work . 30
3.6 Summary . 33

4. SPATIAL QUERIES WITH ASPATIAL CONSTRAINTS 34
4.1 Introduction . 34
4.2 Indexing Spatial and Textual Data . 37
4.2.1 Problem Definition . 37
4.2.2 Spatial Keyword Index . 41
4.2.3 Processing k-SB Queries . 43
4.2.4 Experimental Evaluation . 49
4.3 Indexing Spatial and Numeric Data . 56
4.3.1 Problem Definition . 58
4.3.2 Numeric Data Encoding . 59
4.3.3 Spatial Number Index . 62
4.3.4 Processing k-SBn Queries . 66
4.3.5 Experimental Evaluation . 68
4.4 Indexing Large Databases . 75

viii

4.4.1 Architecture Overview . 76
4.4.2 Experiments . 78
4.5 Related Work . 83
4.5.1 Spatial Nearest Neighbor Queries . 83
4.5.2 Information Retrieval . 84
4.5.3 Spatial Keyword Queries . 84
4.5.4 Spatial Queries in Database Management Systems 85
4.5.5 Numeric Range Constraints . 85
4.5.6 Web Mapping Services and Search Systems 86
4.6 Summary . 87

5. CONCLUSION AND FUTURE RESEARCH DIRECTIONS 88
5.1 Concluding Remarks . 88
5.2 Future Research Directions . 88

BIBLIOGRAPHY . 90

VITA . 96

ix

LIST OF TABLES

TABLE PAGE

3.1 MapReduce inputs/outputs in computing function f 16

3.2 MapReduce functions in constructing R-trees. 17

3.3 Spatial datasets used in experiments. 19

3.4 MapReduce performance statistics in building R-trees 20

3.5 Reduce task three primary phases. 23

3.6 Notation summary of reduce task time components. 25

3.7 Quality statistics of consolidated R-trees 27

4.1 Terms in Dre database vocabulary . 39

4.2 Keys and values in Spatial Text Store 42

4.3 Spatial databases used in experiments 50

4.4 Keys and values in Spatial Number Store 66

4.5 Spatial databases used in k-SBn query experiments 69

4.6 Index sizes on secondary storage . 75

x

LIST OF FIGURES

FIGURE PAGE

3.1 R-tree index example on a spatial database. 8

3.2 MapReduce job execution overview. 9

3.3 Building R-trees in the MapReduce parallel programming model 12

3.4 MapReduce job completion times for FLD and YPD datasets. 21

3.5 Percentage of performance gains with MapReduce 22

3.6 Reduce phase time components with four reduce tasks. 24

3.7 Average times of the reduce phase in MR2 26

3.8 MBR plotting of FLD with four reducers 28

3.9 MBR plotting of FLD with eight reducers 29

3.10 MBR plotting of FLD with single process 30

4.1 k-NN query with constraints on textual attributes 38

4.2 R-tree index and its list of super nodes 40

4.3 Term bitmap of a keyword at a super node 41

4.4 Spatial-Keyword Index internal data structures. 43

4.5 Average random I/O reads of several k-SB queries 53

4.6 Average elapsed time of several k-SB queries 55

4.7 A k-NN query with constraints on numeric attributes 57

4.8 Tree of intervals generated during number encoding 61

4.9 Underlying data structures in the Spatial-Number Index (SNI). 65

4.10 Histogram on the size of numeric data encodings. 70

4.11 Data distribution of selected numeric attributes 71

4.12 Performance of Type-1 k-SBn queries. 73

4.13 Performance of Type-2 k-SBn queries. 74

4.14 Spatial data indexing in MapReduce and local query processing. 76

xi

4.15 Z-order value and X-means clustering based data partitioning 80

4.16 Performance statistics of k-SB queries on large databases 82

xii

CHAPTER 1

INTRODUCTION

Geographic information systems (GIS) integrate and store complex and large

volumes of geographically related data. The types of data managed by GIS in-

clude: raster data (satellite and aerial digital images) and vector data (points, lines,

polygons). Spatial data is periodically generated via specialized sensors, satellites

or aircraft-mounted cameras sampling geographical regions into digital images, or

GPS devices generating geographical coordinates of real-world objects. Objects in

current geospatial databases contain a rich set of attribute data, typically as tex-

tual descriptions and numeric values, stored in aspatial attributes, in addition to

geographical information. GIS databases need to be optimized for various opera-

tions, such as data retrieval, spatial analysis, image processing, and visualization of

geographic images. In particular, structured and semi-structured geographic data

needs to be first loaded into GIS database schemas before users may start posting

queries for performing their analysis. Due to the constant growth of modern spatial

databases and the complexity of pre-processing loading stages, timely data ingestion

may become a challenge for traditional sequential computing models.

In the unstructured data domain, today’s Internet applications typically offer

users the ability to associate geographical information to Web content, a process

known as “geotagging”. For example, Wikipedia has standardized geotagging of

their encyclopedia articles and images via templates [oGC10]. Furthermore, tech-

nological advances in digital cameras and mobile phones allow users to acquire and

associate geospatial coordinates, via built-in GPS devices or Wi-Fi triangulation,

to media resources. Additionally, Web content can be automatically paired with

geographical coordinates exploiting content features, such as place names or street

addresses, in combination with gazetteers. Thus, the powerful combination of In-

1

ternet applications, GPS-enabled devices, and automatic geotagging can potentially

generate large amounts of georeferenced content.

Search is one of the fundamental operations in GIS applications. Traditional

spatial queries in GIS databases include spatial relations, such as nearby, intersects,

contained-in, and distance threshold. For example, in a real estate database, users

may be interested in finding houses for sale nearby a reference point. Efficient

methods exist for processing spatial searches. Existing methods typically organize

objects in tree-based indexes, such as R-tress, Quadtrees, or Grid-based indexes,

which allow reducing substantially the search space to only objects in the vicinity

of the query location. Then, a search method needs only to scan a few percent of

the database to answer a spatial query.

In this dissertation we explore two related problem in spatial databases. First,

we study how MapReduce [DG08] – a widely-adopted parallel computing model

developed at Google – can be leveraged in spatial data indexing tasks. Second, we

study composite indexing strategies to efficiently process spatial queries constrained

on aspatial attributes.

2

CHAPTER 2

RESEARCH PROBLEM

2.1 Research Statement

In this thesis, we study and propose solutions to two related research problems in

geospatial databases:

1. Parallel construction of R-trees on large spatial databases.

2. Efficient processing of nearest neighbor queries constrained on aspatial at-

tributes.

2.2 Motivation

Large-scale databases in general are becoming the norm in today’s information era.

Spatial datasets with hundreds of millions of objects are fairly common nowadays.

Nearly every object or event recorded by modern mobile devices, e.g. smartphones

equiped with a GPS, can be geolocated, or specialized companies collect geographical

data on ever increasing number of real-world objects. For example, an Internet-based

yellow pages database reports to have more than 27 million busines listings1 while a

database of United States parcels has more than 110 million records [Sol10]. Thus,

spatial information is being rapidly disseminated.

The MapReduce parallel programming model [DG08] is an emerging parallel

computing model that facilitates writing distributed applications on large computer

clusters. It has been widely adopted by the industry, and it has also found utility

in scientific environments for solving data-intensive problems. Thus, MapReduce

1http://www.yellowpagesgoesgreen.org/

3

provides a potential alternative for scaling data processing tasks in spatial databases

[CSHR09] [BCR11].

On the other hand, records in geospatial databases generally represent real-

world objects, such as a house in a particular neighborhood, or events, such as a

social gathering in a restaurant. Thus, records have a rich set of aspatial attributes

associated to them in addition to their geolocation information. Typically, aspatial

attributes are stored in textual and numeric format. In a real estate database

scenario, house objects might have description, street address, number of bedrooms,

and price attributes associated to them, in addition to the location of the houses.

In this scenario, more interesting analyses can be performed by constraining spatial

record retrievals on aspatial attributes. For instance, the following query may be

posted to a real estate database:

“Find the nearest homes for sale to my current location

that have swimming pool and whose prices

are between $50,000 and $80,000”

Supporting efficiently spatial queries with aspatial constraints is challenging for

existing query processing methods that use spatial-only indexes or attribute-only

indexes. Thus, a suitable combination of both types of access methods, on spatial

and aspatial data, and query execution plans are required.

2.3 Geospatial Data Model

In general, the geolocation of real-world objects can be approximated by geometrical

figures, such as lines for road segments, or polygons for land parcels. Without loss

of generality, the location of objects can be represented by a two-dimensional point,

for example the middle point of a line, or the center of mass of a polygon.

4

On the other hand, the data model includes two sets (possibly empty) of textual

and numerical attributes. Formally, the data model we adopt in this work is defined

as follows. A spatial database is a set of objects D = {o1, o2, ..., oN} such that each

o ∈ D has a the following attributes:

• op – A two-dimensional point that represents the location of object o

• {oT1 , oT2 , . . .} – A set of attributes of string type.

• {oV1 , oV2 , . . .} – A set of attributes of number type.

2.4 Assumptions

In this work, we make the following assumptions:

• We assume that objects’ geolocations in spatial databases are represented

by GPS latitude and longitude coordinates as a two-dimensional point. The

methods we describe in this work are not only limited to 2D points, but they

can also be extended to support lines and polygons.

• In information retrieval, results are typically sorted by a ranking function

that puts the most relevant document to the query in the first position of the

query result, the second most relevant document in second position, and so

on. In this work, we assume spatial distance as the ranking function. That is,

the spatially closest object to the query location is placed first in the result

list, and similarly the remaining objects are sorted by distance to the query

location in non-decreasing order.

5

CHAPTER 3

SCALING SPATIAL DATA INDEXING

3.1 Introduction

This chapter presents our experiences from using the MapReduce parallel model to

tackle the construction of R-trees [CSHR09] [CYAR10]. R-trees – tree data struc-

tures for organizing multi-dimensional data [Gut84] – are widely used in Geographic

Information System (GIS) databases to accomplish fast data retrieval for queries

with spatial relations; for example, “retrieve all objects that fall within the bound-

aries of a city”. MapReduce is a parallel programming model developed by Google

to simplify the writing of parallel applications [DG08]. The model was inspired by

the map and reduce functions commonly used in functional programming.

In this chapter, we show how the ordering of multi-dimensional data via space-

filling curves can be used to create a MapReduce algorithm for the problem of

building R-trees in parallel. The proposed MapReduce algorithms were implemented

in MapReduce Hadoop [Pro11] – an open source implementation of the Google’s

MapReduce model. Hadoop applications are submitted to a Hadoop cluster as jobs,

where they are scheduled and executed. In our experiments we used a Google&IBM

Hadoop cluster supplied to us via the NSF Cluster Exploratory (CluE) program

[Pro08] [Ini07]. We experimentally evaluated our algorithms in terms of execution

time, scalability and quality of the constructed R-tree.

The rest of the chapter is organized as follows. Section 3.2 gives an overview

of the R-tree index data structure and MapReduce parallel programming model. It

also presents physical configuration details of the Google&IBM’s Hadoop MapRe-

duce cluster used in our experiments. Sections 3.3 presents our MapReduce ap-

proach for building R-trees. Section 3.4 presents experimental results of running

6

implementations of our MapReduce algorithms under different settings. Section 3.5

discusses how our solution is different from previous approaches on parallelizing the

construction of an R-tree. Finally, in Section 3.6 we summarize the chapter.

3.2 Preliminaries

3.2.1 R-tree Index Overview

R-tree indexes [Gut84] are a generalization of B-tree indexes for multi-dimensional

data [Com79]. Without loss of generality, let us consider a dataset of two-dimensional

points. An R-tree groups nearby points within a rectangle of minimal size, called

minimum bounding rectangle (MBR). Subsequently, MBRs are recursively grouped

in larger rectangles of minimal size. MBRs are oganized in a tree structure in such

a way that every node stores MBRs larger than its child nodes. The root node con-

tains entries storing the largest MBRs defined on the dataset. Nodes have minimum

m and maximum M capacities. Node entries store two pieces of data: a pointer to

either a spatial object or a lower level node, and the MBR of the pointed element.

Leaf nodes contain pointers to database objects while inner nodes point to child

nodes. Figure 3.1 shows a sample spatial database D = {o1, o2, ..., o12} (a), and an

R-tree index with m = 2 and M = 3 constructed on D (b). Objects o1 and o2 are

grouped by the rectangle N1, which is further enclosed by its parent rectangle N6.

R-trees provide efficient algorithms to retrieve objects contained within a spatial

region [Gut84]. Intuitively, MBRs of the R-tree that do not intersect with the search

region do not need to be explored. There also exist algorithms to efficiently retrieve

nearest neighbor objects [HS99]. In addition, there has been a number of research

works that aimed at improving the retrieval efficiency of R-trees by minimizing the

7

Figure 3.1: R-tree index example on a spatial database.

overall MBR overlap of the tree [BKSS90] [SRF87] [KF94], or guaranteeing optimal

worst-case retrieval cost [AdBHY04].

3.2.2 MapReduce Overview

MapReduce is a simplified model for expressing distributed computations on large

scale datasets [DG08]. Developed inside Google, the original motivation was the

need to separate the complex details of writing distributed applications, such as

fault tolerance, data distribution and load balancing, from the actual computations

that needed to be performed on raw data. Although their computations were rel-

atively simply, e.g. counting word frequencies in documents during inverted index

constructions, often times that simplicity was obscured by the additional logic re-

quired to take care of distributing computing issues.

The model uses two primitives, map and reduce, to express the logic of the com-

putations. These primitives are inspired in the map and reduce functions commonly

found in functional programming languages. Input and output of these functions

are expressed as key/value pairs. Underneath, MapReduce implements a runtime

8

Map ReduceSplit1

key/value

Input
Data

A/v1

B/v2

C/v3

MapSplit2

A/v4

B/v5

C/v6...

A/[v1,v4, ...]

Output
Data

...

ReduceB/[v2,v5, ...]

...

...

Intermediate

Data

(1) (2) (3) (4) (5)

Figure 3.2: MapReduce job execution overview.

framework that relies on cluster management systems and distributed file systems

that deal with the complexities of paralellizing computations. The main character-

istics of the model are as follows.

• It separates the what needs to be done, which is specified in the map and

reduce functions, from the how the distributed computations are carried out,

which is taken care by the MapReduce framework. As a result, application

developers focus their attention on the data processing logic only.

• It scales reliably to clusters with thousands of computers. Should a node

running a mapper or reducer fail, only the data portion being processed by

the faulty node is lost.

• It implements a shared-nothing cluster architecture (each node has its separate

storage, CPU and memory) with data replication.

Figure 3.2 shows an overview of the execution of a MapReduce compound. The

input data is stored in the Google’s distributed file system (GFS) [GGL03], which is

optimized for large files. Files are divided into splits of predefined size; typical sizes

are 64MiB and 128MiB. A MapReduce job starts with mappers reading individual

9

splits of the input data and transforming them into key/value pairs for processing

by the map function. Mappers generate intermediate data also in key/value pair

format. In general, a mapper generates records of one or several types of keys as

seen in Figure 3.2 where mappers generate records with A, B and C keys. The map

phase finish when all mappers process their input records in their entirety. In a

second phase, all the values associated to the same key are copied by one reducers

– this is known as the shuffle phase. For instance, the list of values [v1, v4, ...]

associated to the A key are transferred to one reducer in Figure 3.2. A reducer

may receive several types of keys, but they are processed in sorted order. Finally,

each reducer produces an output after applying the reduce function on their input

values. The MapReduce output is the union of the individual reduce outputs, which

are generally kept partitioned in the distributed file system rather than combining

them in a single file.

3.2.3 MapReduce in Practice

Google’s implementation of MapReduce is not available outside the company. The

cluster used in this dissertation was provided by the NSF Cluster Exploratory (CluE)

program, and the cluster operation was maintened by Google and IBM [Pro08]

[Ini07].

The CluE cluster was shared among a dozen educational institutions. At the time

we ran out experiments the cluster contained around 480 compute nodes running

the Linux operating system, XEN hypervisor, and Apache Hadoop [Pro11], the

open source implementation of the MapReduce programming model. Each node

had half terabytes storage capacity summing up to about 240 terabytes in total.

Access to the cluster was provided through the Internet by a SOCKS proxy server.

10

SOCKS is an Internet protocol that secures client-server communications over a non-

secure network. There are three main steps in interacting with the cluster. First,

input data is uploaded into the cluster by users. The Hadoop distributed file system

(HDFS) provides file system shell scripts to upload to and download from the cluster;

HDFS is an integral part of the Apache Hadoop project, and its implementation is

based on the Google file system (GFS) [GGL03]. Second, users develop a Hadoop

application and submit it as a job to the cluster via a Hadoop command where the

job is scheduled for execution. Application in Hadoop are developed in Java, but

other languages are supported, like C++ and Python. Third, once the execution

of Hadoop jobs is completed, the output is downloaded to the users’ local site via

Hadoop file system shell scripts.

3.3 Building R-trees with MapReduce

This section presents a MapReduce-based algorithm for building an R-tree index

on a given spatial dataset in a parallel fashion. Let us start our description by

formalizing the problem.

