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Abstract. The amount of information in spatial databases is growing as more 
data is made available. Spatial databases mainly store two types of data: raster 
data (satellite/aerial digital images), and vector data (points, lines, polygons). 
The complexity and nature of spatial databases makes them ideal for applying 
parallel processing. MapReduce is an emerging massively parallel computing 
model, proposed by Google. In this work, we present our experiences in apply-
ing the MapReduce model to solve two important spatial problems: (a)  
bulk-construction of R-Trees and (b) aerial image quality computation, which 
involve vector and raster data, respectively. We present our results on the scal-
ability of MapReduce, and the effect of parallelism on the quality of the results. 
Our algorithms were executed on a Google&IBM cluster, which became avail-
able to us through an NSF-supported program. The cluster supports the Hadoop 
framework – an open source implementation of MapReduce. Our results con-
firm the excellent scalability of the MapReduce framework in processing paral-
lelizable problems. 

1   Introduction 

Geographic Information Systems (GIS) deal with complex and large amounts of spa-
tial data of mainly two categories: raster data (satellite/aerial digital images), and 
vector data (points, lines, polygons). This type of data is periodically generated via 
specialized sensors, satellites or aircraft-mounted cameras (sampling geographical 
regions into digital images), or GPS devices (generating geo-location information). 
GIS systems have to efficiently manage repositories of spatial data for various pur-
poses, such as spatial searches, and imagery processing. Due to the large size of spa-
tial repositories and the complexity of the applications to process them, traditional 
sequential computing models may take excessive time to complete. Emerging parallel 
computing models, such as MapReduce, provide a potential for scaling data process-
ing in spatial applications. 

The goal of this paper is to present to the research community our experiences 
from using the MapReduce model to tackle two typical and representative spatial data 
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processing problems. The first problem involves vector spatial data and the second 
involves raster data. 

The first problem is the bulk-construction of R-Trees [1], a popular indexing 
mechanism for spatial search query processing. We show how previous ideas, like the 
ordering of multi-dimensional objects via space-filling curves, can be used to create a 
MapReduce algorithm for this problem. We also discuss how our solution is different 
from previous approaches on parallelizing the construction of an R-Tree. 

The second problem processes aerial digital imagery, and computes and stores  
image quality characteristics as metadata. Original images may contain inaccurate, 
distorted, or incomplete data introduced at some phase of imagery generation; for 
example, a portion of an image may be completely blank. Pre-computed metadata is 
important in dynamic imagery consistency checking, and allows the appropriate mo-
saicing with better sources to improve the imagery display. This problem is naturally 
parallelizable since each tile can be potentially processed independently. In practice, 
the amount of data processed by each cluster processor depends on the file system 
characteristics like the minimum processing unit. 

Both problems were solved and evaluated on a Google&IBM cluster supplied by 
the NSF Cluster Exploratory (CluE) program [2][3]. We present our experiences on 
using such a cluster in practice and deploying MapReduce jobs. 

The key contribution of this work is as follow: 
• We present techniques for bulk building R-trees using the MapReduce 

framework. 
• We present how MapReduce can be applied to massively parallel processing 

of raster data. 
• We experimentally evaluated our algorithms in terms of execution time, 

scalability and quality of the output. We provide various metrics to measure 
the quality of the resulting R-Tree. 

This paper is organized as follows. Section 2 describes the steps in deploying 
MapReduce applications on the Google&IBM’s cluster, as well as some physical 
configurations. Sections 3 and 4 present the detailed MapReduce algorithms for our 
two target problems. Section 5 presents experimental results of our algorithm imple-
mentations for different settings. Section 6 discusses related works. Last, Section 7 
concludes our work. 

2   Using MapReduce in Practice 

The cluster used in this paper is provided by the Google and IBM Academic Cluster 
Computing Initiative [2][3]. The cluster contains around 480 computers (nodes) run-
ning open source software including the Linux operating system, XEN hypervisor and 
Apache's Hadoop [4], which is an open source implementation of the MapReduce 
programming model. Each node has half terabytes storage capacity summing up to 
about 240 Terabytes in total. Access to the cluster is provided through the Internet by 
a SOCKS proxy server. SOCKS is an Internet protocol that secures client-server 
communications over a non-secure network. 

