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Abstract—Profit is the main participation incentive for social
network providers. Its reliance on user profiles, built from a
wealth of voluntarily revealed personal information, exposes
users to a variety of privacy vulnerabilities. In this paper
we propose to take first steps toward addressing the conflict
between profit and privacy in geosocial networks. We introduce
PROFILR , a framework for constructing location centric profiles
(LCPs), aggregates built over the profiles of users that have
visited discrete locations (i.e., venues). PROFILR endows users
with strong privacy guarantees and providers with correctness
assurances. In addition to a venue centric approach, we propose
a decentralized solution for computing real time LCP snapshots
over the profiles of co-located users. An Android implementation
shows that PROFILR is efficient: the end-to-end overhead is small
even under strong privacy and correctness assurances.

I. INTRODUCTION

Online social networks have become a significant source of

personal information. Their users voluntarily reveal a wealth

of personal data, including age, gender, contact information,

preferences and status updates. A recent addition to this

space, geosocial networks (GSNs) such as Yelp [1] and

Foursquare [2] further collect fine grained location informa-

tion, through check-ins performed by users at visited venues.
Overtly, personal information allows GSN providers to

offer a variety of applications, including personalized rec-

ommendations and targeted advertising, and venue owners

to promote their businesses through spatio-temporal incen-

tives, e.g., rewarding frequent customers through accumulated

badges. Providing personal information exposes however users

to significant risks, as social networks have been shown to

leak [3] and even sell [4] user data to third parties. There exists

therefore a conflict. Without privacy people may be reluctant to

use geosocial networks; without user information the provider

and venues cannot support applications and have no incentive

to participate.
In this paper, we take first steps toward addressing this

conflict. Our approach is based on the concept of location

centric profiles (LCPs). LCPs are statistics built from the

profiles of (i) users that have visited a certain location or (ii)

a set of co-located users.
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Contributions. We introduce PROFILR , a framework that

allows the construction of LCPs based on the profiles of

present users, while ensuring the privacy and correctness of

participants. Informally, we define privacy as the inability

of venues and the GSN provider to accurately learn user

information, including even anonymized location trace pro-

files. Verifying the correctness of user data is necessary to

compensate for this privacy constraint: users may cheat and

bias LCPs anonymously. We consider two user correctness

components. First, location correctness, where users should

only contribute to LCPs of venues where they are located.

This requirement is imposed by the recent surge of fake check-

ins [5], motivated by their use of financial incentives. Second,

LCP correctness, where users should be able to modify LCPs

only in a predefined manner.
First, we propose a venue centric PROFILR , that relieves

the GSN provider from a costly involvement in venue spe-

cific activities. To achieve this, PROFILR stores and builds

LCPs at venues. Furthermore, it relies on Benaloh’s homo-

morphic cryptosystem and zero knowledge proofs to enable

oblivious and provable correct LCP computations. We prove

that PROFILR satisfies the introduced correctness and privacy

properties.
Second, we propose a completely decentralized

PROFILR extension, built around the notion of snapshot

LCPs. The distributed PROFILR enables user devices to

aggregate the profiles of co-located users, without assistance

from a venue device. Snapshot LCPs are not bound to

venues, but instead user devices can compute LCPs of

neighbors at any location of interest. Communications in

both PROFILR implementations are performed over ad hoc

wireless connections. The contributions of this paper are then

the following:

• Introduce the problem of computing location centric

profiles (LCPs) while simultaneously ensuring the privacy

and correctness of participants.

• Propose PROFILR , a framework for computing LCPs.

Devise both a venue centric and a decentralized solution.

Prove that PROFILR satisfies the proposed privacy and

correctness properties.

• Provide two applications for PROFILR : (i) privacy pre-

serving, personalized public safety recommendations and

(ii) privately building real time statistics over the profiles

of venue patrons with Yelp accounts.

• Evaluate PROFILR through an Android implementation.