3.3.1 Problem Statement

Let D be a spatial dataset composed of objects oi, i = 1, .., |D|, where |D| rep-

resents the number of objects in the database. Each object o has two attributes

< o.id, o.P >, where o.id is the object’s unique identifier and o.P is the object’s

location in some spatial domain (other attributes are possible, but we concentrate

on only these ones for the R-tree construction purpose). The problem is to construct

in MapReduce an R-tree index as defined in [Gut84].

11

S p a t i a l

D a t a s e t D
M a p

k e y = o . i d

v a l u e = o . P

i _ k e y = f (o . P)

i _ v a l u e = o

R e d u c e R - T r e e i

i=1 , . . . , R
A s s i g n s o b j e c t s

to par t i t i ons v ia f
B u i l d s R - T r e e

o n i n p u t o b j e c t s

L - s i z e d

s a m p l e M a p

k e y = o . i d

v a l u e = o . P

i _ k e y = C

i _ v a l u e = U (o . P)

R e d u c e

S’ a r ray o f R -1

s p l i t t i n g p o i n t s

C o m p u t e s s i n g l e

d i m e n s i o n a l v a l u e s
S o r t s s i n g l e

d i m e n s i o n a l v a l u e s

S p a t i a l

D a t a s e t D

P h a s e 1 : P a r t i t i o n i n g F u n c t i o n C o m p u t a t i o n

P h a s e 2 : R - T r e e C o n s t r u c t i o n

R - T r e e 1 R - T r e e 2

R - T r e e R

. . .

R - T r e e s i n g l e - p r o c e s s

c o n s o l i d a t o r

R - T r e e o f D

P h a s e 3 : R - T r e e C o n s o l i d a t i o n

Figure 3.3: Main phases involved in building an R-tree index for a spatial dataset
D in MapReduce.

3.3.2 Approach Overview

The proposed method consists of three phases executed in sequence, as can be seen

in Figure 3.3. First, spatial objects are partitioned into groups. Then, each group

is processed to create a small R-tree. Finally, the small R-trees are combined into

the final R-tree. The first two phases, namely data partitioning and simultaneous

construction of small R-trees, are executed in MapReduce. The third phase, namely

combination of several R-tree root nodes under a common root node, does not

require high computational power, thus it is executed sequentially outside of the

cluster. The three main phases of the algorithm are discussed next.

12

Phase 1: Partitioning Function Computation

The inputs for this phase are the dataset D and a positive number R, which rep-

resents the number of partitions. The purpose of the partitioning function f is to

assign each object o ∈ D into one of the R possible partitions. The function is com-

puted in such a way that after applying f on all objects of D, we should (ideally)

obtain R equal-sized partitions. In practice, minimal variance in sizes is acceptable.

At the same time, f attempts to put objects that are close in the spatial domain in

the same partition. The output of this phase is a function: f : D → {1, 2, . . . , R}.

In actuality, the function f uses object’s location o.P to assign it to a partition

number. Note that no actual data partitioning or move happens at this point. More

details of this step are presented in Section 3.3.3.

Phase 2: R-tree Construction

During this phase, the function f calculated in the first phase is used by mappers

to divide D into R partitions which are passed to reducers. Then, R reducers build

simultaneously R independent (small) R-tree indexes on their input partitions. The

output of this phase is a set of R R-tree root nodes. Details of this step are presented

in Section 3.3.4.

Phase 3: R-tree Consolidation

This phase combines the R individual R-trees built in the second phase under a

single root node to form the final R-tree index of D. This phase can be as simple

as making the R R-trees children of a single root node, or it may require adding a

few extra levels (at most one in practice) if R exceeds the capacity of a single R-tree

node. Since this phase is not computationally intensive for R under a few hundreds

13

or even thousands, it is executed by a single process outside the cluster. The logic

to run this phase is fairly simple, and it is summarized in Algorithm 3.1.

Algorithm 3.1 R-tree Consolidation

Input: roots - List of individual R-tree root nodes.
Output: Root node of the consolidated R-tree.
1: rTree← initialize empty Rtree
2: for all r ∈ roots do
3: rTree.insert(r.id, r.MBR)
4: end for
5: return rTree

The algorithm first creates a new R-tree. Then, it makes succesive insertions of

the individual R-tree root nodes into the newly created R-tree in line 3. An implicit

assumption of the algorithm is that all the underlying R-trees are all of the same

height. In case the assumption is not met, the algorithm should first level up all the

individual R-trees, for example, by inserting underflow nodes in the shorter R-trees

[PM03].

3.3.3 Data Partitioning

Data partitioning is a key issue that needs to be addressed in parallel processing

approaches. The choice of a partitioning scheme usually depends on how the target

application intends to retrieve data.

We consider a partitioning function f whose purpose is to provide a means for

assigning objects of D to one of a pre-defined number of R partitions. We use

the idea of mapping multi-dimensional spaces into an ordered sequence of single-

dimensional values via space-filling curves to define the partitioning function. This

idea has been studied in the literature as a way to numbering objects in multi-

dimensional spaces [ARR+97] [LK00]. In the present problem, we map objects’

geographical locations (o.P) into a space-filling curve. In particular, we use the Z-

14

order curve [Mor66] in our experiments in Section 3.4. The partition number of an

object o is determined by f(o), which evaluates to a value from the set {1, 2, .., R}.

By using a space-filling curve, the partitioning function f achieves two goals:

• Generate R (ideally) equal-sized partitions.

• Preserve spatial locality. That is, if two distinct objects o1 and o2 are close

to each other in the spatial domain, then they are likely to be assigned to the

same partition, i.e. f(o1) = f(o2).

Next, we propose a MapReduce algorithm to define f .

MapReduce Algorithm

The general idea is inspired by the TeraSort Hadoop application [O’M08], which

partitions an input dataset via data sampling. Given a dataset D and target

number of partitions R, the MapReduce algorithm runs M mappers that collec-

tively take L sample objects from D, and emit their single-dimensional values

S = {U(oi.P), i = 1, .., L} for a given space-filling curve U . That is, each map-

per samples L
M

objects from its O(|D|
M

) input objects. Then, a single reducer sorts

the values in S in ascending order, and it determines a list S ′ of R − 1 splitting

points that split the sorted sequence into R equal-sized intervals. Then, an object o

belongs to partition j if S ′[j − 1] < U(o.P) ≤ S ′[j]. That is, f utilizes the splitting

points in S ′ to assign objects to partitions.

The specific MapReduce key/value input pairs as well as outputs are presented in

Table 3.1. Mappers read in total L samples at random offsets of their input dataset

D, and they compute their single-dimensional value with a space-filling curve U .

The intermmediate key equals to the constant C, whose value is irrelevant, that

helps in sending mappers’ intermediate outputs to a single reducer. The reducer

15

Table 3.1: Map and Reduce inputs/outputs in computing partitioning function f .
Function Input: (Key, Value) Output: (Key, Value)

Map (o.id, o.P) (C, U(o.P))
Reduce (C, list(ui, i = 1, .., L)) S ′

receives the L single-dimensional values generated by the mappers, and sorts them

into an auxiliary list [u1, .., uL], from which R− 1 elements are taken starting at the

bL
R
c-th element and subsequently at bL

R
c fixed-length offsets to form the list S ′ of

splitting points.

An important observation in the sampling process is that mappers read input

data from the distributed storage at block-sized amounts, which is a Hadoop dis-

tributed file system parameter specifically tuned for load balancing large files across

storage nodes. Thus, all mappers, except perhaps for the last one, will read the

same amount of data, equal to the file system block size. The rationale of the

splitting points in S ′ is that they provide good enough boundaries to sub-divide

D into R partitions since they come from randomly sampled objects. Experiments

in Section 3.4 show fairly well balanced partitions using the Z-order space-filling

curve; low standard deviation (under 1%) is observed on the number of objects per

partition. Formally, the function f is defined by Equation 3.1.

f(o) =

1 if U(o.P) ≤ S ′[1]

j if S ′[j − 1] < U(o.P) ≤ S ′[j], j = 2, . . . , R− 1

R otherwise

(3.1)

This computation is characterized by running multiple mappers (samplig data),

and one reducer (sorting samples). The single reducer may become a limiting factor

in scaling the solution when the number of samples L is substantially large. In such

case, an approach similar to the TeraSort algorithm [O’M08] could be used to sort

16

Table 3.2: MapReduce functions in constructing R-trees.
Function Input: (Key, Value) Output: (Key, Value)

Map (o.id, o.P) (f(o.P), o)
Reduce (f(o.P), list(oi, i = 1, .., A)) tree.root

S in parallel, which makes the algorithm for computing the partitioning function

scalable.

3.3.4 R-tree Construction

In this phase, R individual R-tree indexes are built concurrently. Mappers parti-

tion the input dataset D into R groups using the partitioning function f . Then,

objects assigned to a particular partition are received by the same reducer, which

independently builds an R-tree on its input partition. Next, every reducer outputs

a root node of their constructed R-trees. That is, R sub-trees are written to the

file system at the end of this phase. MapReduce input and output key/value pairs

are shown in Table 3.2. Mappers read their input data in its entirety and compute

objects assigned partitions via f(o). Then, every reducer receives a number of input

objects A for which an R-tree is built and its root emitted as output.

Since f attempts to balance partition sizes, it is expected that all reducers will

receive a similar number of objects (A ∼ |D|
R

), thus executing similar amount of work

in constructing their R-trees. However, good balancing depends on two factors: a)

the underlying space-filling curve U used by f , and b) the number of sampled objects

L. More samples help in tuning the splitting points, but incur in larger sorting time

of L elements. Another concern is the quality of the produced R-trees in relation

to the parameter R. In Section 3.4, we provide some insights into this direction

by measuring R-tree parameters such as area and overlap in a simplified way, and

plotting their MBRs for visual analysis.

17

3.4 Experimental Evaluation

This section presents and discusses the experimental results we obtained by run-

ning the algorithms described in Sections 3.3.3 and 3.3.4 as Hadoop applications

on the Google&IBM’s cluster discussed in Section 3.2.3. The datasets used in this

section are real spatial datasets supplied by the Florida International University’s

High Performance Database Research Center [Cen11]. At the time of our experi-

mentation, there were jobs running in the cluster from other researchers that share

this resource, thus some fluctuation in the results is expected.

3.4.1 Datasets and Setup

Experiments were executed on two real spatial datasets. Dataset descriptions are

shown in Table 3.3. Location of objects in the spatial datasets are defined by

geographical coordinates represented by latitude and longitude values. For the par-

titioning function f , we used the Z-order space-filling curve [Mor66] as U function

to map the two-dimensional points into a single dimension. We set the sampling

size as L = (3%× |D|) for all datasets.

Objects in datasets are stored in semi-structured format (Tab delimited files),

where each line represents an object. We used Hadoop supplied record reader func-

tions to convert text lines from the datasets into objects. During the second phase,

reducers built their individual R-trees in main memory. In the final step of reducers,

R-trees were persisted on the Hadoop distributed file system.

18

Table 3.3: Spatial datasets used in experiments.

Dataset
Objects

(millions)
Size
(GB)

Description

FLD 11.4 5 Property parcels in the state of Florida.

YPD 37 5.3
Yellow pages directory of businesses mostly
in the United States but also in other
countries.

3.4.2 Performance Evaluation

This experiment consists of building R-tree indexes on the Google&IBM Hadoop

cluster varying the number of indexes that are built in parallel, that is, the parameter

R in Phase-2. R varied from 2 up to 64 in multiples of two. As R varied, job

completion times were measured for mappers and reducers. In addition, quality

statistics on the resulting R-trees were measured.

On the other hand, we ran a single-process R-tree construction on a dedicated

local machine equiped with Intel Xeon E7340 2.4GHz processor and 8GB of RAM

running Windows OS. We could not run the single process in the cluster since, as

described in Section 3.2.3, the cluster was provided as a platform as a service (PaaS)

cloud, thus no login access to individual nodes was possible. Therefore, cluster and

single-process times are not comparable due to dissimilar hardware.

Table 3.4 shows MapReduce job completion times for R-tree construction phases

1 and 2 for each spatial dataset, as well as for a single-process builder (SP); for

YPD we started at R = 4 due to memory limitations in cluster nodes for building

in-memory trees with less number of reducers. We do not include phase-3 processing

times since its time is negligible compared to the other phases. Phase-1 (partitioning

function computation) takes very little time compared to Phase-2, which is expected

19

Table 3.4: MapReduce job completion times (in minutes) for the Phase 1 (MR1),
and various Reducers (R) in Phase 2 (MR2) of building an R-tree. Also, completion
times for single-process (SP) constructions ran on a local machine are shown.

MR1: f comp. MR2: R-tree
Dataset R Map Reduce Map Reduce Total: MR1 + MR2

FLD 2 0.35 0.28 0.40 24.12 25.15
4 0.28 0.23 0.40 11.07 11.98
8 0.47 0.22 1.73 5.62 8.03
16 0.30 0.22 0.40 3.05 3.97
32 0.48 0.23 0.40 1.95 3.07
64 0.28 0.33 0.45 1.60 2.67
SP - - - - 27.34

IYP 4 0.47 0.38 0.47 52.57 53.88
8 0.22 0.45 0.72 25.42 26.80
16 0.40 0.43 0.38 8.93 10.15
32 0.40 0.43 0.42 4.65 5.90
64 0.40 0.42 0.88 2.55 4.25
SP - - - - 63.98

since L = (3%× |D|) number of elements require little main memory to store them

in an array, and the sorting can be done quickly with a O(L log L) algorithm. For

our largest dataset YPD, about 1 million elements are sampled. Our Z-order values

are 8-byte sized elements, so around 8MB of RAM is needed to execute the sort

operation, which is much less than the available main memory of cluster nodes.

Likewise, mappers in Phase-2 read data sequentially and execute inexpensive Z-

order value computations on their inputs. The most computationally intensive part

is performed by reducers in Phase-2, where the actual R-tree constructions occur.

The fewer the number of reducers, the longer the R-tree construction takes because

each task receives larger number of objects.

Figure 3.4 shows job completion times as stacked bars of the map and reduce

execution times. In this figure, almost linear scalability is observed as more paral-

lelism is induced by increasing R in Phase-2. Performance improvement rate is high

20

 0

 5

 10

 15

 20

 25

 30

2 4 8 16 32 64

T
im

e
(m

in
ut

es
)

Reducers

FLD dataset

MR1 MR2

 0

 10

 20

 30

 40

 50

 60

4 8 16 32 64

T
im

e
(m

in
ut

es
)

Reducers

YPD dataset

MR1 MR2

Figure 3.4: MapReduce job completion times for FLD and YPD datasets.

for few reducers, but soon improvements drop as the number of reducers increases

since partitioning overheads in Phase-1 (MR1) start becoming significant compared

to R-tree build times in Phase-2 (MR2). In fact, for larger values of R, the dom-

inating time component is given by MR1, which, as can be seen in Table 3.4, is

almost constant for a given dataset. Thus, much less improvements are expected as

R is increased beyond 64.

Although we cannot compare the cluster and single process (SP) times due

to mismatches in hardware configuration, the MapReduce parallelization certainly

yields performance benefits for large-scale datasets. For example, it takes more than

an hour to sequentially build the YPD R-tree, while the task can be achieved in

parallel in less than 5 minutes with 64 Reducers. On the other hand, the resulting

R-trees are different due to differences in object insertion sequences. Later in this

section we measure and discuss R-tree quality parameters for both cases.

Figure 3.5 presents percentages of performance gains in job completion times in

relation to subsequent increases of the number of reducers in the second phase of

the algorithm. For example, in the YPD dataset, going from 4 to 8 Reducers we

observe 50% decrease in job completion time, which represents linear scalability. On

the other hand, going from 8 to 16 reducers shows super-linear scalability (62%).

21

 0

 10

 20

 30

 40

 50

 60

4 8 16 32 64

P
er

ce
nt

ag
e

pe
rf

or
m

an
ce

 g
ai

n

Reducers

FLD dataset

 0

 10

 20

 30

 40

 50

 60

 70

8 16 32 64

P
er

ce
nt

ag
e

pe
rf

or
m

an
ce

 g
ai

n

Reducers

YPD dataset

Figure 3.5: MapReduce job percentage of performance gains as the number of re-
ducers is increased.

We pressume this may be due to heterogeneous nodes in the cluster (eventually, the

Hadoop job with R = 16 was scheduled to be executed on faster nodes), or it may

be the cluster resources were idler during that period. As discussed, as we further

increase the number of reducers, performance gains are less significant because the

execution time for the first phase, which has a sequential component (single reducer),

stays almost constant.

R-tree Construction Phase (MR2): Performance Analysis

As the number of reducers increase beyond 16 in Figure 3.4, MapReduce completion

times do not decrease linearly. In fact, for large number of reducers, diminishing

returns are observed. We performed additional experiments to further analyze the

causes of the previous behavior. In particular, we focused on the reduce task of

the second MapReduce job (MR2), where R-tree constructions take place, which

is effected by the number of reducers. The first MapReduce is executed with the

same number of mappers and a single reducer, thus its completion time is nearly

constant.