There are three main steps in interacting with the cluster, as shown in Figure 1. (1) 
Input data is uploaded into the cluster. The user uses file system shell scripts provided  
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Fig. 1. Google, IBM Academic Cluster Overview 

by the Hadoop Distributed File System (HDFS), which is an integral part of the 
Apache Hadoop project; HDFS is a clone project of Google’s files system GFS [5]. 
(2) A user develops a Hadoop application and submits it to the cluster via Hadoop 
command. Hadoop applications are usually developed in Java, but other languages are 
supported, like C++ and Python. (3) After application execution is completed, the 
output is downloaded to the user’s local site with Hadoop file system shell scripts. 

MapReduce programming model requires expressing the solutions with two func-
tions: map and reduce. A map function takes a key/value pair, executes some compu-
tation, and emits a set of intermediate key/value pairs as output. A reduce function 
merges all intermediate values associated with the same intermediate key, executes 
some computation on them, and emits the final output. More complex interactions can 
be achieved by pipelining several MapReduce compounds in a workflow fashion. A 
data set is stored as a set of files in HDFS, which are in turn stored as a sequence of 
blocks (typically of 64MB in size) that are replicated on multiple nodes to provide 
fault-tolerance. An interested reader may refer to MapReduce Google’s work [6] and 
open source Hadoop documentation [4] for a detailed description of MapReduce and 
Hadoop concepts. 

3   Building R-Tree with MapReduce 

This section discusses a MapReduce-based algorithm for building an R-Tree index 
structure [1] on a spatial data set in parallel fashion. Let us start our description by 
defining the problem. Let D be a spatial data set composed of objects oi, i=1, .., |D|. 
Each object o has two attributes <o.id, o.P>, where o.id is the object’s unique identi-
fier and o.P is the object’s location in some spatial domain; other attributes are possi-
ble, but we concentrate on these only for our R-Tree construction purpose. The R-
Tree minimum bounding rectangles (MBRs) are created based on the objects’ spatial 
attribute o.P. Identifiers o.id are used as references to objects stored in the R-Tree 
leaves. 
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Fig. 2. Phases involved in building an R-Tree index for a data set D in MapReduce 

The proposed method consists of three phases executed in sequence, as can be seen 
in Figure 2. First, the spatial objects are partitioned into groups. Then, each group is 
processed to create a small R-Tree. Finally, the small R-Trees are merged into the 
final R-Tree. The first two phases are executed in MapReduce, while the last phase 
does not require high computational power, thus it is executed sequentially outside of 
the cluster. 

The three main phases of the algorithm are: 
 

1 Computation of partitioning function f. The inputs for this phase are the data set D 
and a positive number R, which represents the number of partitions. The purpose of 
f is to assign any object of D into one of the R possible partitions. The function is 
computed in such a way that applying f on D yields R (ideally) equally-sized parti-
tions. In practice, minimal variance in sizes is acceptable. At the same time, f at-
tempts to put objects that are close in the spatial domain in the same partition. The 
output of this phase is a function f which takes as input an object location o.P and 
outputs a partition number. Note that no actual partitioning or data moving happens 
at this point. The next phase utilizes f for such purpose. More details of this step 
are presented in Section 3.1. 
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2 R-Tree construction. During this phase, the function f calculated in the first phase 
is used by Mappers to divide D into R partitions. Then, R Reducers build R  
independent “small” R-Tree indices simultaneously on their input partitions. The 
output of this phase is a set of R independent R-Trees. Details of this step are pre-
sented in Section 3.2. 

 

3 R-Tree consolidation. This phase combines the R individual R-Trees, built in the 
second phase, under a single root node to form the final R-Tree index of D. This 
phase can be as simple as making the R R-Trees children of a single root node, or it 
may require adding a few extra levels (at most one in practice) if R exceeds the  
capacity of a single node. Since this phase is not computationally intensive for R 
under a few hundreds or thousands, it is executed by a single process outside the 
cluster. The logic to run this phase is fairly simple, so no further elaboration will be 
done on this step. 