Show that PROFILR is efficient even when deployed on
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previous generation smartphones.

The paper is organized as follows. Section II describes

the system and adversary model and defines the problem.

Section III introduces PROFILR and proves its privacy and

correctness. Section IV introduces the notion of snapshot LCPs

and presents a distributed, real-time variant of PROFILR .

Section V describes two PROFILR applications. Section VI

evaluates the performance of the proposed constructs. Sec-

tion VII describes related work and Section VIII concludes.

II. MODEL AND BACKGROUND

We consider a core functionality that is supported by the

most influential geosocial network (GSN) providers, Yelp [1]

and Foursquare [2]. This functionality is simple and general

enough to be applicable to most other GSNs (e.g., Facebook

Places, Google Latitude). In this model, a provider S hosts the

system, along with information about registered venues, and

serving a number of users. To use the provider’s services, a

client application, the “client”, needs to be downloaded and

installed. Users register and receive initial service credentials,

including a unique user id.

The provider supports a set of businesses or venues, with an

associated geographic location (e.g., restaurants, yoga classes,

towing companies, etc). Users are encouraged to report their

location, through check-ins at venues where they are present.

During a check-in operation, performed upon an explicit user

action, the user’s device retrieves its GPS coordinates, reports

them to the server, who then returns a list of nearby venues.

The device displays the venues and the user needs to choose

one as her current check-in location.

Participating venue owners need to install inexpensive

equipment (e.g., a $25 Raspberry PI [6], a BeagleBoard [7] or

any Android smartphone). This equipment can be installed and

used for other purposes as well, including detecting fake user

check-ins [8] preventing fake badges and incorrect rewards,

and validating social network (e.g., Yelp [1]) reviews. Venue

deployed equipment provides a necessary ingredient: ground

truth information from remote locations.

A. Location Centric Profiles

Each user has a profile PU = {pU1
, pU2

, .., pUd
}, consisting

of values on d dimensions (e.g., age, gender, home city, etc).

Each dimension has a range, or a set of possible values. Given

a set of users U at location L, the location centric profile at

L, denoted by LCP (L) is the set {LCP1, LCP2, .., LCPd},
where LCPi denotes the aggregate statistics over the i-th
dimension of profiles of users from U .
In the following, we focus on a single profile dimension,

D. We assume D takes values over a range R that can

be discretized into a finite set of sub-intervals (e.g., set of

continuous disjoint intervals or discrete values). Then, given an

integer b, chosen to be dimension specific, we divide R into b
intervals/sets,R1, .., Rb. For instance, gender maps naturally to

discrete values (b = 2), while age can be divided into disjoint

sub-intervals, with a higher b value.

We define the aggregate statistics S for dimension D of

LCP (L) to consist of b counters c1, .., cb; ci records the

Fig. 1. Solution architecture (k=2). The red arrows denote anonymous
communication channels, whereas black arrows indicate authenticated (and
secure) communication channels.

number of users from U whose profile value on dimension

D falls within range Ri, i = 1..b.

B. Private LCP Requirements

Let k be a security parameter, denoting the level of privacy

we need to provide for users at any location. We then define

a private LCP solution to be a set of functions, PP (k) =

{Setup, Spotter, CheckIn, PubStats}, see Figure 1. Setup
is run by each venue where user statistics are collected, to

generate parameters for user check-ins. To perform a check-

in, a user first runs Spotter, to prove her physical presence

at the venue. Spotter returns error if the verification fails,

success otherwise. If Spotter is successful, CheckIn is run

between the user and the venue, and allows the collection of

profile information from the user. Specifically, if the user’s

profile value v on dimension D falls within the range Ri,

the counter ci is incremented by 1. Finally, PubStats pub-

lishes collected LCPs. In the following, we use the notation

Prot(P1(args1), .., Pn(argsn)) to denote protocol Prot run
between participants P1, .., Pn, each with its own arguments.