(We originally ran the experiments for the results in Figure 3.4 in 2009 while

the additional experiments in this section were run in 2011. There were two main

22

Table 3.5: Reduce task three primary phases.

Phase Operation Description

1 Shuffle Intermediate data generated by mappers is
copied over the network by reducers.

2 Sort Reducers sort their local data by key.

3 Reduce The user-provided function
reduce(key, list(.)) is executed.

differences in the cluster environment within this period of time. First, the cluster

has been expanded in capacity and newer hardware was added – 900 nodes versus

400 nodes in 2009. Second, a newer version of MapReduce Hadoop was running –

Hadoop 0.20 versus 0.17 in 2009. Thus, faster completion times are expected in the

experiments of this section. However, regardless of the cluster improvements, the

performance analysis of this section is still statistically significant.)

Reduce Task Phases

According to the Hadoop documentation [Red11], a reduce task has three main

phases as described in Table 3.5. In the shuffle phase, reduce tasks copy their data

from the mappers over the network as intermediate data becomes available. The

sort phase is executed simultaneouly with the shuffle phase. That is, data is merge

sorted by key as it is copied. Finally, the reduce phase starts after all the data from

mappers has been copied and sorted. In this last phase, the reduce(.) function is

invoked for every key and list of values found in the sorted input.

The completion time of the whole reduce phase is given by the longest running

reduce task. In practice, the reduce phase includes setup and cleanup operations

that happen at the beginning and end of the reduce phase, respectively. Although

23

Start

Reduce Phase

Shuffle
and Sort reduce(.)

End

r1

r2

r3

r4

tSS tr

tR

tTC=tR-(tr+tSS)

Figure 3.6: Reduce phase time components with four reduce tasks.

startup/cleanup time costs fluctuate, they show slight variance accross different runs

that can be considered constant cost. So, we disregard these times in our analysis.

Since the cluster is composed by heterogeneous hardware, it is expected that

some reducers would take longer to complete even when the input size is comparable

accross all reducers. The backup task mechanism of the MapReduce framework aims

at alleviating such situation by running backup reducers of those that are taking

longer to finish than the rest. Figure 3.6 illustrates the time components discussed

in a reduce phase with four reduce tasks. We summarize the notation used in our

experiments in Table 3.6.

Reduce Task Performance Experiments

We re-ran the R-tree construction MapReduce jobs for the FLD dataset and mea-

sured the times of Table 3.6 in the reduce phase of the jobs.

Figure 3.7 shows average times in the reduce phase varying the number of re-

ducers from 2 up to 128. In the figure, we can observe change trends of the time

components as the number of reducers increase. First, the reduce time cost (tr) de-

24

Table 3.6: Notation summary of reduce task time components.

Variable Description

tSS Shuffle and sort combined time.

tr Time spent in the reduce(.) function execution.

tR Total time of the reduce phase.

tTC Time to completion of reduce phase. tTC = tR − (tSS + tr).

creases almost proportionally as the number of reducers doubles, which is expected

since the input size per reducer halves at each reduce increase in the X-axis.

Second, the shuffle and sort cost increase slightly as the number of reducers

becomes larger, but it is kept around 40 seconds most of the time. However, for

number of reducers approaching 128, shuffle and sort times become significant com-

pared to the total reduce phase time. Hence, shuffle and sort times are one reason

that precludes linear scalability for large number of reducers. That is, although

reduce times decrease proportionally to the number of reducers, the shuffle and sort

cost does not.

Third, the difference in execution time among the longest running reduce task

and the rest of the tasks is significant for four reducers or more as it can be infered by

the tTC times of Figure 3.7. A possible reason is that the more reducers, the higher

the probability to execute them in machines with dissimilar hardware characteristics.

Thus, the reduce task scheduled in the slowest machine will take longer to finish.

On the other hand, even if all the machines in the cluster had similar hardware

characteristics, another reason may be that the slowest reduce task was scheduled

in a machine that was busy processing other MapReduce tasks. Therefore, the effect

of the longest running reducer also makes the MapReduce job less linearly scalable,

25

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

2 4 8 16 32 64 128

A
v
e
ra

g
e
 T

im
e
 (

m
in

u
te

s
)

Number of Reducers

FLD dataset

Shuffle and Sort (tSS)
Reduce (tr)
Time to Completion (tTC)

Figure 3.7: Reduce phase time components in MR2. Times are the average of five
MapReduce job executions.

especially for larger number of reducers.

3.4.3 Quality of Generated R-trees

We use Equations 3.2 and 3.3 to compute the area and overlap metrics, respectively,

for a given consolidated R-tree with root T :

Area(T) =
n∑

i=1

Area(Ti.MBR) (3.2)

Overlap(T) =
n∑

i=1

n∑
j=i+1

Area(Ti.MBR
⋂

Tj.MBR) (3.3)

where n is the number of children (small R-trees generated by reducers) of T , and

Ti is the i-th entry in the T node. Note that other metrics of R-tree quality could

be considered as well; for example, include all the nodes of the R-tree in computing

the metrics instead of just the top level.

26

Table 3.7: Statistics on consolidated R-trees built by various number of reducers
(R), and single process (SP) construction.

Objects per Reducer Consolidated R-tree

Dataset R Average Stdev Nodes
Overlap
(sq.mi)

Area
(sq.mi)

Height

FLD 2 5,690,419 12,183 172,776 132,333.9 304.4 4
4 2,845,210 6,347 172,624 106,230.4 4,307.9 4
8 1,422,605 2,235 173,141 103,885.8 17,261.9 4
16 711,379 2,533 162,518 96,443.1 21,586.3 4
32 355,651 2,379 173,273 140,028.7 80,389.1 3
64 177,826 1,816 173,445 152,664.2 96,857.7 3
SP 11,382,185 0 172,681 746,145.0 1,344,836.8 4

YPD 4 9,257,188 22,137 568,854 26.511M 21.574M 4
8 4,628,594 9,413 568,716 23.160M 20.480M 4
16 2,314,297 7,634 568,232 67.260M 54.582M 4
32 1,157,149 6,043 567,550 68.627M 54.008M 4
64 578,574 2,982 566,199 69.791M 55.064M 4
SP 37,034,126 0 587,353 164.967M 658.583M 5

Table 3.7 shows quality metrics on the consolidated R-trees built for various

number of reducers and single process (SP). As reference, the U.S. Census Bureau

reports Florida state land area roughly as 54,000 square miles in the 2000 census

[SQ08]. We observe that the total MBR area and the overlap (measured both in

square miles) increase as the parallelism (R) increases because the construction of

each small R-tree is unaware of the rest of the dataset. The latter lowers the chance

of co-locating neighbor objects within the same R-tree. Smaller MBR area and less

overlap are known to improve search performance since they increase path pruning

abilities of R-tree navigation algorithms [BKSS90]. This means that we degrade the

R-tree quality, marginally gaining in execution time. The latter can adversely effect

performance of search algorithms, such as nearest neighbor type of queries due to

extra I/O operations incurred in traversing multiple sub-trees.

For a sequential construction (SP), we observe that the area and overlap metrics

27

 24

 25

 26

 27

 28

 29

 30

 31

 32

-88 -87 -86 -85 -84 -83 -82 -81 -80

Rdr.1
Rdr.2
Rdr.3
Rdr.4

Figure 3.8: MBR plotting of the R-tree created for FLD by MapReduce with R = 4.

are much worse, especially the overlap factor, since objects are not spatially shuffled

but rather inserted in the dataset original sequence. Thus, higher performance

penalties are expected in SP constructed R-trees. On the other hand, the tree

height slightly decreases for FLD for R beyond 32 because more small trees means

that each one of them may be shorter, while for YPD the height increases by one

level for the SP case. In general, small variations in tree height is less significant

from a performance standpoint.

To visually study the effect of increasing R over the MBR distribution, we have

plotted the MBRs of the resulting R-trees for the case of 4 and 8 reducers in Fig-

ures 3.8 and 3.9, respectively, for the Florida state dataset (FLD). The same type

of plotting is shown in Figure 3.10 for the SP R-tree. In neither case is the root

MBR plotted since it is common for all trees.

A few observations can be made from the MBR plottings. First, the partitioning

28

 24

 25

 26

 27

 28

 29

 30

 31

 32

-88 -87 -86 -85 -84 -83 -82 -81 -80

Rdr.1
Rdr.2
Rdr.3
Rdr.4
Rdr.5
Rdr.6
Rdr.7
Rdr.8

Figure 3.9: MBR plotting of the R-tree created for FLD by MapReduce with R = 8.

mechanism employed in our algorithms seems to be effective in preserving spatial

locality. This results in individual reducers indexing highly localized objects; their

boundaries, however, result in multiple overlappings, which are inevitable. Second,

as the number of reducers is increased from 4 to 8, the plotting shape resembles

more the actual shape of the Florida state map; that is, R = 8 reduces wasted areas

(where no actual objects are located) as the area statistic confirms in Table 3.7. In

fact, Table 3.7 shows steady decrease in area from 2 to 16 reducers; after that the

area keeps on increasing. Third, when the R-tree is built on the original sequence of

objects (no object shuffling) in SP mode, large wasted areas are generated as can be

observed in Figure 3.10. From a performance optimization perspective, MapReduce

generated R-trees seem to be better tuned than their single-process counterpart.

Therefore, we see promising performance improvements in MapReduce generated

R-trees, which deserve closer verification.

29

 24

 25

 26

 27

 28

 29

 30

 31

 32

-88 -87 -86 -85 -84 -83 -82 -81 -80

Single Process

Figure 3.10: MBR plotting of the R-tree created for FLD by a single process.

3.5 Related Work

Space-filling Curves

The idea of using space-filling curves to map multi-dimensional spaces into a single

dimension has been studied for the case of spatial databases [AM90] [LK00]. Popular

space-filling curves, such as Peano and Hilbert, have been studied in great level of

detail. In this work, we used the Z-order curves in our experiments. This curve

showed high spatial locality preservation for our experimented real datasets. Other

curves can certainly be evaluated, which goes beyond our focus on the parallelization

problem of building R-trees with MapReduce.

Parallel R-tree Constructions

Previous works on R-tree parallel construction have faced several intrinsic dis-

tributed computing problems such as data load balancing, process scheduling, fault

tolerance, etc., for which they elaborated special-purpose algorithms. Schnitzer and

30

Leutenegger [SL99] propose a Master-Client R-tree, where the dataset is first parti-

tioned using Hilbert packing sort algorithms, then the partitions are declustered into

a number of processors (via an specialized declustering algorithm), where individual

trees are built. At the end, a master process combines the individual trees into the

final R-tree. Another work by Papadopoulos and Manolopoulos [PM03] proposed a

methodology for sampling-based space partitionining, load balancing, and partition

assignment into a set of processors in parallely building R-trees. They also discuss

alternatives when the global (consolidated) index has imperfections, such as differ-

ent heights across individual R-trees. In the simplified MapReduce parallel model,

distributed computing concerns are abstracted out from the application logic, and

managed transparently as part of the MapReduce framework. Further, all nodes in

the cluster access a common distributed file system, with automatic fault-tolerance

and load balancing support. Data locality is employed as the base criterion to as-

sign mappers and reducers (preferably) to nodes already containing the input data.

In contrast, traditional parallel processing works assume every node has its own

storage, in a shared-nothing type of architecture, where data transfer among nodes

becomes an important optimization goal.

MapReduce on Spatial Data

The MapReduce framework was used to solve other spatial data problems by Wu

et al. at Google [WCF+07] where they study the problem of road alignment by

combining satellite and vector data. This work concentrates on the complexities of

the problem, which are more challenging than the MapReduce algorithms. Schlosser

et al. [SRT+08] worked on building Octrees in Hadoop for later use in earth-quake

simulations at large-scale. Their approach builds a tree in a bottom up fashion.

The map function in the first iteration generates leaf nodes, then the reduce function

coalesces homogeneous leaf nodes into a subtree. Subsequent iterations have identity

31

functions in mappers, and successively use reduce functions to construct the final

tree.

Relationship to MPI

Message Passing Interface (MPI) [GLS94] is a specification of a language-independent

communication model targeted at writing parallel programs, and it is widely used in

a variety of computer cluster platforms. MPI libraries provide primitives and func-

tionality for communication control among a set of processes. Typically, developers

need to add explicit calls to synchronize processes and move data around. The key

differences between MPI and MapReduce is that MapReduce exploits its simplified

model to automatically parallelize tasks (via map and reduce tasks), hiding from

programmers the need to worry about process communication, fault-tolerance, and

scalability, which are transparently managed by key components of the MapReduce

framework, such as cluster management system and distributed file system, that the

MapReduce framework is built-upon [DG08]. For example, for the R-tree case study,

the Java implementation of the Map and Reduce functions of the first phase, and

Map of the second phase have each less than 40 lines of code. The Reduce function

in the second phase has about 70 lines of code since it includes extra code for per-

sisting the tree on the distributed file system and collecting build statistics. These

numbers do not include application-specific routines, which are needed regardless of

the parallel model.

On the other hand, the underlying assumption in MapReduce is that the solution

can be expressed in terms of the Map and Reduce functions, and that data can be

represented as key/value pairs. In some cases this may not be natural, such as

relational joins, or multi-stage processes, and can lead to inefficiencies. Then, MPI-

like parallel implementations have more opportunities to address application-specific

optimizations, due to its finer process control. However, high-level languages have

32

been proposed to address this problem in MapReduce architectures by providing

efficient primitives for massive data analysis combining SQL-like declarative style

with MapReduce procedural programming style [YDHP07] [ORS+08].

3.6 Summary

In this chapter, we studied how the MapReduce parallel programming model can

be used to solve the problem of R-tree spatial data structure construction on large

datasets. The proposed MapReduce algorithms were implemented in the open source

Hadoop framework and executed on a Google&IBM Hadoop cluster. The experi-

mental results we obtained indicate that the appropriate application of MapReduce

could dramatically improve task completion times. Our experiments show close to

linear scalability in R-tree index construction tasks. However, performance is not

the only concern for R-tree construction, which is sensitive to the ordering of objects

in its input, but also the quality of the result. MapReduce generated R-trees have

improved quality in terms of MBR area and overlap measurements compared to the

single-process construction counterpart. Our experience in this work shows that

MapReduce has the potential to be applicable to more complex spatial problems.

33

CHAPTER 4

SPATIAL QUERIES WITH ASPATIAL CONSTRAINTS

4.1 Introduction

Geolocation information is becoming ubiquitous in modern databases. More often,

databases store geolocation data such as street addresses, postal codes, cities or

place names, in addition to the traditional descriptive fields. For instance, a real

estate database may store the street address or neighborhood where a home on sale

is located together with its price, number of bedrooms, and a description of the

residence. In other cases, geolocation data can be derived from existing data, for

example the postal code or city could be determined from the machine’s IP address of

a web request event. On the other hand, advances in geolocation technologies allow

users to associate a location to objects or events. For example, modern smartphones

have built-in GPS devices that allow users to associate geographical coordinates

(with small error) to pictures or videos, or to record the place the user has been in

a social event via a Web 2.0 application. Therefore, nearly everthing can be tagged

with a geolocation on the map.

In the recent past years, several research works have tackled the problem of

efficiently answering geospatial queries, such as k-nearest neighbor (k-NN) or win-

dow queries, with exact and approximate keyword constraints [ABL10] [CJW09]

[DFHR08] [HHLM07] [PK03]. For example, in the real estate database, a user may

be interested in finding houses for sale nearby Miami Beach (spatial constraint) that

have backyard in their description (textual constraint) and their streets addresses

contain Collins Avenue (textual constraints). Existing works typically assume that

query keywords are conjunctively connected. That is, objects containing all query

terms are retrieved. In the general case, it is desirable to include multiple constraints

34

on textual and numeric attributes, and to connect constraints with different logical

operators (beyond the conjunctive semantics) [CWR10]. For instance, in a database

of property parcels, fire fighters traveling in a truck may want to quickly determine

the nearest parcels that have swimming pool and are not located in buildings for

water replenishment purposes in an emergency.

On the other hand, spatial databases also store a variety of numeric attributes.

Despite numerous research works on keyword searches in geospatial databases, lit-

tle research was done in efficiently supporting location-aware queries with numeric

constraints. In particular, numeric range constraints are useful for several domain-

specific application, such as real estate listings or product sales, and Web mapping

services (like Google Maps [mGM] or Bing Maps [mBM]), when users have only a

rough idea of the value they expect to find, or simply when finding an exact value

is not relevant. For example, in the real estate database a buyer may post the

following query:

“Find the nearest homes for sale with prices between $50,000 and $80,000”

As geospatial databases increase in size, the requirement of efficient processing

of spatial queries with textual and numeric constraints becomes more important.

In this chapter, we propose methods for efficiently processing k-nearest neighbor

(k-NN) queries with textual and numeric constraints. We consider the case where

constraints are combined with the three basic Boolean operators: AND, OR, and

NOT . We assume the database follows the data model presented in Section 2.3 of

Chapter 2. Intuitively, the result of k-NN spatial Boolean selection query is a list

of the k nearest objects in the database, sorted by distance to the query location,

that satisfy a Boolean selection criteria.