3.1   Partitioning Function 

The purpose of the partitioning function f is to provide a means for assigning objects 
of D to a pre-defined number of R partitions. We use the idea of mapping multi-
dimensional spaces into an ordered sequence of single-dimensional values via space-
filling curves for this purpose. This idea has been studied in the literature as a way to 
numbering objects in multi-dimensional spaces [7, 8]. In our present problem, we map 
objects’ location attribute o.P into such curves. We use the Z-order curve [9] in our 
experiments in Section 5.1. The partition number of an object o is determined by 
f(o.P), which evaluates to a value from the set {1, 2, .., R}. By using a space-filling 
curve, the partitioning function f achieves two goals: 

• Generate R (almost) uniformly-sized partitions, and 
• Preserve spatial locality. If two distinct objects o1 and o2 are close to each other 

in the spatial domain, then they are likely to be assigned to the same partition, 
i.e. f(o1.P) = f(o2.P). 

Next, we propose a MapReduce algorithm to define f. 

MapReduce Algorithm 
The general idea is inspired by the TeraSort Hadoop application [10], which partitions 
an input data set via data sampling. Given a data set D and target number of partitions 
R, the MapReduce algorithm runs M Mappers that collectively take L sample objects 

from D (that is, each Mapper samples   objects) and emit their single-dimensional 
values S={U(oi.P), i=1, .., L} given a space filling curve U. Then, a single Reducer 
sorts S, and determines a list S´ of R-1 splitting points that split the ordered sequence 
of samples into R equal-sized partitions. Then, in general, an object o belongs to parti-
tion j if S´[j-1] < U(o.P) ≤ S´[j]. Thus, f utilizes the splitting points in S´ to assign 
objects to partitions. 

The specific MapReduce key/value input pairs as well as outputs are presented in 
Table 1. Mappers read in total L samples at random offsets of their input D, and com-
pute their single dimensional value with the space-filling curve U. The intermmediate 
key equals to C which is a constant, whose value is irrelevant, that helps in sending 
Mappers’ outputs to a single Reducer. The Reducer receives the L single-dimensional 
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values generated by Mappers, and sorts them into an auxiliary list u1, ..,uL, from 

which R-1 elements are taken starting at the -th element and subsequently at fixed-

length offsets  to form a list S´ of splitting points. 

Table 1. Map and Reduce inputs/outputs in computing partitioning function f 

Function Input: (Key, Value) Output: (Key, Value) 
Map (o.id, o.P) (C, U(o.P)) 

Reduce (C, list(ui, i=1, .., L)) S´ 

 
An important observation in the sampling process is that Mappers read input data 

from the distributed storage at block-sized amounts, which is a Hadoop distributed 
file system parameter specifically tuned for load balancing large files across storage 
nodes. Thus, all Mappers, except perhaps for the last one, will read the same amount 
of data, equal to the file system’s block size. 

The rationale of the splitting points in S´ is that they provide good enough bounda-
ries to sub-divide D into R partitions since they come from randomly sampled objects. 
Experiments in section 5.1 show very low standard deviation (under 1%) on the num-
ber of objects per partition. Formally, the function f is defined as follows: 

݂ሺ݋. ܲሻ ൌ ቐ 1, ܷሺ݋. ܲሻ ൑ ܵ´ሾ1ሿ݆, ܵ´ሾ݆ െ 1ሿ ൏ ܷሺ݋. ܲሻ ൑ ܵ´ሾ݆ሿ, ݆ ൌ 2, … , ܴ െ 1ܴ, ܷሺ݋. ܲሻ  ൐  ܵ´ሾܴ െ 1ሿ
 

(1) 

This computation is characterized by running multiple Mappers (samplig data) and 
one Reducer (sorting samples), which may become a limiting factor in scalability. If 
the size of S becomes sufficiently large, then the TeraSort [10] approach can be used 
to sort its items in parallel, which makes the algorithm more scalable. 

3.2   R-Tree Construction 

In this phase, R individual R-Tree indices are built concurrently. Mappers partition 
the input data set D into R groups using the partitioning function f. Then, every parti-
tion is passed to a different Reducer, which independently builds an R-Tree on its 
input. Next, every Reducer outputs a root node of their constructed R-Trees, so R sub-
trees are written to the file system at the end of this phase. 