Let CV be the set of counters defined at a venue V .

We use C̄V to denote the set of sets derived from CV as

follows. Each set in C̄V differs from CV in exactly one

counter, whose value increments the value of the correspond-

ing counter in CV . For instance, if CV = {2, 5, 9}, then C̄V =

{{3, 5, 9}, {2, 6, 9}, {2, 5, 10}}. A private LCP solution needs

to satisfy the following properties:

k-Privacy: Let A denote an adversary that controls any

number of venues and let C denote a challenger controlling

k users. C runs Spotter followed by CheckIn at a venue

V controlled by A on behalf of i < k users. Let Ci denote

the resulting counter set. For each j = 1..b, A outputs c′j , its
guess of the value of the j-th counter of Ci. The advantage of

A, Adv(A) = |Pr[Ci[j] = c′j ] − 1/(i+ 1)|, defined for each

j = 1..b, is negligible.
Location Correctness: Let A denote an adversary that con-

trols the GSN provider and any number of users. Let C be

a challenger that controls a venue V . A running as a user
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U not present at V , has negligible probability to successfully

complete Spotter at V .

LCP Correctness: Let A denote an adversary that controls the

GSN provider and any number of users. Let C be a challenger

that controls a venue V . Let CV denote the set of counters

at V before A runs CheckIn at V and let C′

V be the set

of counters afterward. If C′

V /∈ C̄V , the CheckIn completes

successfully with only negligible probability.

Check-In Indistinguishability (CI-IND): Let a challenger C
control two users U0 and U1 and let an adversary A control

any number of venues. A generates randomly q bits, b1, .., bq,
and sends them to C. For each bit bi, i = 1..q, C runs Spotter
followed by CheckIn on behalf of user Ubi . At the end of this

step, C generates a random bit b and runs Spotter followed

by CheckIn on behalf of Ub at a venue not used before. A
outputs a bit b′, its guess of b. The advantage of A, Adv(A) =
|Pr[b′ = b]− 1/2| is negligible.

C. Attacker Model

We assume venue owners are malicious and will attempt to

learn private information from their patrons. Clients installed

by users can be malicious, attempting to bias LCPs constructed

at target venues. We assume the GSN provider does not collude

with venues, but will try to learn private user information.

D. Tools

Homomorphic Cryptosystems. We use the Benaloh cryp-

tosystem [9], an extension of the Goldwasser-Micali [10]. It

consists of three functions (KG,E,D), defined as follows:

• KG(l) (Key Generation): l, an odd integer, is a system

parameter, known to all participants, that denotes the size of

the input block. Select two large primes p and q such that

l|(p− 1) and gcd(l, (p− 1)/l) = 1 and gcd(l, q− 1) = 1. Let
n = pq. Select y ∈ Z

∗

n, such that y(p−1)(q−1)/l mod n 6= 1. n
and y are the public key and p and q are the private key.

• E(u,m): Encrypt message m ∈ Z
∗

l , using a randomly

chosen value u ∈ Z
∗

n. Output y
mul mod n.

• D(z): Decrypt ciphertext z. Let z = ymul mod n. If

z(p−1)(q−1)/l = 1, then return m = 0. Otherwise, for i = 1..l,
compute si = y−iz mod n. If si = 1, return m = i.

Benaloh’s cryptosystem is additively homomorphic:

E(u1,m1)E(u2,m2) = E(u1u2,m1+m2). We further define

the re-encryption function RE(v, E(u,m)) to be ymulvl =
E(uv,m). Note that the re-encryption function can be invoked

without knowledge of the message m. Furthermore, it is

possible to show that two ciphertexts are the encryption

of the same plaintext, without revealing the plaintext. That

is, given E(u,m) and E(v,m), reveal w = u−1v. Then,

E(v,m) = RE(w,E(u,m)).
The above properties are ideal to enable a user to (i)

increment the counter of a bucket even without knowing the

counter’s value or the encryption key and (ii) to re-encrypt all

counters without knowing the encryption key.