The proposed method combines two tree-based indexes: R-trees to organize

objects by their spatial coordinates, and B+trees to store textual and numeric data

35

with references to the R-trees1. The combined data structures result in a novel

hybrid index of spatial, textual, and numeric data.

The specific contributions of this chapter are:

1. We define a k-NN spatial Boolean query (k-SB) that finds the k-nearest

neighbor objects satisfying a Boolean selection criteria on aspatial database

attributes. Constraints can be combined with conjunctive (∧), disjunctive (∨),

and complement (¬) logical connectives.

2. We propose a novel hybrid index to efficiently process k-SB queries. A salient

feature of our query processing algorithm is that it only searches spatial regions

that do contain objects satisfying the query Boolean selection criteria.

3. We execute extensive experimentation on an implementation of our methods

over large spatial databases. Experimental results show that the proposed

methods have excellent performance and scale to multi-million sized datasets

compared to alternate methods.

In the rest of the chapter, we separate the presentation of the proposed hybrid

indexing approach and query processing algorithms in two sections for clarity. Sec-

tion 4.2.2 presents the hybrid indexing approach of spatial with textual data while

the hybrid index spatial and numeric data is discussed in Section 4.3.3. Exper-

imental study is performed with a prototype search system that implements our

hybrid indexes in Sections 4.2.4 and 4.3.5. Section 4.5 discusses related work to our

research. Finally, the chapter is summarized in Section 4.6.

1In the rest of the chapter, whenever we mention B-tree, we actually mean B+tree
unless explicitly stated otherwise.

36

4.2 Indexing Spatial and Textual Data

4.2.1 Problem Definition

A spatial database D = {o1, o2, ..., oN} is a set of objects such that each o ∈ D has

a pair of attributes < op, oT >, where: op is a two-dimensional point that represents

the location of object o, and oT = {t1, t2, ...} is a set of terms that provide a textual

description of the object. The spatial distance of two objects a and b is given by

the function dist(ap, bp).

A k-NN spatial Boolean query (k-SB) Q is a triple < Ql, Qk, QB >, where: Ql

is a two-dimensional point that represents the query location (spatial constraint),

Qk > 0 is the desired query output size, and QB is a conjunctive Boolean selection

predicate (textual constraint). More specifically, QB is a set of terms prefixed with

the Boolean operators {∧,∨,¬}, and conjunctively connected as follows:

B =
[
∧(A = {a1, a2, ...})

∧
∨(C = {c1, c2, ...})

∧
¬(G = {g1, g2, ...})

]
(4.1)

Where, the (possibly empty) subsets represent:

A - the AND-semantics subset of terms prefixed with the ∧ (and) connector.

C - the OR-semantics subset of terms prefixed with the ∨ (or) connector.

G - the NOT -semantics subset of terms prefixed with the ¬ (not) connector.

An object o ∈ D satisfies B if:

[(∀a ∈ A : oT ∩ a 6= ∅) ∧ (∃c ∈ C : oT ∩ c 6= ∅) ∧ (∀g ∈ G : oT ∩ g = ∅)] (4.2)

The result of the k-SB query Q is the list:

L = {oi ∈ D|oi satisfies B}, such that: (4.3)

∀o ∈ (D \ L) : [dist(op, Ql) ≥ arg maxr∈Ldist(rp, Ql) ∨ ¬(o satisfies B)]

37

 24.5

 25

 25.5

 26

 26.5

-81 -80.5 -80 -79.5 -79

o1: {t3, t6}

o2: {t1, t4}

o3: {t1, t2, t5, t6}

o4: {t6}

o5: {t2, t3}

o6: {t1, t4}

o7: {t3}

o8: {t1, t2, t5}

o9: {t2}

o10: {t4, t6}

o11: {t5}

o12: {t3}

Qre

Miami
Center

Home for sale
Buyer

Figure 4.1: k-SB query Qre on the real estate database Dre = {o1, o2, ..., o12}. Terms
ti in objects’ textual descriptions are shown in Table 4.1 in an inverted file format.
The result of the query is Lre = {o3, o8}.

Objects in the result set L are sorted by distance to the query location Ql in non-

decreasing order. In other words, a k-SB query Q returns the k-NN objects to the

query location Ql that satisfy the conjunctive Boolean predicate B. We assume the

distance function dist() is the Euclidean distance. The problem is how to efficiently

compute L.

Example: In the real estate database Dre in Figure 4.1 the query:

“Find 10 -NN houses for sale nearby Miami that have masterbed with bathtub,

have a pool or backyard, and are not located in a building”

translates to the following k-SB query:

Qre = {Miami, 10, [∧(masterbed, bathtub)
∧∨(pool, backyard)

∧¬(building)]}

and retrieves objects Lre = {o3, o8}.

38

Table 4.1: Terms in database Dre of Figure 4.1. For every term ti, the list of objects
containing ti is shown.

Term Object List

backyard (t1) {o2, o3, o6, o8}
pool (t2) {o5, o8, o9}
building (t3) {o1, o5, o7, o12}
collins (t4) {o2, o6, o10}
single-family (t5) {o3, o8, o11}
miami (t6) {o1, o3, o4, o10}

In designing the hybrid index, we pursue the following objectives. First, we want

to attain fast retrieval even when the matching objects are located far away from

the query location. Second, we want to efficiently filter objects not satisfying the

query Boolean selection constraints on objects’ terms. A key challenge is to perform

a small number of computations to eliminate as many non-candidate objects as

possible. In particular, the NOT -semantics constraints may generate opportunities

to substantially shrink the search space, i.e. eliminate spatial regions that contain

no candidates; for example, if the not terms are frequent in the database, the set of

candidate objects is expected to be small. Third, we want to maintain low storage

requirements for the index data structure while keeping high query performance.

With the previous objectives in mind, our indexing approach leverages the

strengths of R-trees [Gut84] in spatial searches, and organizes textual data in a mod-

ified inverted file [ZM06] for efficient processing of Boolean constraints on textual

attributes. The combination of indexing techniques yields the hybrid data structure

Spatial-Keyword Index (SKI). We next introduce two important definitions in the

SKI data structure.

Definition 4.2.1 Given an R-tree R with node capacity m, a Super Node s is the

list of m leaf nodes (level 1) that share the same parent node. Super nodes are

identified by unique numbers assigned in a depth-first order visit sequence. The

39

a) b)

x
o3 o1 o2 o3 o4 o5 o6 o7 o8 o9 o10 o11 o12

x
o4

x
o1

x
o2

x
o8

x
o10

x
o11

x
o12

x
o9

x
o5

x
o6

x
o7

N4

N1

N5

N2 N3

N1

N2

N3

N4 N5

N6 N7

N7

N6 Super node s1 Super node s2

e1 e2

h=2

Figure 4.2: a) A sample spatial database. b) Super nodes [s1, s2] in the R-tree index
of the sample database in (a).

universe of super nodes in a given tree R is SR = [s1, s2, ...], where s1 is the left

most super node in the R-tree.

A super node s contains O(m) leaf nodes, or equivalently O(m2) object pointers.

An R-tree of height h > 0 has O(mh−1) super nodes2. (A single-level R-tree has

no super nodes.) Figure 4.2b shows an R-tree of height h = 2 with node capacity

m = 3 and its super nodes on the sample spatial database in Figure 4.2a.

Definition 4.2.2 The bitmap of a term t at super node s is a fixed-length bit array

I(t, s) of size m2, where the i-th bit is computed as follows:

I(t, s)[i] =

1 if s[i] points to object o : t ∈ oT

0 otherwise
(4.4)

Figure 4.3 shows the term bitmap for the keyword “miami” at super node s1 of

an R-tree built on the spatial database Dre (Figure 4.1).

2We consider the height of an R-tree as the number of levels below the root node.

40

Level 1

(leaves)

Level 2

OO O OO O

null

...
Super Node

s

I("miami", s) =

N1 N2

N6

Term

Bitmap

1 1 0 0 0 0 0 0 01

1

3 1 8 5 9 2

Figure 4.3: Term bitmap for keyword “miami” at super node s1 composed of two
leaf nodes [N1, N2].

4.2.2 Spatial Keyword Index

The spatial-keyword index (SKI) is composed of two building blocks: a) A modified

R-tree index R, and b) A spatial text store Ts, backed up by a B-tree. Figure 4.4

shows the internal data structures of the spatial keyword index. Both tree-based

data structures are stored in secondary memory since our objective is to be to index

large databases, and we want to avoid hitting main memory capacity limits.

R-tree Index (R)

A modified R-tree built on the spatial attributes of database D. The modification

is as follows. Each entry e in inner nodes is augmented with a range [a, b], a ≤ b of

super node identifiers, where sa is the left-most super node in the sub-tree pointed

by entry e, and similarly sb is the right-most super node in the sub-tree rooted at e.

Ranges in leaf node entries contain a single value, that is, the identifier of the super

node that contains the leaf node.

41

Table 4.2: Key and value definitions of the B-tree that backs up the spatial text
store.

Attribute Description
Key term A term of the database vocabulary.

si Identifier of super node si.
Value I(term, si) Bitmap of “term” at super node si.

Spatial Text Store (Ts)

The vocabulary of a database D is defined by VD = {⋃o∈D oT}. Terms in the

vocabulary and their bitmaps form records that are organized in a text store Ts,

which is backed up by a B-tree. Specifically, records are identified by terms and

super node identifiers (B-tree keys) in the R-tree R, which link terms to where they

occur in the spatial dimension. Keys in the B-tree as well as their values are shown

in Table 4.2.

The selection of a B-tree to organize the textual data of the database is justi-

fied by the way we intend to retrieve values. B-trees guarantee logarithmic time

O(log n), where n is the number of records stored in the B-tree, for finding records

by key [Com79]. In addition, after finding the B-tree leaf node that contains a key

< term, si >, the next p elements in the sorted sequence (that is, range retrievals)

can be found with O(p) additional cost, i.e. O(log n + p) total cost. Both random

and range retrievals are operations that our query algorithm performs, which makes

B-trees a good candidate for organizing text-related data.

On the other hand, in order to reduce storage space requirements, we compress

term bitmaps I(t, si) before storing them in the B-tree. In our experiments we

employed the Word-Aligned Hybrid (WAH) bitmap compression method [WOS06].

An advantage of the WAH compression method is that it allows fast bitwise com-

42

Level 1

(leaves)

Level 2

nullN1 N2

N6

Super node

ranges

N8

N3 N4

N7

N5

[1,2]

[1,1] [2,2]

R-tree (R)

Spatial Text Store (T)

references

Level 3

s1 s2

... ...

...

S

key: (t, s)
101010010value:

2

Figure 4.4: Spatial-Keyword Index internal data structures.

putations with logical operators AND, OR, and NOT on uncompressed bitmaps,

which help improve efficiency of the query processing algorithm.

4.2.3 Processing k-SB Queries

In order to process a query Q =< Ql, Qk, QB >, the R-tree index R is traversed

starting from the root node down to lower levels until the leaf node that contains the

nearest object to the query location QL is found. Node entries are visited in order

of proximity of their minimum bounding rectangles (MBR) to the query location

Ql. However, before traversing a sub-tree rooted at entry e, the text store Ts is

used to determine whether there exists at least one element within such sub-tree

that satisfies the Boolean selection criteria QB. The algorithm retrieves candidate

objects using an incremental nearest neighbor approach. That is, after retrieving i

objects, the (i+1)-th object can be retrieved without re-computing the i previously

retrieved objects. Our R-tree traversal algorithm is inspired by the incremental

43

nearest neighbor strategy proposed by Hjaltason and Samet [HS99], but proper

filters are added during R-tree traversal to ensure that no unfruitful traversals are

performed. Indeed, a salient feature of our algorithm is that unnecessary sub-tree

traversals are eliminated altogether.

Algorithm 4.1 Process k-SB Query

Input: Q =< Ql, Qk, QB > - A k-SB query.
Output: L - A list of objects with the result of Q (see Equation 4.3).
1: pQueue← R.root // initialize a priority queue with R’s root pointer
2: L← ∅ // list of retrieved objects
3: while (pQueue 6= ∅ and |L| < Qk) do
4: Entry e← pQueue.pop()
5: if (e points to inner node) then
6: if (Ts.isSubtreeCandidate(e,QB)) then
7: Node n← R.getNode(e) // retrieve inner node
8: for all (Entry e ∈ n) do
9: pQueue.push(e, dist(e.MBR, Ql))

10: end for
11: else
12: // sub-tree pointed by e has no candidates, prune it
13: end if
14: else
15: L.add(getObject(D, e)) // candidate object found
16: end if
17: end while
18: return L

Algorithm 4.1 shows the steps involved in processing k-SB queries using the SKI

data structure. The algorithm starts by initializing a priority queue with the R-tree

root pointer in line 1. The priority queue maintains entry nodes sorted by distance

to the query location Ql. An entry e can point to either an R-tree inner node or

an object in the database D. In the former case, the entry distance to the query

location is computed as the distance from the query location point to the entry’s

minimum bounding rectangle. In the latter case, the distance is the regular distance

between two points, the query location and the object’s location. At the head of

44

the priority queue pQueue is the next nearest entry to the query location, which

guarantees that entries are visited in order of proximity to the query location.

The loop between lines 3 and 17 is executed while there are not enough objects

in the result list to meet the requested query output size Qk, or pQueue gets de-

pleated, which means no more potential candidate objects exist in the database.

The next nearest entry e is removed from the queue in line 4. In case e points

to an internal node, it is evaluated if the sub-tree pointed by e contains at least

one candidate object that satisfy the query Boolean selection predicate QB. The

latter is accomplished by the function call isSubtreeCandidate() (which uses the

spatial text store Ts) in line 6. We will explain the logic of this function in the

next paragraphs. For now, let us assume that isSubtreeCandidate() return true

only if it is worthwhile to traverse the sub-tree rooted at e. When the function

isSubtreeCandidate() returns true, the root node n of the sub-tree pointed by e is

retrieved from secondary storage. Then, all entries in n are eagerly pushed into the

queue even though some of them may point to sub-trees with no candidate objects

whatsoever. It would be inefficient, and not necessary, to verify if such entries point

to real candidate sub-trees before pushing them into the queue. Instead, the algo-

rithm lazily verifies the sub-tree candidacy condition only when an entry is popped

from the queue, i.e. the entry is the next nearest neighbor. When the function

isSubtreeCandidate() returns false, it means there is no object that satisfies QB,

therefore the entire sub-tree pointed by e is pruned.

On the other hand, if the entry e popped off the queue in line 4 points to a

database object o, then because of the previous filters o must satisfy QB, and it

is the next nearest object to the query location. Hence, o is retrieved from the

database, and it is added to the result list L in line 15. Finally, the collected

candidate objects are returned in line 18.

45

Algorithm 4.2 isSubtreeCandidate

Input: e - An R-tree node entry.
QB - A k-SB query Boolean selection criteria.

Output: true if there exists o ∈ D pointed by any super node in e’s range [a, b],
i.e. [sa, sa+1, . . . , sb], that satisfies QB; false otherwise.

1: // iterate over the range of super nodes at entry e: [sa, sa+1, . . . , sb]
2: for (i = e.a to e.b) do
3: for (j = 1 to m2) do
4: b[j]← 1 // initialize a bit array with all bits set
5: end for
6: if (QB.A 6= ∅) then

7: b← b ∧
[∧

t∈QB .A Ts.getBitmap(t, si)
]

// AND-semantics predicates
8: end if
9: if (cardinality(b) > 0 and QB.C 6= ∅) then

10: b← b ∧
[∨

t∈QB .C Ts.getBitmap(t, si)
]

// OR-semantics predicates
11: end if
12: if (cardinality(b) > 0 and QB.G 6= ∅) then

13: b← b ∧
[∧

t∈QB .G flip(Ts.getBitmap(t, si))
]

// NOT -semantics predicates
14: end if
15: if (cardinality(b) > 0) then
16: if (e points to inner node) then
17: return true
18: else if (∃j : b[j] = 1 and si[j] = e) then
19: return true
20: end if
21: end if
22: end for
23: return false

46

Algorithm 4.2 describes the logic of the function isSubtreeCandidate executed

during the processing of a k-SB query. Intuitively, this function determines if there

is at least one super node si, in the range of possible super nodes [sa, . . . , sb] within

the sub-tree rooted at e, that contains an object o satisfying the k-SB Boolean

criteria.

The algorithm sequentially iterates over the range of super node identifiers be-

tween lines 2 and 22. For each super node si ∈ [sa, . . . , sb], term bitmaps of query

terms in every predicate subset are combined according to the subset semantics.

That is, bitmaps of terms in the AND-semantics subset are combined with the

and bitwise operator; similar operation is done with bitmaps of terms in the OR-

semantics subset using the or operand. However, for terms in the NOT -semantics

subset, their bitmaps need to be first flipped (to implement the negation logic) before

combining them, which is accomplished by the function flip() in line 13. Interme-

diate bitwise operation results are stored in the bit array b, whose bits are initially

set to 1 in line 4. At every time in the outer-most for loop (lines 2-22), if b[j] is

set to 1, it means that the object pointed by si[j] is a potential object candidate

to satisfy the k-SB selection predicates QB. In line 15, the algorithm checks the

number of bits in b that remain 1, using the function cardinality(). If a bit b[j] (and

possible more) has 1 value, then it means that the object pointed by si[j] definitely

satisfies the k-SB Boolean selection predicate, thus the algorithm returns true in

line 17. In the particular case when e points to a database object, the algorithms

needs to additionally check that there is a super node entry si[j] that points to the

same object for some set bit b[j]. Otherwise, if all bits in b are off, super node si

points to no object that satisfy QB, so the next super node si+1 is checked. If the

outer-most for loop is exhausted, then no candidate object pointed by the range

of super nodes [sa, . . . , sb] satisfy the query selection predicates. In that case, the

47

algorithm return false in line 23.