Input and output key/value pairs are shown in Table 2. Mappers read their input 
data in its entirety and compute objects assigned partitions via f(o.P). Then, every 
Reducer receives a number of input objects A for which an R-Tree is built and its root 
emitted as output. Since f balances partitions, it is expected that all Reducers will 

receive a similar number of objects (ܣ ~ |஽|ோ ), thus executing similar amount of work in 

constructing their R-Trees. However, good balancing depends on the underlying 
space-filling curve U used by f, and the number of sampled objects L. More samples 
help in tuning the splitting points, but incur in larger sorting time of L elements. 
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Table 2. MapReduce functions in constructing R-Trees 

Function Input: (Key, Value) Output: (Key, Value) 
Map (o.id, o.P) (f(o.P), o) 

Reduce (f(o.P), list(oi, i=1, .., A)) tree.root 

 
Another concern is the quality of the produced R-Trees in relation to the parameter 

R. In Section 5.1, we provide some initial insight into this direction by measuring R-
Tree parameters such as area and overlap in a simplified way, and plotting their MBRs 
for visual analysis. 

4   Tile Quality Computation Using MapReduce 

This section discusses a MapReduce algorithm to compute the quality information of 
aerial/satellite imagery. Such information is useful for fast identification of defective 
image portions, e.g. blank regions inside a tile or a group of tiles, and subsequent 
dynamic image patching using better imagery available at rendering time. For a given 
tile, we define a pixel as “bad” if all the values of its samples are below or above 
some predefined value. 

 

Fig. 3. Tile quality computation algorithm overview 

Image tiles are stored in customized DOQQ files [11], augmented with a descrip-
tive header. Let d be a DOQQ file and t be a tile inside d, d.name is d’s file name and 
t.q is the quality information of tile t. More details of our data set are presented in 
Section 5.2. Figure 3 depicts the execution overview of our MapReduce algorithm. 
The algorithm runs on a tile by tile basis within the boundaries of a given DOQQ file, 
computing a bitmap per tile where a tile pixel is associated to a bit that is set to 1 if 
the pixel is deemed “bad”, and 0 otherwise. 

MapReduce Algorithm 
Each DOQQ file is first partitioned into several splits, each of which is then processed 
by a separate Mapper. Splits are carefully generated by parsing tiles out of the input 
file until the size of all the tiles is close (little smaller) to the block size of the underly-
ing distributed file system or end of file is reached. In doing so, tile boundaries are 
preserved between different splits. Then, each Mapper will have to read at most two 
blocks of a file. This helps reduce data transfer time between nodes because different 
blocks of a file are usually stored on separate nodes. Tiles (values) inside one split are 
identified by d.name and t.id (keys) and combined as key/value input for Mappers. 
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Table 3. Input and output of map and reduce functions 

Function Input: (Key, Value) Output: (Key, Value) 
Map (d.name+t.id, t) (d.name, t.q) 

Reduce (d.name, list( .q)) Quality-bitmap of d 

 
The input and output key/value pairs for Mappers and Reducers are described in 

Table 3. The Mapper decompresses the JPEG tile t, iterates through each pixel of t to 
obtain quality information t.q (a bitmap, one bit per pixel) and compresses it using 
Run-length encoding (RLE) algorithm. After that, it emits the intermediate key/value 
pair with d.name as the key and t.q as the value. The Reducer merges all the t.q bit-
maps that belongs to a file d and writes them to an output file, containing image qual-
ity for d, as shown in Figure 3. 

5   Experiments 

This section presents and discusses the experimental results we obtained by running 
the algorithms described in Sections 3 and 4 as Hadoop applications on the 
Google&IBM cluster presented in Section 2. All the data sets used in this section are 
real spatial data sets supplied by the High Performance Database Research Center at 
Florida International University [12]. At the time of experimentation, there were jobs 
running in the cluster from other researchers that share this resource, thus some fluc-
tuation in the results is expected. 

5.1   R-Tree Construction 

Data sets and Setup 
Experiments are executed on two real spatial data sets. Data set descriptions are 
shown in Table 4. The points in the data sets are angular coordinates in (latitude, 
longitude) format. In the following experiments, we use the Z-order space-filling 
curve [9] as U function to map the two-dimensional points into a single dimension. 
We used 3% of each data set as sampling size L (see first phase of the algorithm in 
Section 3). Data sets are in tabular structured format (CSV), where each line repre-
sents an object. We used Hadoop supplied functions to read objects (text lines) from 
the data sets. During the second phase, Reducers build their individual R-Trees in-
memory (to avoid high disk latencies in maintaining the tree along object insertions), 
then the trees are peristed on Hadoop distributed file system. 

Time Performance 
This experiment consists of building R-Tree indices on the Google&IBM cluster 
changing the parameter R in phase-2, that is, the number of concurrently-built R-
Trees, from 2 up to 64. As R varies, job completion times are measured for Mappers 
and Reducers as well as quality statistics on the resulting R-Trees. As a reference, we 
also ran a single-process R-Tree construction on a dedicated local machine with Intel 
Xeon E7340 2.4GHz processor and 8GB of RAM running Windows OS; we could 
not run the single process in the cluster since we do not have login access to  
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Table 4. Spatial data sets used in experiments 

Data 
set 

Objects 
(millions) 

Data size 
(GB) 

Description 

FLD 11.4 5 Points of properties in the state of Florida. 

YPD 37 5.3 
Yellow pages directory of points of businesses mostly 
in the United States but also in other countries. 

Table 5. MapReduce job completion times (in minutes) for the Phase 1 (MR1), and various 
Reducers (R) in Phase 2 (MR2) of building an R-Tree. Also, completion times for single-
process (SP) constructions ran on a local machine are shown. 

    
MR1: Partitioning 

Function 
MR2: R-Tree 
Construction   

Data 
set R Map Reduce Map Reduce 

Total 
MR1+MR2 

FLD 2 0.35 0.28 0.40 24.12 25.15 
  4 0.28 0.23 0.40 11.07 11.98 
  8 0.47 0.22 1.73 5.62 8.03 
  16 0.30 0.22 0.40 3.05 3.97 
  32 0.48 0.23 0.40 1.95 3.07 
  64 0.28 0.33 0.45 1.60 2.67 
 SP - - - - 27.34 

YPD 4 0.47 0.38 0.47 52.57 53.88 
  8 0.22 0.45 0.72 25.42 26.80 
  16 0.40 0.43 0.38 8.93 10.15 
  32 0.40 0.43 0.42 4.65 5.90 
  64 0.40 0.42 0.88 2.55 4.25 
  SP - - - - 63.98 

 
individual nodes. Thus, cluster and single process times are not comparable due to 
dissimilar hardware. 

Table 5 shows MapReduce job completion times for R-Tree construction phases 1 
and 2 on both spatial data sets as well as for a single-process build (SP); for YPD we 
start at R=4 due to memory limitations in cluster nodes for building in-memory trees 
with less number of Reducers. We do not include phase-3 processing times since it is 
of little significance compared to the other phases. Phase-1 (partitioning function 
computation) takes very little time, which is expected since sorting L=3% of objects 
from a data set can be quickly done in memory by the single reducer in this phase; for 
our largest data set YPD, about 1 million elements are sampled. Our Z-order values 
are 8-byte sized elements, so around 8MB of RAM is needed to execute the sort, 
which is much less than the memory of each cluster node. Likewise, Mappers in 
phase-2 read data sequentially and execute inexpensive Z-order value computations 
on their inputs. 
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(a) FLD data set    (b) YPD data set 
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Fig. 4. MapReduce job completion times for various number of reducers in phase-2 (MR2) 

The most computationally intensive part is performed by Reducers in phase-2, 
where the actual R-Tree constrution occurs. The fewer the number of Reducers, the 
longer the R-Tree construction takes, since each task receives larger number of objects. 
Figure 4 shows job completion times as stacked bars of the map and reduce execution 
times. In this figure, almost linear scalability is observed as more parallelism is 
induced by increasing R in phase-2. As expected, the improvement rate is high for few 
Reducers but drops as the number of Reducers increases since partitioning overheads 
in phase-1 (MR1) start becoming significant compared to R-Tree build time in phase-2 
(MR2). In fact, for larger values of R, the dominating time component is given by MR1 
which, as can be seen in Table 5, is almost constant for a given data set. Thus, much 
less improvements are expected as R is increased beyond 64. 

Although we cannot compare our MapReduce and single process (SP) times due to 
mismatch in hardware, the MapReduce parallelization certainly yields performance 
benefits for large-scale data sets. For example, it takes more than an hour to 
sequentially build the YPD R-Tree, while in parallel the task can be achieved in less 
than 5 minutes with 64 Reducers. However, the resulting R-Trees are different due to 
differences in object insertion sequences. Later in this section we measure and discuss 
R-Tree quality parameters for both cases. 