Since the algorithm isSubtreeCandidate() is called multiple times during a query

execution, starting from node entries close to the root node and down towards leaf

nodes, there is potentially several redundant bitwise computations that could be

performed. For instance, if a first call to isSubtreeCandidate() determines that

in the super node range [s1 . . . s4], s3 has candidate objects. A second call to

isSubtreeCandidate() may test the range [s2, s3] which we already know that s3

does contain a candidate object. To avoid such redundant computations, we store

the super nodes si that do contain qualifying objects as keys in a hash table, and

their respective resulted bit sequences bi as the values associated to keys. In that

way, the algorithm first checks if there is already a qualifying super node in the

hash table before evaluating a range of super nodes. Similarly, following the same

example, from the first call to isSubtreeCandidate() we know that super nodes s1

and s2 do not contain any candidate object. To avoid re-evaluating those super

nodes in subsequent calls to isSubtreeCandidate(), we store non-candidate super

nodes sj in a hash set.

Time and Space Complexity

The worst case for isSubtreeCandidate() is when the for loop between lines 2

and 22 is execute over the entire super node range [sa, . . . , sb]. Since a super node

contains O(m2) object pointers, where m if the R-tree fanout, a call to the function

isSubtreeCandidate() can potentially prune O(m2 × [b − a + 1]) objects, when no

candidate object exist in the super node range [sa, . . . , sb]. Considering that m is

usually in the order of hundreds, the number of pruned objects can be relatively

large. The cost of worst case isSubtreeCandidate() is remarkably low O(|QB| ×

[log n + (b − a)]), where |QB| is the number of query terms, and n is the number

48

of keys stored in the B-tree. The first key =< t, sa > is retrieved in time O(log n)

while subsequent keys < t, sa+1 >, . . . , < t, sb > are retrieved with O(b− a) cost.

The variable n (number of keys stored in the B-tree) in our analysis depends on

the database vocabulary size |V |. In the worst case, every term ∈ V is referenced

by all the super nodes in the R-tree, which means that the distribution of terms in

space is close to uniform. For the worst case, assuming an R-tree of height h > 0,

the number n of keys in the B-tree is bounded by O(|V | ×mh−1), where O(mh−1)

is the maximum number of super nodes in the R-tree of height h. In practice, there

are location-related terms that generally occur in a constrained spatial area, like

place names or street names, e.g. Miami Downtown. There are also generic terms,

no related to any particular place, so they may appear almost anywhere on the

map, such as Avenue or Condominium. On the other hand, the empirical Zipf’s

law suggest that the frequency of terms in a vocabulary generated from a natural

language can be approximated by a Zipfian distribution – a power law probability

distribution. In particular, the law says that the frequency of a term is inversely

proportional to its rank in the ranking table. Thus, we can expect that a few percent

of terms in the database vocabulary be highly frequent while the majority of terms

would tend to appear in a few objects, thus somewhat restricted to the objects’

geolocations. Because of the previous arguments, we can reasonably expect that the

number n of keys in the B-tree be much less than its worst case.

4.2.4 Experimental Evaluation

We conducted a series of query performance experiments with a prototype search

system implemented in Java. The search system implements both the proposed k-SB

query processing algorithms, and the spatial-keyword index defined in Section 4.2.2.

49

Table 4.3: Spatial databases used in experiments. Database and vocabulary sizes
are in millions.

Database |D| |V | Description

FL 10.8 21.2 Property parcels in the Florida state.
YP 20.4 40.8 Yellow pages of businesses in the United States.
RD 23.0 64.8 Road segments in the United States.

The R-tree was implemented in Java, and we used the open source library JDBM to

support the B-tree data structure3. Experiments were run on an Intel Xeon E7340

2.4GHz machine with 8GB of RAM, and a single disk attached directly to the host.

We used three real spatial datasets in our experimentation. The datasets are

listed in Table 4.3. Objects’ locations are determined by geographical coordinates

in latitude and longitude format. In the case of the road segments database (RD),

although segments are lines defined by a pair of points on the map, only one point

was used to determine the geolocation of the segment. Databases contain between

30 and 80 text attributes, which were concatenated in a term set.

We measured two performance metrics on the execution of k-SB queries: 1) Av-

erage number of random I/Os, and 2) Query execution elapsed times. The measured

metric include only access to the index data structures. Actual record retrieval is

not included in the metrics. We compared the performance metrics of our query

processing technique against two baselines.

Baseline 1 (IFC)

This is a regular inverted file of terms with posting lists containing a sequence

of objects that contain the term. In addition, objects in postings are augmented

with their geolocation coordinates to be able to compute spatial distances without

3JDBM is an open source library that provides scalable data structures, such as Hash
table and B+tree, to support persistence of large object collections.

50

retrieving the object location from the database. Queries were processed in two

phases. First, term posting lists are merged according to the semantics of each

subset in the query Boolean predicate QB. Merging means that postings of AND-

semantics terms are intersected, postings of OR-semantics terms are combined, and

finally postings of NOT -semantics terms are substracted from the previous result.

In a second phase, objects that passed the selection criteria are sorted by distance in

increasing order to the query location. From the sorted list, the k nearest neighbors

are returned as the result of the query.

Baseline 2 (RIF)

An R-tree index was built on the input database. Every node in the tree was

augmented with an inverted index on the keywords found within the sub-trees rooted

at that node. The difference with the IFC inverted files is that for a given R-tree

node, term posting lists contain reference to node entries where the term occurs.

This baseline is inspired by works in [CJW09] [HHLM07]. At query time, R-tree

node entries are visited in nearest-first order on the basis of the distance to the query

location. Posting lists of terms in the AND-semantics and OR-semantics subsets of

the query predicate QB are merged at every R-tree node to determine which entries

should be visited. Note that terms in the NOT -semantics cannot be applied on

internal nodes because the inverted file of a term t only indicates which subtrees

contain t, but there may be other objects within those subtrees that still satisfy the

query predicates.

Query Workload

For each databases in the experiments, terms in its vocabulary were sorted by doc-

ument frequency (df) in increasing order. Then the 3-quantiles were selected from

51

the sorted lists such that the list was divided in three equal-sized groups.

• S - Terms with df < 1–quantile (infrequent terms),

• M - Terms with df < 2–quantile,

• L - Terms with df < 3–quantile (entire vocabulary).

From each quantile, a k-SB query Q was composed by randomly picking between

three and eight terms from the quantile group {S, M, L}. Terms were randomly

included in either the AND-semantics, OR-semantics, or NOT -semantics subset

to form the query selection predicate QB. The size of the output was fixed to

k = 20. For each database, we generated 50 k-SB queries for each type of workload

and executed them with our query processing method (SKI) and the two baseline

methods.

Discussion

Figure 4.5 shows the average number of I/O reads executed by each query processing

method over the 50 k-SB generated queries for each workload type {S, M, L}.

We observe in Figure 4.5a and Figure 4.5b that IFC has performance advantages

over SKI and RIF methods when query terms are relatively infrequent – workloads

S and M . For infrequent terms, in the S group, it is expected that their posting

lists be relatively small, which can be quickly retrieved and evaluated to compute

the query result. Even when terms are slightly more frequent, like in M workloads,

shorter posting lists are read from secondary storage in their entirety sooner than

longer postings, that may not be retrieved completely, by IFC. So, the merge phase

can be still executed fast enough, as it can be observed in Figure 4.5b. On the

contrary, SKI and RIF methods need to perform additional work in traversing

R-tree nodes to locate objects in nearest neighbor order.

52

 0

 50

 100

 150

 200

 250

FL RD YP

A
ve

ra
ge

 n
um

be
r

of
 I/

O
 r

ea
ds

a) S - Query Workload

SKI
RIF
IFC

 0

 50

 100

 150

 200

 250

 300

FL RD YP

A
ve

ra
ge

 n
um

be
r

of
 I/

O
 r

ea
ds

b) M - Query Workload

SKI
RIF
IFC

 100

 1000

 10000

 100000

FL RD YP

A
ve

ra
ge

 n
um

be
r

of
 I/

O
 r

ea
ds

c) L - Query Workload

SKI
RIF
IFC

Figure 4.5: Average random I/O reads of 50 randomly generated k-SB queries.
Y-axis in (c) is in logarithmic scale.

53

For S workloads, SKI and RIF execute comparable amount of work while still

performing acceptably in terms of I/O cost. However, there are noticeable perfor-

mance gains of SKI over RIF in M workloads. One reason for such difference is

that RIF does not implement the NOT -semantics filter in upper level nodes of the

R-tree while SKI applies all filters before visiting every sub-tree. In addition, it may

happen in RIF that after reaching a leaf node level, the actual combination of query

terms is not satisfied by any leaf entry. Eventually, sub-trees known (via inverted

file) to contain the query terms in RIF are engaged in query processing. However,

no single object within the sub-tree satisfy the query predicates. For instance, in

an internal node, its inverted file determines that terms tx and ty are located within

the sub-tree pointed by entry e, but at the leaf node terms occur in two different

objects, tx ∈ xT and ty ∈ yT , which makes the sub-tree traversal unfruitful and

degrades RIF ’s performance.

On the other hand, when query terms become more frequent, like in workloads

M and L, IFC incurrs in expensive long posting list retrievals while performing

their merging process; Figure 4.5c show high peaks for the IFC method as a conse-

quence of such expensive operations. In contrast, SKI performs significantly better

than both RIF and IFC in L workloads. The main reason for SKI performance

advantages is twofold. First, it has the ability to prune non-candidate objects at

larger granules (super node) in logarithmic time. Second, false drops are avoided

altogether by guaranteeing that a sub-tree in the R-tree index contain at least one

object that satisfy the query predicates before engaging in traversing the sub-tree.

Figure 4.6 shows elapsed times during query execution of the three methods.

Some discrepancies with the I/O plots can be observed in the time plots. For ex-

ample, Figure 4.6c shows substantially longer times than expected for RIF on S

workloads over the FL dataset. This might be caused by overheads introduced by

54

 0

 0.05

 0.1

 0.15

FL RD YP

A
ve

ra
ge

 e
la

ps
ed

 ti
m

e
(s

ec
on

ds
)

a) S - Query Workload

SKI
RIF
IFC

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

FL RD YP

A
ve

ra
ge

 e
la

ps
ed

 ti
m

e
(s

ec
on

ds
)

b) M - Query Workload

SKI
RIF
IFC

 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

FL RD YP

A
ve

ra
ge

 e
la

ps
ed

 ti
m

e
(s

ec
on

ds
)

c) L - Query Workload

SKI
RIF
IFC

Figure 4.6: Average elapsed time of 50 randomly generated k-SB queries.

55

the operating system at the time we ran RIF experiments. Also, in Figure 4.6c, IFC

show unexpectedly lower times compared to the amount of I/O work done. That

might be the effect of posting lists being stored sequentially on secondary storage.

During query processing, posting lists are retrieved by blocks (which contain several

object identifiers) in sequence starting from the first block. So, blocks may be read

semi-sequentially, reducing the total amount of disk seek time. In general for all

methods, another factor that helps reduce the elapsed time is the operating system

cache. In tree-based data structures, nodes in upper level are retrieved frequently,

which makes them more likely to be cached. So, subsequent query executions may

experience faster I/O reads. In summary, we observed consistent enhanced retrieval

performance using the proposed hybrid spatial indexing and query processing meth-

ods.

4.3 Indexing Spatial and Numeric Data

Attributes of numeric type are common in spatial databases. Thus, it is desirable

to include conditions on numeric data in spatial queries. For example, in the real

estate database in Figure 4.7, a buyer may post the following k-NN query:

“Find the nearest homes for sale with prices between $50,000 and $80,000”

Existing works on spatial queries with keyword constraints [ABL10] [CJW09]

[DFHR08] [HHLM07] [PK03], including ours [CWR10], cannot be directly applied

on numeric data because they do not properly capture numeric semantics. A spatial

query with a numeric range constraint “price ≤ v”, searches for no particular price

value, like in the case of keyword matching, but can be satisfied by multiple objects

so long their price values are at most v. A basic query processing method would

retrieve all the possible objects that satisfy the numeric condition, and then apply

56

 1

 2

 3

 4

 1 2 3 4

o1: $30K

o2: $80K

o3: $60K
o4: $85K

o5: $53K

o6: $90K

o7: $100K

Query:
nearby homes with

prices in $50K..$80K?

Home for sale
Buyer

Figure 4.7: The result of a k-NN query of homes for sale with prices in the range
$50, 000..$80, 000 is the sorted list [o3, o2, o5].

the required spatial relation, e.g. nearest neighbor, which can result in a very

expensive operation.

The efficient execution of spatial searches with numeric constraints poses a few

challenges towards achieving scalability. First, the number of objects in geospatial

databases is constantly growing. It is common for today’s geospatial databases

to store tens of millions of objects. Second, the number of individual numeric

fields stored in a database can be large; some applications may need to store a

few hundreds of numeric attributes. Third, numeric attributes may have different

precision requirements; integers may be adequate for storing people’s ages, while

decimal numbers could be required for prices and land areas. Finally, in contrast to

textual data that usually comes from a (natural language) vocabulary of finite size,

the amount of unique numeric values in a database may be arbitrarily large.

In this section, we focus on efficiently processing k-nearest-neighbor (k-NN) spa-

tial queries with range conditions on numeric fields. Our approach tackles the afore-

mentioned challenges in the following ways Numeric values are encoded into a com-

57

pact, byte string representation using an Interval-based tree compression method

[Ris92]. A key insight of the numeric compression method is that prefixes of encoded

number strings adequately represent numeric ranges that enclose the encoded num-

ber. On the other hand, geographical coordinates of database records are indexed in

an R-tree [Gut84] (with a similar modification that was discussed in Section 4.2.2).

Encoded numbers and encoded numeric ranges are linked to R-tree nodes where

the numbers occur, and organized in a B-tree [Com79]. Both the R-tree and B-

tree data structures are stored on secondary storage. Thus, our approach is not

limited by the available main memory of the host system, which makes it suitable

for large databases. The query processing algorithm traverses the R-tree following

an incremental nearest neighbor approach [HS99] and leverages B-tree’s efficient

range retrieval operations for pruning R-tree branches that do not lead to candidate

objects.

4.3.1 Problem Definition

We define a geospatial database D = {o1, o2, . . . , oN} as a set of N objects. Without

loss of generality, we assume that an object o ∈ D has three fields < oid, op, ov >,

where: oid is the object’s unique identifier, op is a two-dimensional point representing

the object’s geolocation, and ov is a numeric attribute representing some quantity.

Intuitively, a k nearest neighbor query with a user-defined numeric range constraint

retrieves from database D the k nearest objects to a reference point, whose numeric

values are within the requested numeric range.

Formally, a k-NN query Q with a numeric constraint (k-SBn) is defined by the

tuple Q =< Qp, Qk, [Ql..Qu] >, where4:

4To distinguish a k-NN query with numeric constraints from the similar query with
text constraints, defined in Section 4.2.1, we suffix the short name k-SB with the letter

58

Qp - is the query’s 2D reference point.

Qk > 0 - is the number of nearest objects to retrieve.

[Ql..Qu] - are the lower (Ql) and upper (Qu) bounds of the numeric range constraint.

Either Ql or Qu can be absent, to represent open intervals [Ql .. +∞) and

(−∞ .. Qu], but not both.

The result of the query Q is a list of objects L = [r1, r2, . . . , rQk
], ri ∈ D sorted

by distance to the query reference point dist(rip , Qp) in non-decreasing order such

that ∀r ∈ L : Ql ≤ rv ≤ Qu. We adopt the Euclidean metric as distance dist(p1, p2)

between two 2D points. The problem is how to efficiently compute L in a reasonable

amount of time suitable for interactive search systems.

4.3.2 Numeric Data Encoding

As part of our data indexing approach, we encode numeric data using the com-

pression method described in [Ris92]. The encoding method uses a tree of intervals

in which each node has exactly 128 children. The root node is the open interval

(−∞,∞) of real numbers. The root interval is divided into 128 non-overlapping sub-

intervals [ai, ai+1), i = 0, . . . , 127, closed on the left and open on the right, except for

the first sub-interval. (Different methods can be used for sub-dividing intervals; for

example, an arithmetic partitioning sub-divides an interval in 128 equal-sized sub-

intervals. A suggested set of partitioning methods suitable for databases is found

in [Ris92], which we also use during our experimentation.) Each child interval is

recursively sub-divided into 128 sub-intervals. The tree of intervals is infinite, but

the numbers in a database are represented by a concrete tree instance with finite

height.