Figure 5 presents percentages of performance gains in job completion times in 
relation to subsequent increases in the number of Reducers in the second phase of the 
algorithm. For example, in the YPD dataset, going from 4 to 8 Reducers we observe 
50% decrease in job completion time, which represents linear scalability. On the other 
hand, going from 8 to 16 Reducers shows super-linear gains (62%). We pressume this 
may be due to heterogeneous nodes in the cluster (eventually the job with R=16 was 
executed on faster nodes), or it may be the cluster resources were idler during that 
period. As discussed, as we increase the number of Reducers, performance gains are 
less significant because the execution time for the first phase, which has a sequential 
component (Reduce), stays almost constant. 
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(a) FLD data set    (b) YPD data set 
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Fig. 5. MapReduce job percentage of performance gains as the number of reducers is increased 

Quality of Generated R-Trees 
We use equations (2) and (3) below to compute the area and overlap metrics 
respectively for a given consolidated R-Tree with root T: 
 

ሺܶሻܽ݁ݎܣ ൌ  ෍ ሺܽ݁ݎܣ ௜ܶ . ሻ௡ܴܤܯ
௜ୀଵ  

(2) 

ሺܶሻ݌݈ܽݎ݁ݒܱ ൌ  ෍ ෍ ሺܽ݁ݎܣ ௜ܶ . ሩ ܴܤܯ ௝ܶ. ሻ௡ ܴܤܯ
௝ୀ௜ାଵ

௡
௜ୀଵ  

(3) 

where n is the number of children (small R-Trees generated by Reducers) of T, and Ti 
is the i-th child node of T. Note that other metrics of R-Tree quality could be 
considered as well, e.g., consider all the nodes of the R-Tree instead of just the top 
level.  Minimal area and overlap are known to improve search performance [13] since 
they increase path pruning abilities of R-Tree navigation algorithms. 

Table 6 shows quality metrics on the consolidated R-Trees built for various 
number of Reducers and single process (SP); for reference, the U.S. Census Bureau 
reports Florida state land area roughly as 54,000 square miles as of 2000 [14]. As 
expected, we see the total MBR area and the overlap increase as the parallelism (R) 
increases because the construction of each small R-Tree is unaware of the rest of 
the data set, lowering the chance of co-locating neighbor objects within the same R-
tree. This means that we degrade the R-Tree quality without gaining in execution 
time. The latter can adversely effect performance of search algorithms, such as 
nearest neighbor type of queries, due to extra I/Os incurred in traversing multiple 
sub-trees. 
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Table 6. Statistics on consolidated R-Trees built by various number of Reducers (R), and single 
process (SP) construction 

  Objects per Reducer Consolidated R-Tree 

Data 
set R Average Stdev Nodes Height Area (sq.mi) Overlap (sq.mi) 

FLD 2 5,690,419 12,183 172,776 4 132,333.9 304.4 
  4 2,845,210 6,347 172,624 4 106,230.4 4,307.9 
  8 1,422,605 2,235 173,141 4 103,885.8 17,261.9 
  16 711,379 2,533 162,518 4 96,443.1 21,586.3 
  32 355,651 2,379 173,273 3 140,028.7 80,389.1 
  64 177,826 1,816 173,445 3 152,664.2 96,857.7 
 SP 11,382,185 0 172,681 4 746,145.0 1,344,836.8 

YPD 4 9,257,188 22,137 568,854 4 26,510,946.3 21,574,857.8 
  8 4,628,594 9,413 568,716 4 23,160,080.0 20,480,729.6 
  16 2,314,297 7,634 568,232 4 67,260,270.0 54,582,299.8 
  32 1,157,149 6,043 567,550 4 68,626,854.9 54,008,538.5 
  64 578,574 2,982 566,199 4 69,791,363.8 55,064,139.4 
 SP 37,034,126 0 587,353 5 164,966,688.5 658,583,322.6 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
Fig. 6. MBR plotting for FLD data set on an R-Tree built by a single process 

 
For a sequential construction (SP), we observe these metrics are much worse, 

especially the overlap factor, since objects are not spatially shuffled but rather 
inserted in the data set original sequence. Thus, higher performance penalties are 
expected in SP constructed R-Trees. On the other hand, the tree height slightly 
decreases for FLD for R beyond 32 because more small trees means that each one of 
them may be shorter, while for YPD the height increases by one level for the SP case. 
In general, small variations in tree height is less significant from a performance 
standpoint. 
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Fig. 7. MBR plotting for FLD data set for R-Tree built by MapReduce with R=4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. MBR plotting for FLD data set for R-Tree built by MapReduce with R=8 