“n”, as in k-SBn

59

For a number v, the encoding algorithm starts traversing the tree of intervals

from the root by choosing the sub-interval where v is contained. Then tree branch

of the chosen sub-interval is recursively visited to identify which child sub-interval

contains v. The algorithm continues in that fashion until a sub-interval is found

such that its left boundary is equal to v, i.e. the sub-interval is defined by [v, v′).

Then, the encoding of the number v is represented by the sequence of sub-interval

numbers visited starting from the root until the leaf sub-interval where the algorithm

stopped. A sub-interval number is stored in a byte (of 8 bits) as follows. The seven

most significant bits contain the interval number while the remaining bit indicates

if more bytes follow. The least significant bit is used by the decoding algorithm. A

“1” in the least significant bit indicates that the encoding continues in the next byte

while “0” means that the encoded representation is complete, i.e. the sub-interval

[v, v′) has been reached, hence the decoded value v is known.

Figure 4.8 shows the tree sub-intervals visited when encoding the number “26.1275”.

The resulting encoding includes the intervals 28 (root), 30 and 93 (leaf), which are

stored as the byte sequence [00111001, 00111101, 10111010], or equivalently in dec-

imal numbers [57, 61, 186]. In general we denote the byte encoding of value v as

E(v) = [b1, b2, . . . , be]. A value v is encoded in time O(log2 128× e), where e is the

number of bytes in the encoded byte array.

The described interval-based encoding method has three main characteristics

that make it attractive for tackling the scalability and performance issues of k-

SBn queries. First, it provides a uniform byte-string representation of numbers,

regardless of their precision (integer, decimal). Second, the lexicographic ordering

of encoded strings matches with the ordering of numeric values5. Third, assuming

adequate interval partitioning schemes, the encoding method yields space-efficient

5A formal proof can be found in [Ris92].

60

...
I28I0 I1 I127

000,000,127261

)0,1[)27,26[
Byte 1

Byte 2

...

I30... ...

I93... ...

13.26,12.26

1276.26,1275.26
Byte 3

0

00111101
More

bytes

00111001
More

bytes

10111010

Terminal

byte

Binary of 9310

Binary of 3010

Binary of 2810

Encode “26.1275”
5710

6110

18610

+∞-∞

(-∞,-1) [1M,+∞)

Figure 4.8: Tree of intervals generated during the encoding of number “26.1275”.

byte representations for numeric values frequently encountered in databases. Such

characteristics allow us to store encoded numbers in data structures that support

efficient key range retrieval, like the ubiquitous B-trees [Com79], which we do as

part of our indexing technique in Section 4.3.3, while still maitaining low storage

consumption.

Furthermore, an interesting insight of the interval tree is that partial interval

sequences from the root to intermediate sub-intervals adequately capture numeric

ranges. That is, byte string prefixes of an encoded number represent any number in

the range defined by the prefix intervals. For example, in Figure 4.8, the byte prefixes

[00111001, 00111101] and [00111001] would be shared by any encoded number in

the ranges [26.12, 26.13) and [26, 27), respectively. Such insight is capitalized by

our indexing and query processing methods described in Sections 4.3.3 and 4.3.4,

respectively.

61

4.3.3 Spatial Number Index

Indexing locational and numeric data requires a combination of adequate indexes

for each data type. We leverage the hybrid data structure that we proposed in Sec-

tion 4.2.2 for indexing locational and textual data simultaneously. That is, spatial

attributes in the database are organized in a modified R-tree. However, it would

not be efficient to store numeric data directly in the spatial text store Ts for two

main reasons. First, it may take substantially large store space to store all possible

numbers in the database. Since some numbers tend to be frequent, like some integer

numbers (e.g., the number of bedrooms attribute in a real estate database may con-

tain integers from a small range), there are opportunities to compress numeric data

to alleviate storage requirements. Second, processing k-SB queries with numeric

range constraints may take excessive amount of time, especially when the query

range intersects with a large percentage of numbers in the database. For instance, if

the query in Figure 4.7 had instead the range constraints “price ≥ 0”, most homes

for sale are potentially candidates, which would make our k-SB query processing

algorithm retrieve many R-tree and B-tree nodes.

To address the aforementioned problems in storing raw numeric data, numbers in

the database are encoded using the compression method described in Section 4.3.2.

Additionally, numeric ranges are pre-computed on the basis of encoded numbers.

Finally, encoded numbers and encoded ranges are stored in a Spatial Number Store

(Ns), backed up by a B-tree, similar to the Spatial Text Store (Ts) defined in the

SKI index.

The systematic combination of R-trees and B-trees yields the spatial-number

index (SNI). The SNI ’s underlying tree-based data structures – R-tree and B-tree

– are constructed in sequence, similarly to the SKI index in Section 4.2.2. However,

the SKI ’s Spatial Text Store (Ts) is replaced by a Spatial Number Store (Ns). The

62

characteristics of Ns are discussed next in the section.

Encoding Numbers and Ranges

Numbers in the database are first encoded using the interval-based numeric data

encoding described in Section 4.3.2. The result is a set of compact byte arrays, one

for each numeric value v in the database, in the format E(v) = [b1, b2, . . . , be].

An interesting insight of the numeric encoding algorithm is that prefixes of the

byte array of an encoded number adequately capture the semantics of numeric

ranges. To illustrate this idea, let us consider the encoding of two numbers v1

and v2 contained in the top sub-interval [ai, ai+1(, where their leaf sub-intervals (the

last byte of their encodings) are j and k, respectively, i.e. E(v1) = [#i, . . . , #j]

and E(v2) = [#i, . . . , #k]. The lowest common ancestor of j and k is a sub-interval

[a′l, a
′
l+1(that contains both numbers v1 and v2. For example, in Figure 4.8 the en-

codings “E(26.1275) = [#28, #30, #93]” and “E(26.1276) = [#28, #30, #94]” have

sub-interval “#30 = [26.12, 26.13(” as lowest common ancestor, and clearly both

numbers 26.1275 and 26.1276 are included in that sub-interval. By construction of

the tree of intervals, all upper level sub-intervals that contain the lowest common

ancestor until the top sub-interval [ai, ai+1(do also contain the original values v1

and v2. In other words, the prefixes of a byte array encoding E(v) can represent

numeric ranges that contain v. Furthermore, such prefixes can also be encoded as

if they were numbers by turning off the terminal bit in the last byte of the prefix

arrays.

With that observation in mind, encoded numeric ranges are generated on the

basis of the already encoded numbers by extracting prefixes of their encoded byte

arrays. For every encoded byte array E(v) = [b1, b2, . . . , be], a single pass on the

array can be made to generate all its prefixes: {[b1], [b1, b2], . . . , [b1, b2, . . . , be−1]}.

63

Algorithm 4.3 Derive Numeric Ranges

Input: E(v) = [b1, b2, . . . , be] - a byte array representing the encoded value v.
Output: A list of byte arrays representing all the upper level sub-intervals of E(v)

in encoded format.
1: encodedRanges← ∅ // initialize a list of byte arrays
2: for (i = 1 to e) do
3: range← subString(E(v), 1, i) // get prefix up to the i-th byte
4: range[i]← and(range[i], “11111110”) // make last byte terminal
5: encodedRanges.add(range)
6: end for
7: return encodedRanges

Algorithm 4.3 shows the steps involved in deriving numeric ranges from a given

number encoding E(v). As mentioned, to conform to the numeric encoding scheme,

the last byte of encoded ranges is made terminal. The latter is accomplished by the

and bitwise operation in line 4. For a given number v, the total number of number

encodings, including v and all its numeric ranges (i.e., the array prefixes generated

by the Algorithm 4.3), is O(e2).6

Number Bitmaps

We consider a similar concept to the term bitmaps, as defined in Definition 4.2.2,

in the SKI text store Ts, but for numbers.

Definition 4.3.1 The bitmap of a number v at super node s is a fixed-length bit

array I(v, s) of size m2, where the i-th bit is computed as follows:

I(v, s)[i] =

1 if s[i] points to object o : ov = v

0 otherwise
(4.5)

6This might be a large number of encodings when e is large. However, in the experi-
mental study, we observed that more than 80% of the numbers were encoded with e = 3
bytes or less.

64

b) R-tree index

c) Number

Store (B-tree)

si

[i,i]

...

o1

[j,j] ...

sj

[i,j]

 o1 26.1275 [57,61,186] [57,60] [56]

Obj v E(v) Encoded ranges

...

......

...

Augmented

intervals

[x … 1 … x]I(26.1275, sj)=

Key

<[57,60],sj,”Range”>

<[57,61,186],
sj,”Number”>

a1 a3

a2

a3

Value

I(26, sj)

a2

a1 <[56],sj,”Range”>

d) B-tree entries

e1

a) Encoded value and numeric ranges

I(26.12, sj)

I(26.1275, sj)

Figure 4.9: Underlying data structures in the Spatial-Number Index (SNI).

Spatial Number Store (NS)

Encoded numeric values v and their encoded ranges are computed for numeric data

in the database D. for every number v in the dataset Then encoded numbers

and their number bitmaps are organized in Spatial Number Store (Ns), which is

backed up by a B-tree. The definition of the keys and values in the B-tree are

shown in Table 4.4. Since keys contain both numbers and ranges, an additional

field is required to indicate if the encoded byte array E(v) comes from a number

in the database (“Number”), or if it was the result of numeric range generations

(“Range”) based on other value.

65

Table 4.4: Key and value definitions of the B-tree that backs up the spatial number
store.

Attribute Description
Key E(v) Encoded byte array of value v.

si Identifier of super node si.
type Type of value: {“Number”, “Range”}.

Value I(v, si) Number bitmap of value v at super node si.

Figure 4.9 shows the underlying data structures in the SNI index. In particular,

Figure 4.9d shows the B-tree entries for the example encoded value and its numeric

ranges in Figure 4.9a. The R-tree data structure is identical to the one in the SKI

index, i.e. nodes are augmented with ranges of super node identifiers as can be seen

in Figure 4.9b.

4.3.4 Processing k-SBn Queries

The query processing algorithm is similar to the process described in Algorithm 4.1

for processing k-SB queries with text constraints. That is, qiven a query Q, the

R-tree data structure is traversed starting from its root, and entries are placed in

a priority queue ordered by their distances to the query location Qp. The main

difference is in the function call to isSubtreeCandidate (Algorithm 4.2), which in

this case uses the spatial number store Ns to evaluate the candidacy of an R-tree

branch. Before traversing a sub-tree pointed by an entry e, we check in the spatial

number store Ns if there is at least one encoded number or range that intersects

with the query range constraint [Ql..Qu]. This logic is implemented in an analogous

function, called isSubtreeCandidaten, and defined in Algorithm 4.4.

Algorithm 4.4 first identifies the range of B-tree keys [minkey, maxkey] it needs to

search for candidate objects between lines 3 and 10. Note that minkey and maxkey

66

Algorithm 4.4 isSubtreeCandidaten

Input: e - An R-tree node entry.
Ql, Qu - Encoded byte arrays representing the lower (Ql) and upper (Qu) bounds
of the query range constraint.

Output: true if there exists o ∈ D pointed by any super node in e’s range [a, b],
i.e. [sa, sa+1, . . . , sb], such that Ql ≤ ov ≤ Qu; false otherwise.

1: topl ← Ql[1] >> 1 // get top sub-intervals
2: topu ← Qu[1] >> 1
3: if (topl < topu) then
4: minkey ←< encode(topl), ea, “Number” >
5: maxkey ←< encode(topu), eb, “Number” >
6: else
7: lca← lowestCommonAncestor(Ql, Qu)
8: minkey ←< encode(lca + Ql[lca.size]), ea, “Number” >
9: maxkey ←< encode(lca + Qu[lca.size]), eb, “Number” >

10: end if
11: iter ← Ns.getEqualOrGreater(minkey) // finds minkey or greater in Ns

12: key ← iter.getNext
13: // iterate over the range of keys [minkey, maxkey]
14: while (key 6= ∅ and key ≤ maxkey) do
15: if (key.s ∈ [ea, eb]) then
16: return true
17: else
18: key ← iter.getNext
19: end if
20: end while
21: return false

67

contain encoded sub-intervals, at one particular level of the sub-interval tree, that

are the most proximal to the root interval. This makes the algorithm efficient. Even

if the database contains a large number of values distributed in a small range, only

one upper level sub-interval will be searched for – the lowest common ancestor sub-

interval. Once the proper range of minimum and maximum keys is defined, the

algorithm traverse sequentially all the keys in range to find a candidate object, i.e.

a super node identifier in the input R-tree entry range [ea, eb].

Time Analysis

Every interval in the tree of intervals is sub-divided in 128 sub-intervals. Since the

keys in the B-tree are associate to super node identifiers, a maximum of 128× (b−

a + 1) keys will be retrieved sequentially in the while loop of lines 14-20. To be

more precise, every interval/supernode pair may be of up to two possible types:

“Number” and “Range”. Hence, the worst case time complexity of the algorithm is

O(256 × (b − a)). Generally, much fewer keys are retrieved, especially for numeric

intervals that have sparse distribution.

4.3.5 Experimental Evaluation

Setup and Baseline

Setup

We ran the experiments in a host machine running on Linux CentOS release 5.6

operating system with 16GB of RAM. Indexes were stored in a 3-disk RAID-5

storage array, directly attached to the host. At the time of the experiments, no

other outstanding processes were running in the host machine.

68

Table 4.5: Spatial databases used in k-SBn query experiments
Dataset Numeric Records Unique Description

Fields Values

RE 275 0.59M 1.38M Real estate database.
BG 7 8.26M 0.12M Demographic aggregate data

from US Census 2000.

Baseline

The open source search system Apache Solr release 3.2 was used as baseline [Sol].

Solr is a widely adopted and sofisticated full free-text search engine that uses the

Apache Lucene library7 for indexing and retrieving documents. In addition, Solr

incorporated in its latest releases support for geospatial queries [Sea11].

The spatial number index (SNI) and query processing method were implemented

in Java. Application cache was disabled for both SNI and Solr.

Datasets and Numeric Data Compression

Datasets

We used the two real spatial databases shown in Table 4.5. The two datasets have

constrasting characteristics that allow us to test different perspectives of our query

processing techniques. The real estate database (RE) has a few hundreds of numeric

fields, which can help measure the space overhead of indexing numeric data. On the

other hand, the census database (BG) has substantially many more objects than

RE, which can help in assessing scalability of our query processing techniques.

Numeric Data Compression

We encoded all the numbers found in numeric attributes of the spatial databases

using the method described in Section 4.3.2. Figure 4.10 shows a histograms of

the number of bytes used in encoding numbers per each database. Database RE ’s

7http://lucene.apache.org

69

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6 7 8 9

P
er

ce
nt

ag
e

of
 n

um
be

rs
Bytes used in numeric encoding

RE
BG

Figure 4.10: Histogram on the size of numeric data encodings.

numbers are highly compressible by the encoding method. In particular, more than

80% of values were compressed by a single byte. This is because the RE has a lot

of small integer values, e.g. number of bedrooms or apartment number, that are

suitable to be compressed by a few bytes. Database BG has a more balanced type of

numeric values, including integers for people’s ages, and decimals for average values

or land areas. However, still a large percentage of values (more than 60%) were able

to be compressed by as few as one byte.

Query Types

We measured query performance of two types of query range constraints on a given

numeric attribute v:

• Type-1: v ≥ Ql – single-bounded constraint.

• Type-2: Ql ≤ v ≤ Qu – double-bounded constraint.

The number of nearest neighbor queries to be retrieved was fixed to k = 10.

We chose one numeric attribute from RE, and two numeric attributes from BG

to execute k-SBn queries. The attributes where chosen in such a way that their

distributions were substantially different so we could study different behaviors. Fig-

ure 4.11a shows the CDF plottings of the chosen numeric attributes. In particular,

70

 0

 0.2

 0.4

 0.6

 0.8

 1

0 0.5 1 2 3 5 10 30 50 80 100 > 100

C
um

m
ul

at
iv

e
D

is
tr

ib
ut

io
n

F
un

ct
io

n

Attribute Value

a) Cumulative distribution function of selected numeric attributes

RE: Living Area (x 1,000 sq.ft.)
BG: Land Area (sq.mi.)

BG: Median Population Age

 0

 100

 200

 300

 400

 500

0 0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0.010
0.011
0.012
0.013
0.014
0.015

N
um

be
r

of
 O

bj
ec

ts
 (

in
 th

ou
sa

nd
s)

BG: Land Area (sq.mi.)

b) Histogram of "BG: Land Area" for the interval [0, 0.015]

Figure 4.11: Data distribution of selected numeric attributes of databases RE and
BG in Table 4.5.

71

the attribute “BG: Land Area” has a large percentage of values distributed in a

small interval as can be seen in the histogram of Figure 4.11b.

We measured query processing times (QTime in Solr) of k-SBn queries. Query

processing times did not include record retrieval time.