To visually study the effect of increasing R over the MBR distribution, we have 
plotted the MBRs of the resulting R-Trees for the case of 4 and 8 Reducers in Figures 
7  and 8 respectively for the Florida state data set (FLD). Also the same type of graph 
is shown in Figure 6 for the SP R-Tree. In neither case is the root MBR plotted since 
it is common for all trees. 
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A few observations can be made from the MBR plottings. First, the partitioning 
mechanism employed in our algorithms seems to be effective in preserving spatial 
locality. This results in individual Reducers indexing highly localized objects; their 
boundaries, however, result in multiple overlappings, which are inevitable. Second, as 
the number of Reducers is increased from 4 to 8, the plotting shape resembles more 
the actual shape of the Florida state; that is, R=8 reduces wasted areas (where no ac-
tual objects are located) as the Area statistic confirms in Table 6. In fact, Table 6 
shows steady decrease in area from 2 to 16 Reducers; after that the area keeps on 
increasing. Third, when the R-Tree is built on the original sequence of objects (no 
object shuffling) in SP mode, large wasted areas are generated as can be observed in 
Figure 6. From a performance optimization perspective, MapReduce generated R-
Trees seem to be better tuned than their single-process counterpart. Therefore, we see 
promising performance improvements in MapReduce generated R-Trees, which de-
serve closer verification. 

5.2   Tile Quality 

Data set and Setup 
The data set used in the experiments is a 3-inch resolution aerial imagery of Miami 
Dade County of Florida. The size of the data set is about 52GB after compression. 
Imagery data is stored as compressed DOQQ file format. There are 482 compressed 
DOQQ files, each of which contains 4096 tiles. Each tile is 400 by 400 pixels and has 
3 bytes for each pixel as the Red, Green and Blue channel. The size for each tile is 
480,000 bytes uncompressed and compressed tile is about 50 KB each. 

Experiments 
Two experiments are carried out for this data set. The first experiment uses a subset of 
the data set that is a re-sampled version of the original one. It is about 20GB and has 
482 files with 1024 tiles each. The size of the files ranges from several megabytes to 
around 80 megabytes, and the number of Reducers is varied from 4 to 512. The sec-
ond experiment uses different sized subsets of the original data set. The size of the 
files ranges from 2GB to 16GB, and the number of Reducers is fixed at 256. 

In the first experiment, the number of Mappers is also fixed, determined by the 
data set size. Thus, the execution time of the map phase is similar through different 
runs, as can be seen in Figure 9 (a). The execution time slightly fluctuates because 
there were other concurrent jobs running in the cluster at the same time. As the num-
ber of Reducers increases, the execution time of the reduce phase largely decreases 
for smaller number of reducers, and less improvements are obtained for larger number 
of reducers. This is because the same amount of work is now shared by more Reduc-
ers. When the number of Reducers is larger than 64, the execution time of the reduce 
phase stabilizes to around 2.5 minutes. This could be explained by the launching time 
of Reducers dominating the whole time at this point. With 64 Reducers, each of them 
will be writing around 482/64 ≈ 8 files. The time taken to write 8, 4 (128 Reducers) or 
even less files is negligible compared with the launching time of that many Reducers. 

In the second experiment, Figure 9 (b), as the size of the data set increases with 
constant number of reducers (256), the execution time of the map phase hardly 
changes, which is consistent with the data parallelization provided by the MapReduce  
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(a) Fixed data size, variable Reducers        (b) Variable data size, fixed Reducers  
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Fig. 9. MapReduce job completion time for tile quality computation 

model, that is, more Mappers are engaged in processing the data. The execution time 
of the reduce phase increases because there are now more files to be written with the 
same number of Reducers. 

6   Related Work 

Space-filling Curves 
The idea of using space-filling curves to map multi-dimensional spaces into a single 
dimension has been studied for the case of spatial databases [15, 8]; popular space-
filling curves, such as Peano and Hilbert, have been studied in great level of detail. 
We used the Z-order curve in our experiments. This curve showed high spatial local-
ity preservation for our experimented real data sets. Other curves can certainly be 
evaluated, which goes beyond our focus on the parallelization of two concrete spatial 
problems with MapReduce. 

Parallel R-Tree Constructions 
Previous works on R-Tree parallel construction have faced several intrinsic  
distributed computing problems such as data load balancing, process scheduling, fault 
tolerance, etc., for which they elaborated special-purpose algorithms. Schnitzer and 
Leutenegger [16] propose a Master-Client R-Tree, where the data set is first parti-
tioned using Hilbert packing sort algorithm, then the partitions are declustered into a 
number of processors (via an specialized declustering algorithm), where individual 
trees are built. At the end, a master process combines the individual trees into the final 
R-Tree. Another work by Papadopoulos and Manolopoulos [17] proposed a method-
ology for sampling-based space partitionining, load balancing, and partition assign-
ment into a set of processors in parallely building R-Trees. They also discuss some 
alternatives when the global (consolidated) index has imperfections such as different 
heights across individual R-Trees. 
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In MapReduce, these parallel computing concerns are abstracted out from the ap-
plication logic, and managed transparently as part of the MapReduce framework. 
Further, all nodes in the cluster access a common distributed file system, with auto-
matic fault-tolerance and load balancing support, where data locality is employed as 
base criterion to assign Mappers and Reducers (preferably) to nodes already contain-
ing the input data. In contrast, traditional parallel processing works assume every 
node has its own storage, in a shared-nothing type of architecture, where data transfer 
among nodes becomes an important optimization goal. 

MapReduce on Spatial Data 
MapReduce framework was used to solve another spatial data problem by Google 
[18], where they study the problem of road alignment by combining satellite and 
vector data. This work concentrates on the complexities of the problem, which are 
more challenging than the MapReduce algorithms. 

Schlosser et al. [19] worked on building octrees in Hadoop for later use in earth-
quake simulations at large-scale. Their approach builds a tree in a bottom up fashion. 
The map function in the first iteration generates leaf nodes, then the reduce function 
coalesces homogeneous leaf nodes into a subtree. Subsequent iterations have identity 
functions in mappers, and successively use reduce functions to construct the final tree. 

Relationship to MPI 
Message Passing Interface (MPI) [20] is a specification of a language-independent 
communication model targeted at writing parallel programs, and it is widely used in a 
variety of computer cluster platforms. MPI libraries provide primitives and 
functionality for communication control among a set of processes. Typically, 
developers need to add explicit calls to synchronize processes and move data around. 
The key differences between MPI and MapReduce is that MapReduce exploits its 
simplified model to automatically parallelize tasks (Mappers and Reducers), hiding 
from programmers the need to worry about process communication, fault-tolerance, 
and scalability, which are transparently managed by key components, such as cluster 
management system and distributed file system, that the MapReduce framework is 
built-upon [6]. For example, for the R-Tree case study, the Java implementation of the 
Map and Reduce functions of the first phase, and Map of the second phase have each 
less than 40 lines of code. The Reduce function in the second phase has about 70 lines 
of code since it includes extra code for persisting the tree on the distributed file 
system and collecting build statistics. These numbers do not include application-
specific routines, which are needed regardless of the parallel model. 

In MapReduce, the underlying assumption is that the solution can be expressed in 
terms of the Map and Reduce functions working on key/value pairs. In some cases 
this may not be natural, such as relational joins or multi-stage processes, and can lead 
to inefficiencies. Then, MPI-like parallel implementations have more opportunities to 
address application-specific optimizations, due to its finer process control. However, 
high-level languages have been proposed to address this problem in MapReduce 
architectures by providing efficient primitives for massive data analysis combining 
SQL-like declarative style and MapReduce procedural programming [21][22]. 
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7   Conclusions 

In this paper, we used the MapReduce programming model to solve two important 
spatial problems on a Google&IBM cluster: (a) bulk-construction of R-Trees and (b) 
aerial image quality computation, which involve vector and raster data, respectively. 
The experimental results we obtained indicate that the appropriate application of 
MapReduce could dramatically improve task completion times. Our experiments 
show close to linear scalability. However, performance is not the only concern for R-
Tree construction, which is sensitive to the ordering of objects in its input, but also the 
quality of the result. MapReduce generated R-Trees have improved quality in terms of 
MBR area and overlap measurements compared to the single-process construction 
counterpart. No such quality problem arises in the aerial image quality computation. 
Our experience in this work shows MapReduce has the potential to be applicable to 
more complex spatial problems. 
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