Performance Evaluation

Figure 4.12 shows multiple plottings comparing performance of executing k-SBn

queries of Type-1 with both SNI and Solr methods. First, we can see in Fig-

ure 4.12a that no single method performs better than the other in all the cases for

queries over dataset RE. However, SNI consistently keeps performance advantages

for frequent values, i.e. v < 1000. For less frequent values, i.e. v ≥ 1000, we observe

some peaks for SNI while Solr ’s time steadily decreases. One reason for these peaks

is that the number of qualifying objects is relatively small (values are infrequent),

and objects might be sparsed in the space, thus forcing SNI to visit additional

branches in the R-tree.

For the larger dataset BG, the performance gap is substantially larger with clear

consistent advantages of SNI over Solr for all the large majority of the cases as can

be seen in Figures 4.12b and 4.12c. Like in the database RE case, Solr struggles

at the beginning when the numeric range includes very frequent values that do not

help filter out objects; for example, the range constraint v ≥ 0 on the “BG: Land

Area” attribute filters no object whatsoever. In fact, query processing time for Solr

degrades up to 6 seconds. Another factor that influences poor performance for Solr

is the scale of the BG database. BG contains more than eight million objects,

thus it appears that at larger scale performance defficiencies of Solr ’s spatial query

processor may be magnified.

72

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

v>=0
. . . . v>=5

. . . . v>=1000

. . . . v>=1500

. . . v>=5000

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

a) Range constraint on "RE: Living Area" attribute.

SNI
Solr

 0

 1

 2

 3

 4

 5

 6

 7

v>=0
. . v>=0.003

. v>=0.1
. . . v>=0.5

. . . . v>=10
. . v>=100

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

b) Range constraint on "BG: Land Area" attribute.

SNI
Solr

 0

 1

 2

 3

 4

 5

 6

 7

v>=0
. . . . v>=5

. . . . v>=10
. . . v>=50

. . . . v>=100

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

c) Range constraint on "BG: Median Population Age" attribute.

SNI
Solr

Figure 4.12: Performance of Type-1 k-SBn queries.

73

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

0<=v<=100

. . . 400<=v<=500

. . . . 900<=v<=1000

. . . . 1400<=v<=1500

. . . 4000<=v<=5000

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

a) Range constraint on "RE: Living Area" attribute.

SNI
Solr

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

0<=v1<=0.001

. . . . 0.005<=v1<=0.006

. . . . 0.01<=v1<=0.1

. . . 0.4<=v1<=0.5

. . . 3<=v1<=5

. . . 50<=v1<=100

.E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

b) Range constraint on "BG: Land Area" attribute.

SNI
Solr

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

0<=v<=1

. . . 4<=v<=5

. . . . 9<=v<=10

. . . 40<=v<=50

. . . . 90<=v<=100

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

c) Range constraint on "BG: Median Population Age" attribute.

SNI
Solr

Figure 4.13: Performance of Type-2 k-SBn queries.

74

Table 4.6: Index sizes on secondary storage
Index Dataset
Type RE BG

Solr 3,685 MiB 2,037 MiB
SNI 1,978 MiB 2,032 MiB

A similar pattern is observed in the set of query experiments of Type-2 in Fig-

ure 4.13. However, since the range constraints are bounded on both sides, the

universe of candidate objects is smaller than in the Type-1 queries. The latter al-

leviates Solr in processing fewer objects. In Figure 4.13c, SNI underperforms in

some cases, but response times are still acceptable (within 100 milliseconds).

In general, SNI has the advantage of searching only nearby regions, while Solr

appears to be sensitive to the number of objects that satisfy the query range condi-

tion.

Secondary Storage Consumption

Index sizes are shown in Table 4.6. SNI consumes substantially less space than Solr

for the RE dataset, which has 275 numeric attributes. Storage savings in SNI are

due to number compression that allows to encode even decimal numbers with two

or three bytes, while, for instance in Java, a native floating point data type would

require four bytes.

4.4 Indexing Large Databases

Practical GIS applications must be able to cope up with constantly growing geospa-

tial datasets. For querying purposes, fresh data generally has to be first indexed

before users can start posting queries. The spatial keyword (SKI) and spatial num-

ber (SNI) indexes presented in Sections 4.2.2 and 4.3.3 rely on two main tree-based

75

Spatial

Database D a) Data Partitioning

d1

dR

d2

.
.
.

b) R-tree Index

r1

r2

rR

.
.
.

.
.
.

reduce

map

map

map
reduce

reduce

map

map

map
reduce

reduce

map

map

map
reduce

c) Hybrid Index

r1 b1

r1 b1

rR bR

(HDFS)

(Local Filesystem)

Spatial Search

System

Spatial

Query

End User Nearest

Objects

Figure 4.14: Spatial data indexing in MapReduce and local query processing.

data structures: R-trees and B-trees. as discussed in Sections 4.2.2 and 4.3.3.

In this section, we leverage the parallel spatial data indexing techniques using the

MapReduce programming model that were developed in Chapter 3 to construct the

R-tree underlying data structure of SKI and SNI [CYAR10].

4.4.1 Architecture Overview

Figure 4.14 shows the general architectural components and data pipelines of the

spatial data management system in the cloud. First, a spatial dataset D is uploaded

to Hadoop’s distributed file system (HDFS) for parallel processing via MapReduce

jobs. Spatial data indexing is performed by three types of jobs executed in sequence:

a) Data Partitioning – These jobs prepare the data for parallel processing by par-

titioning D according to spatial attributes. Data partitions are non-overlapping

subsets dj such that D =
{⋃

j=1..R dj

}
, where R is a parameter that defines

76

the number of partitions. Two partitioning schemes were implemented based

on: 1) Space-filling curves, and 2) X-means clustering [PM00], which auto-

matically estimates the number of partitions (R). Section 4.4.2 empirically

evaluates the performance characteristics of these schemes.

b) R-tree Index – MapReduce jobs take as input the data partitions {dj} R-tree

constructions are executed in parallel by R reducers, one for each partition dj,

using the parallel construction method described in Chapter 3. Each reducer

outputs an R-tree rj built on its input dj.

c) Hybrid Index – MapReduce jobs take as input the dj small datasets and in-

dividual rj R-trees built in previous phases. For each dataset dj, textual data

is tokenized, and numeric data is encoded. Then, term and number bitmaps

are built with references to the rj R-tree. The result is written in a B-tree bj.

The output is a set of hybrid, spatial keyword and number indexes, one for

every input dj.

Spatial Search System

After the spatial database is indexed in MapReduce, individual hybrid indexes are

downloaded to a local filesystem for query processing.8 Our spatial search system

consolidates the individually built R-trees in a single, large R-tree that represents

the R-tree index of spatial database D. The large R-tree is the main entry point

for procesing spatial queries with textual constraints (k-SB) and numeric range

constraints (k-SBn) posted by end users.

8At the time of our study, HDFS does not support random I/O, so it is not possible
to execute queries directly on the distributed file system.

77

Data Partitioning via Clustering

As an alternate partitioning method to space-filling curves, we used X-means iter-

ative clustering algorithm [PM00] to group the database in clusters using objects’

spatial attributes. X-means extends the popular, statistical K-means clustering tech-

nique with good approximates for the parameter K – the total number of clusters.

We implemented X-means clustering in MapReduce to find a clustering of spatial

database D [CYAR10]. Each cluster found by X-means is considered an individual

partition.

The advantage of clustering method is that an adequate number of partitions

(i.e., the number of reducers R) is automatically estimated. On the other hand,

partition sizes may vary considerably, and iterating on the clustering algorithm

might be computationally expensive. To alleviate the first problem, we imposed a

minimum cluster size before a cluster is considered for splitting to avoid generating

very small partitions. On the second issue, our experimental results show that the

additional clustering overhead, which is incurred only once, pays off by lowering

query response times.

4.4.2 Experiments

The experimentation was divided in two parts. In the first part, two spatial keyword

indexes (SKI) on a real spatial database were built on the Hadoop cluster described

in Section 3.2.3. Each index used a different spatial partitioning variant based on Z-

order values (ZO) and X-means clustering (XM). In the second part, query response

times were measured using ZO and XM indexes running on a local machine.

78

Spatial Database

We used a spatial database of United States property parcels (USP) [Sol10]. Objects

locations are represented by geographical coordinates of the parcels’ locations. In

addition, 17 other non-spatial attributes, including parcel id, owner’s name, street

address, and parcel type, were associated to objects. The dataset contains about

110 million objects, and its vocabulary size has around 12.8 million terms.

Spatial-Keyword Index Construction

We found a clustering of the database via X-means in MapReduce using 118 mappers

and initial random cluster centroids. The number of clusters (reducers) were varied

between 30 and 100. We set the minimum cluster size as one million whenever a

local cluster was considered for splitting in X-means. We observed that the number

of clusters consistently became stable around 60 after a few iterations. Clusterings

with more clusters just marginally improved. We selected a clustering with 62

cluster as the best clustering. The number of clusters found by X-means was used

as parameter for the Z-order partitioning scheme.

Figure 4.15 visualizes the clustering found by X-means after 7 iterations, and the

partitions determined by Z-order values. In the figure, points are sampled object

locations, and partitions are represented by their minimum bounding rectangles

(MBR). Although MBR overlapping is inevitable, we can observe in Figure 4.15b

that XM better approximates the distribution of the data and reduces overlapping

while ZO incurrs in a lot more MBR overlapping, especially in denser areas like the

eastern cost. It is a known result that excessive MBR overlapping hinders retrieval

performance [BKSS90] [KF94]. In the next section, we empirically measure the

effect of additional MBR overlapping incurred by ZO partitioning scheme.

79

 20

 30

 40

 50

 60

 70

-160 -150 -140 -130 -120 -110 -100 -90 -80 -70

Z-order value partitioning (ZO)

 20

 30

 40

 50

 60

 70

-160 -150 -140 -130 -120 -110 -100 -90 -80 -70

L
at

it
u

d
e

Longitude

X-means clustering (XM)

Figure 4.15: Data partitioning of United States property parcels based on Z-order
values (top) and X-means clustering (bottom) with 62 partitions.

80

Spatial-keyword indexes were built individually for ZO and XM partitioning

strategies and downloaded to our local site. Since the Hadoop cluster we used is

shared with other researchers, it is hard to measure index construction times with

accuracy. Elapsed times varied according to the cluster activity. Nonetheless, we ob-

served that index construction times with ZO partitioning strategy were completed

in about 40 minutes while indexing with XM partitioning fluctuated between 70 and

100 minutes. The dominant time factor in XM was the clustering phase (around

50%).

Query Processing

We evaluated elapsed times of queries using indexes build in parallel with both

partitioning techniques ZO and XM . Queries were processed according to the

algorithm in Section 4.2.3. Queries were run in an Intel Xeon E5520 machine with

16GB physical memory and two quad-core processors at 2.27GHz. Database and

indexes were stored on a 6-disk RAID-5 array attached directly to the host. The

main focus of this experiment was in measuring the number of R-tree nodes accessed

during query processing, and the overall elapsed time.

Query Workload

k-SB queries textual constraints were generated as follows. A query location Ql was

randomly chosen from the USP space, and textual constraints included 1, 2 and

3 randomly selected terms from the USP lexicon. The special case k-SB queries

with no text constraints, i.e. conventional k-NN queries, was also considered. The

numbed of retrieved records was set to k = 50. Figure 4.16 shows the minimum,

maxium, and median measurements over 100 k-SB queries with 0, 1, 2 and 3 terms

in their non-spatial constraints.

81

 0

 50

 100

 150

 200

 250

 300

 0 1 2 3

R
-t

re
e

no
de

s
ac

ce
ss

ed

a) R-tree Accesses

XM index
ZO index

 0.01

 0.1

 1

 10

 0 1 2 3

E
la

ps
ed

 ti
m

e
(s

ec
on

ds
)

Number of query terms

b) Elapsed Time

XM index
ZO index

Figure 4.16: Performance metrics minimum, maximum, and median over 100 k-SB
queries with 0, 1, 2 and 3 query terms in the non-spatial constraint. Y -axis in b)
(elapsed times) is in logarithmic scale.

82

The experimental results confirmed what we expected. For regular k-NN queries

(no constraints), the median of R-tree nodes accessed by ZO index is around 70%

higher than XM index as can be seen in Figure 4.16a due to increased MBR over-

lapping. Response times follow similar behavior for those queries in Figure 4.16b.

Queries with 1-term constraints still incurr in extra R-tree node retrievals for ZO

index compared to XM index. Notably, queries with ZO index generated a large

gap between the minimum and maximum values on both R-tree nodes retrieved and

response times. For 2-term and 3-term queries, R-tree nodes accessed are compara-

ble between ZO and XM indexes, which indicates that candidate objects are more

scattered in the search space. Response times are mostly dominated by accesses to

B-tree indexes, and thus are proportional to the number of query terms.

4.5 Related Work

4.5.1 Spatial Nearest Neighbor Queries

The R-tree traversal method in our work is inspired in the Hjaltason and Samet’s

[HS99] incremental top-k nearest neighbor algorithm using R-trees [HS99]. Per-

formance improvements on the original R-tree [Gut84] spatial index data structure

have been proposed, e.g. R*-tree [BKSS90], R+-tree [SRF87], Hilbert R-tree [KF94]

and Priority R-tree [AdBHY04]. These variants form a familiy of R-trees that can

replace the R-tree index (with proper super node range augmentation) used in our

proposed hybrid spatial keyword index without modifying our search algorithms.

83

4.5.2 Information Retrieval

In information retrieval, inverted files are arguably the most efficient index struc-

ture for free-text searches [ZM06] [ZMR98]. The processing of k-SB query Boolean

predicates QB in Algorithm 4.2 is similar to the Document-At-A-Time style of pro-

cessing in inverted files. In our algorithm, we traverse simultaneously the bitmaps of

terms in AND-semantics, OR-semantics and NOT -semantics subsets until we find

a super node that contains objects satisfying QB. Since the output of a free-text

search query can be potentially large, the result list is typically sorted by a rank-

ing function that gives a relevance score to each retrieved document. In our work,

we assume that users have a location reference (the query location), and they are

interested in finding the nearest database objects (sorted by proximity to them)

satisfying Boolean criteria on textual and numeric data.

4.5.3 Spatial Keyword Queries

The problem of retrieving spatial objects satisfying non-spatial constraints has been

studied in the recent past. Park and Kim [PK03] proposed RS-trees, a combina-

tion of R-trees and Signature trees for database attributes with controlled cardinal-

ity. Signature chopping is suggested to mitigate the combinatorial error [CS89]

(database overrepresentation) generated by superimposing signature files, which

leads to false drops – a combination of query terms may pass the membership test

with a superimposed signature, but no actual record in the database has such com-

bination of terms. Hariharan et al. [HHLM07] proposed to include inverted files in

every node of an R-tree. Inverted files in a given node index terms found inside

the sub-trees rooted at that node. De Felipe et al. [DFHR08] augmented signa-

ture files in R-tree nodes with similar assumptions as in [PK03]. Recently, Cong

84

et al. [CJW09] augmented an inverted file in every node of an R-tree, and used

a combined ranking function that mixes spatial proximity and text relevancy in a

single score. Our work differs in that we assume distance as ranking score, and we

focus on efficiently processing Boolean selection predicates on textual and numeric

data. In addition, previous works offer no efficient processing of the complement

logical operator (¬), which limits their applicability to the k-SB type of queries we

considered in this work.

4.5.4 Spatial Queries in Database Management Systems

In current database management systems (DBMS), B-tree and its variant B+tree

[Com79] are the most commonly used type of data strtuctures for indexing both nu-

meric and textual table columns, e.g. Oracle [Ric11] and MS SQL Server [Dat11] re-

lational databases. Current systems have incorporated extensions to manage geospa-

tial data, as well as extensions to the SQL language to express spatial relations in

queries. Database systems usually execute spatial queries with Boolean predicates

by applying the Boolean filters first (e.g., on indexed columns), then the spatial rela-

tion (e.g., k-NN or window query) is applied on the results of the Boolean filter, or

in the reverse order if the query optimizer determines that it is more efficient. That

is, existing DBMS’s perform a spatial-only filter or Boolean-only filter at a time.

Thus, the retrieval cost is sensitive to the output size of the first filter. In contrast,

our work strives to push both filters simultaneously during query processing.

4.5.5 Numeric Range Constraints

Several works have been done in optimizing data retrieval constrained with numeric

ranges. Rishe has proposed an encoding method for numeric data based on a tree of

85

sub-intervals, which was successfully applied to a semantic database [Ris92]. Fon-

toura et al. have studied how to efficiently represent numeric ranges in inverted files

in search engines to support searches with numeric range constraints [FLQZ07].

Schindler and Diepenbroek proposed a method for encoding numbers with vari-

able precision into strings using a trie-based algorithm [SD08]. Their method was

adopted by the Apache Lucene project – an open-source, advanced library for in-

dexing and free-text searching9 – for supporting efficient processing of queries with

numeric range constraints.

4.5.6 Web Mapping Services and Search Systems

Modern web search engines provide local-search functionalities on business listings,

e.g. Google Maps [mGM] and Bing Maps [mBM], for finding documents geolocated

to a particular place, e.g. a postal code or city.. While some of these services do

support spatial keyword searches, numeric conditions are not currently supported

(e.g., Google Maps does not allow to use numeric range constraints in queries like

“large pizza $5..$10 in Miami” in local-search queries in the same way they are

supported in regular web searches). In addition, some Map services implement

advanced querying options that allow users to include all terms, optionally some

terms, and exclude certain terms from the search results. These constraints are

similar to the k-SB Boolean selection criteria we defined in our work. Aside of that,

the specific query processing techniques used by these systems are not disclosed in

any detail.

In the open source domain, Apache Solr [Sol] is a full-text search server based on

the Apache Lucene library. Solr has incorporated geospatial search support in its

latest releases [Sea11]. Since spatial and numeric range querying is implemented in

9http://lucene.apache.org

86

Solr, we chose this system as the baseline to compare performance with our proposed

methods for processing spatial queries with numeric constraints.

4.6 Summary

In this chapter, we studied the problem of spatial search queries with constraints on

textual and numeric data. We described disk-resident, hybrid indexes for efficiently

answering k-NN queries with Boolean constraints on textual and numeric content.

We combined a modified version of the R-tree index to organize spatial attaributes,

with a B-trees to store text and numeric data linked to the location where they occur

in the R-tree. Algorithms were presented to show how the new spatial indexes are

used in processing k-NN queries, achieving effective pruning of the search space.

Worst case time complexity upper bounds were also discussed for the core query

processing algorithms. Our experimental evaluation with large, real spatial datasets

(with up to 110 millions of objects) showed increased performance and scalability

over alternate query methods.

87

CHAPTER 5

CONCLUSION AND FUTURE RESEARCH DIRECTIONS

This chapter presents concluding remarks of the present work, and it outlines

possible direction in which this work can be extended.

5.1 Concluding Remarks

In this thesis, we addressed two related research problems in current spatial databases.

First, the scalability problem of building R-tree indexes on large databases was

tackled leveraging the MapReduce parallel programming model. We proposed data

partitioning methods and strategies for building R-trees expressed as MapReduce

compounds. R-tree construction times were significantly lowered with the parallel

approach, which achieved close to linear scalability as more compute nodes were

used in index construction tasks.

Second, query processing of spatial queries with Boolean selection criteria on

aspatial attributes were studied and an adequate hybrid index was proposed to

improve query efficiency. The proposed hybrid index resulted from a systematic

combination of two widely used indexes: R-trees and B-trees. We proposed algo-

rithms for efficiently answering spatial queries with Boolean constraints on textual

and numeric database attributes. Worst case analysis was provided for the proposed

algorithms. Experimental evaluation of our techniques in a prototype search system

showed improved performance over alternate query processing methods.

5.2 Future Research Directions

There is a new type of problems identified as big data problems where data grows

to the extend that it becomes difficult to store it or perform useful computations

88

on it. Presently, most of the user-generated data (e.g., pictures, videos, or text

messages), and data automatically generated by machines (e.g., log entries in search

engines) have explicit or implicit geographical information. Data analytics and data

mining techniques are used in many industries to make inferences and identifying

data patterns. Incorporating the geographical dimension in the analysis is highly

desirable as it can reveal “local” insights [BCR11]. The techniques developed in this

thesis may be helpful in addressing the problem of combined analysis of geograph-

ical and non-geographical data. However, due to the scale of big data problems, it

becomes cumbersome to perform sophisticated data computations in big data en-

vironments. Thus, new architectures and methodologies for spatial and non-spatial

big data processing are worthwhile researching.

Even more, performing data analysis in real time in big data environments is

another current challenge. Updates should be done in real time as much as possible.

For example, in a data analysis application we may want to update statistical metrics

incrementally as new data arrives at high rates without the need to recompute

everything from scratch. At the present time, the scale issue remains a challenging

problem that precludes real time analysis.

Techniques like MapReduce have limitations in doing real time processing. There

is currently active research interest in evolving MapReduce to make it more real time

ready. In the industry, Google has developed a solution for their problem of incre-

mentally updating the web index using an internal solution called Percolator [PD10].

Similar solutions should be studied for other types of spatial and non-spatial appli-

cations that have online requirements.

89

BIBLIOGRAPHY

[ABL10] Sattam Alsubaiee, Alexander Behm, and Chen Li. Supporting
location-based approximate-keyword queries. In Proceedings of the 18th
SIGSPATIAL International Conference on Advances in Geographic In-
formation Systems, GIS ’10, pages 61–70, New York, NY, USA, 2010.
ACM.

[AdBHY04] Lars Arge, Mark de Berg, Herman J. Haverkort, and Ke Yi. The
priority r-tree: a practically efficient and worst-case optimal r-tree.
In Proceedings of the 2004 ACM SIGMOD international conference on
Management of data, SIGMOD ’04, pages 347–358, New York, NY,
USA, 2004. ACM.

[AM90] David J. Abel and David M. Mark. A comparative analysis of some
two-dimensional orderings. International Journal of Geographical In-
formation Science, 4:21–31, January 1990.

[ARR+97] Tetsuo Asano, Desh Ranjan, Thomas Roos, Emo Welzl, and Peter Wid-
mayer. Space-filling curves and their use in the design of geometric data
structures. Theor. Comput. Sci., 181:3–15, July 1997.

[BCR11] Jaime Ballesteros, Ariel Cary, and Napthtali Rishe. SpSJoin: Paral-
lel spatial similarity joins (demo). In Proceedings of the 19th ACM
SIGSPATIAL International Conference on Advances in Geographic In-
formation Systems, GIS ’11. (in press), 2011.

[BKSS90] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard
Seeger. The R*-tree: an efficient and robust access method for points
and rectangles. SIGMOD Rec., 19:322–331, May 1990.

[Cen11] High Performance Database Research Center. http://hpdrc.fiu.edu.
2011.

[CJW09] Gao Cong, Christian S. Jensen, and Dingming Wu. Efficient retrieval
of the top-k most relevant spatial web objects. Proc. VLDB Endow.,
2:337–348, August 2009.

[Com79] Douglas Comer. Ubiquitous B-Tree. ACM Comput. Surv., 11:121–137,
June 1979.

90

[CS89] W. W. Chang and H. J. Schek. A signature access method for the
starburst database system. In Proceedings of the 15th international
conference on Very large data bases, VLDB ’89, pages 145–153, San
Francisco, CA, USA, 1989. Morgan Kaufmann Publishers Inc.

[CSHR09] Ariel Cary, Zhengguo Sun, Vagelis Hristidis, and Naphtali Rishe. Expe-
riences on processing spatial data with MapReduce. In Proceedings of
the 21st International Conference on Scientific and Statistical Database
Management, SSDBM 2009, pages 302–319, Berlin, Heidelberg, 2009.
Springer-Verlag.

[CWR10] Ariel Cary, Ouri Wolfson, and Naphtali Rishe. Efficient and scal-
able method for processing top-k spatial boolean queries. In Proceed-
ings of the 22nd international conference on Scientific and statistical
database management, SSDBM’10, pages 87–95, Berlin, Heidelberg,
2010. Springer-Verlag.

[CYAR10] Ariel Cary, Yaacov Yesha, Malek Adjouadi, and Naphtali Rishe. Lever-
aging cloud computing in geodatabase management. In Proceedings of
the 2010 IEEE International Conference on Granular Computing, GRC
’10, pages 73–78, San Jose, CA, USA, 2010. IEEE Computer Society.

[Dat11] Microsoft SQL Server Database. http://www.microsoft.com/sqlserver.
Microsoft Corporation, May 2011.

[DFHR08] Ian De Felipe, Vagelis Hristidis, and Naphtali Rishe. Keyword search
on spatial databases. In Proceedings of the 2008 IEEE 24th Interna-
tional Conference on Data Engineering, pages 656–665, Washington,
DC, USA, 2008. IEEE Computer Society.

[DG08] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data pro-
cessing on large clusters. Commun. ACM, 51:107–113, January 2008.

[FLQZ07] Marcus Fontoura, Ronny Lempel, Runping Qi, and Jason Y. Zien.
Inverted index support for numeric search. Internet Mathematics,
3(2):153–185, 2007.

[GGL03] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google
file system. SIGOPS Oper. Syst. Rev., 37:29–43, October 2003.

91

[GLS94] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI:
portable parallel programming with the message-passing interface. MIT
Press, Cambridge, MA, USA, 1994.

[Gut84] Antonin Guttman. R-trees: a dynamic index structure for spatial
searching. SIGMOD Rec., 14:47–57, June 1984.

[HHLM07] Ramaswamy Hariharan, Bijit Hore, Chen Li, and Sharad Mehrotra.
Processing spatial-keyword (sk) queries in geographic information re-
trieval (gir) systems. In Proceedings of the 19th International Confer-
ence on Scientific and Statistical Database Management, SSDBM ’07,
pages 16–, Washington, DC, USA, 2007. IEEE Computer Society.

[HS99] Gı́sli R. Hjaltason and Hanan Samet. Distance browsing in spatial
databases. ACM Trans. Database Syst., 24:265–318, June 1999.

[Ini07] Google&IBM Academic Cluster Computing Initiative.
http://www.google.com/intl/en/press/pressrel/20071008 ibm univ.html.
2007.

[KF94] Ibrahim Kamel and Christos Faloutsos. Hilbert R-tree: An improved
R-tree using fractals. In Proceedings of the 20th International Con-
ference on Very Large Data Bases, VLDB ’94, pages 500–509, San
Francisco, CA, USA, 1994. Morgan Kaufmann Publishers Inc.

[LK00] Jonathan K. Lawder and Peter J. H. King. Using space-filling curves for
multi-dimensional indexing. In Proceedings of the 17th British National
Conferenc on Databases: Advances in Databases, BNCOD 17, pages
20–35, London, UK, 2000. Springer-Verlag.

[mBM] Microsoft’s Bing Suite. Bing Maps. http://www.bing.com/maps.

[mGM] Google Mapping Services. Google Maps. http://maps.google.com.

[Mor66] G.M. Morton. A computer oriented geodetic data base and a new tech-
nique in file sequencing. International Business Machines Co., 1966.

[oGC10] WikiProject on Geographical Coordinates.
http://en.wikipedia.org/wiki/Wikipedia:WikiProject Geographical
coordinates. 2010.

92

[O’M08] Owen O’Malley. Terabyte sort on apache hadoop. Technical Report
Ottawa, Ontario, Canada, May 2008.

[ORS+08] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar,
and Andrew Tomkins. Pig latin: a not-so-foreign language for data
processing. In Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, SIGMOD ’08, pages 1099–1110,
New York, NY, USA, 2008. ACM.

[PD10] Daniel Peng and Frank Dabek. Large-scale incremental processing us-
ing distributed transactions and notifications. In Proceedings of the 9th
USENIX conference on Operating systems design and implementation,
OSDI’10, pages 1–15, Berkeley, CA, USA, 2010. USENIX Association.

[PK03] Dong-Joo Park and Hyoung-Joo Kim. An enhanced technique for k-
nearest neighbor queries with non-spatial selection predicates. Multi-
media Tools Appl., 19:79–19, January 2003.

[PM00] Dan Pelleg and Andrew W. Moore. X-means: Extending k-means with
efficient estimation of the number of clusters. In Proceedings of the
Seventeenth International Conference on Machine Learning, ICML ’00,
pages 727–734, San Francisco, CA, USA, 2000. Morgan Kaufmann Pub-
lishers Inc.

[PM03] Apostolos Papadopoulos and Yannis Manolopoulos. Parallel bulk-
loading of spatial data. Parallel Comput., 29:1419–1444, October 2003.

[Pro08] NSF Cluster Exploratory Program. http://www.nsf.gov/pubs/2008
/nsf08560/nsf08560.htm. 2008.

[Pro11] The Apache Hadoop Project. http://hadoop.apache.org/. 2011.

[Red11] Hadoop Class Reducer. http://hadoop.apache.org/common/docs/
current/api/org/apache/hadoop/mapreduce/Reducer.html. 2011.

[Ric11] Bert Rich. Oracle Database Reference 11g Release 2 (11.2) E25513-01.
Oracle Corporation, September 2011.

[Ris92] Naphtali Rishe. Interval-based approach to lexicographic representa-
tion and compression of numeric data. Data and Knowledge Engineer-
ing, 8(4):339 – 351, 1992.

93

[SD08] Uwe Schindler and Michael Diepenbroek. Generic XML-based frame-
work for metadata portals. Computers and Geosciences, 34(12):1947–
1955, December 2008.

[Sea11] Solr Wiki: Spatial Search. http://wiki.apache.org/solr/SpatialSearch.
May 2011.

[SL99] Bernd Schnitzer and Scott T. Leutenegger. Master-client R-Trees: A
new parallel R-Tree architecture. In Proceedings of the 11th Interna-
tional Conference on Scientific and Statistical Database Management,
pages 68–, Washington, DC, USA, 1999. IEEE Computer Society.

[Sol] Apache Solr. Availabel at: http://lucene.apache.org/solr/.

[Sol10] First American Spatial Solutions. Spatial database of United States
property parcels. 2010.

[SQ08] United States Census Bureau Florida State and County QuickFacts.
http://quickfacts.census.gov/qfd/states/12000.html. July 2008.

[SRF87] Timos K. Sellis, Nick Roussopoulos, and Christos Faloutsos. The
R+-Tree: A dynamic index for multi-dimensional objects. In Proceed-
ings of the 13th International Conference on Very Large Data Bases,
VLDB ’87, pages 507–518, San Francisco, CA, USA, 1987. Morgan
Kaufmann Publishers Inc.

[SRT+08] Steven W. Schlosser, Michael P. Ryan, Ricardo Taborda, Julio López,
David R. O’Hallaron, and Jacobo Bielak. Materialized community
ground models for large-scale earthquake simulation. In Proceedings
of the 2008 ACM/IEEE conference on Supercomputing, SC ’08, pages
54:1–54:12, Piscataway, NJ, USA, 2008. IEEE Press.

[WCF+07] Xiaqing Wu, Rodrigo Carceroni, Hui Fang, Steve Zelinka, and Andrew
Kirmse. Automatic alignment of large-scale aerial rasters to road-maps.
In Proceedings of the 15th annual ACM international symposium on
Advances in geographic information systems, GIS ’07, pages 17:1–17:8,
New York, NY, USA, 2007. ACM.

[WOS06] Kesheng Wu, Ekow J. Otoo, and Arie Shoshani. Optimizing bitmap
indices with efficient compression. ACM Trans. Database Syst., 31:1–
38, March 2006.

94

[YDHP07] Hung-chih Yang, Ali Dasdan, Ruey-Lung Hsiao, and D. Stott Parker.
Map-reduce-merge: simplified relational data processing on large clus-
ters. In Proceedings of the 2007 ACM SIGMOD international confer-
ence on Management of data, SIGMOD ’07, pages 1029–1040, New
York, NY, USA, 2007. ACM.

[ZM06] Justin Zobel and Alistair Moffat. Inverted files for text search engines.
ACM Comput. Surv., 38, July 2006.

[ZMR98] Justin Zobel, Alistair Moffat, and Kotagiri Ramamohanarao. Inverted
files versus signature files for text indexing. ACM Trans. Database
Syst., 23:453–490, December 1998.

95

VITA

ARIEL CARY-HUANCA

2011 Ph.D., Computer Science
Florida International University
Miami, Florida

2006–2011 Graduate Research Assistant
Florida International University
Miami, Florida

2003–2005 Database Administrator
Empresa Nacional de Telecomunicaciones S.A.
La Paz, Bolivia

2000 B.Sc., Systems Engineering
Catholic Bolivian University
Cochabamba, Bolivia

PUBLICATIONS AND PRESENTATIONS

1. Jaime Ballesteros, Ariel Cary, and Napthtali Rishe. SpSJoin: Parallel Spa-
tial Similarity Joins (demo). In Proceedings of the 19th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems,
Chicago, IL, 2011 (in press).

2. Ariel Cary, Yaacov Yesha, Malek Adjouadi, and Naphtali Rishe. Leveraging
Cloud Computing in Geodatabase Management. In Proceedings of the 2010
IEEE International Conference on Granular Computing (GrC), pp. 73–78,
San Jose, CA, 2010.

3. Ariel Cary, Ouri Wolfson, and Naphtali Rishe. Efficient and Scalable Method
for Processing Top-k Spatial Boolean Queries. In Proceedings of the 22nd
International Conference on Scientific and Statistical Database Management
(SSDBM), pp. 87–95, Springer-Verlag, Berlin, Heidelberg, 2010.

4. Ariel Cary, Zhengguo Sun, Vagelis Hristidis, and Naphtali Rishe. Experi-
ences on Processing Spatial Data with MapReduce. In Proceedings of the 21st
International Conference on Scientific and Statistical Database Management
(SSDBM), pp. 302–319, Springer-Verlag, Berlin, Heidelberg, 2009.

5. Onyeka Ezenwoye, S. Masoud Sadjadi, Ariel Cary, and Michael Robinson.
Grid Service Composition in BPEL for Scientific Applications. In Proceedings
of the OTM Confederated International Conference, pp. 1304–1312, Springer-
Verlag, Berlin, Heidelberg, 2007.

96

	Florida International University
	FIU Digital Commons
	11-8-2011

	Scaling Geospatial Searches in Large Spatial Databases
	Ariel Cary
	Recommended Citation