Anonymizers. We use an anonymizer[11], [12], [13] that (i)

operates correctly – the output corresponds to a permutation of

the input and (ii) provides privacy – an observer is unable to

determine which input element corresponds to a given output

element in any way better than guessing. We use Orbot [14],

an Android implementation of Tor [13].

Location Verification. We use one of the protocols proposed

in [8] to verify the location claims of users checking-in.

For completeness, we now briefly describe this protocol. Let

SPOTRV denote the device installed at venue V . When a user

U expresses interest to check-in at venue V , SPOTRV initiates

a challenge/response protocol. It sends to U the currently

sampled time T , an expiration interval∆T and a fresh random

value R. U ’s device generates a keyed hash of these values

and sends the result back to SPOTRV . SPOTRV verifies

the authenticity of the hash and ensures that the response

is received within a short interval from the challenge. If the

verification succeeds, SPOTRV uses its private key to sign a

time stamped token and sends the result to U . U contacts the

server S over the anonymizer (see above) and sends the token

signed by SPOTRV . S verifies V ’s signature as well as the

freshness (and single use) of the token.

Secret Sharing. Our constructions use a (k,m) threshold

secret sharing (TSS) [15] solution. Given a value R, TSS

generates m shares such that at least k shares are needed to

reconstruct R. A (k,m)-TSS solution satisfies the property of

hiding: An adversary (provided with access to a TSS oracle)

controlling the choice of two values R0 and R1 and given less

than k shares of Rb, b ∈R {0, 1}, can guess the value of b
with probability only negligible higher than 1/2.

Secret sharing will enable the provider to decrypt encrypted

counters only when at least k users (out of m) have checked-

in at a venue. The k out of m property supports failures: users

who check-in but do not participate in the protocol.

III. PROFILR

As mentioned before, SPOTRV denote the device installed at

venue V . For each user profile dimension D, SPOTRV stores

a set of encrypted counters – one for each sub-range of R.

Overview. Initially, and following each cycle of k check-ins

executed at venue V , SPOTRV initiates Setup, to request the

provider S to generate a new Benaloh key pair. Thus, at each

venue time is partitioned into cycles: a cycle completes once k
users have checked-in at the venue. The communication during

Setup takes place over an authenticated and secure channel

(see Figure 1).

When a user U checks-in at venue V , it first engages in the

Spotter protocol with SPOTRV , allowing the venue to verify

U ’s physical presence. A successful run of Spotter provides

U with a share of the secret key employed in the Benaloh

cryptosystem of the current cycle. For each venue and user

profile dimension, S stores a set Sh of shares of the secret

key that have been revealed so far.

Subsequently, U runs CheckIn with SPOTRV , to send its

share of the secret key and to receive the encrypted counter

sets. As shown in Figure 1, the communication takes place

over an anonymous channel to preserve U ’s privacy. During

CheckIn, for each dimension D, U increments the counter

corresponding to her range, re-encrypts all counters and sends

the resulting set to SPOTRV . U and SPOTRV engage in a

zero knowledge protocol that allows SPOTRV to verify U ’s
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correct behavior: exactly one counter has been incremented.

SPOTRV stores the latest, proved to be correct encrypted

counter set, and inserts the secret key share into the set Sh.
Once k users successfully complete the CheckIn proce-

dure, marking the end of a cycle, SPOTRV runs PubStats to

reconstruct the private key, decrypt all encrypted counters and

publish the tally. The communication during PubStats takes

place over an authenticated channel (see Figure 1).

A. The Solution

Let Ci denote the set of encrypted counters at V , following

the i-th user run of CheckIn. Ci = {Ci[1], .., Ci[b]}, where
Ci[j] denotes the encrypted counter corresponding to Rj , the

j-th sub-range of R. We write Ci[j] = E(uj , u
′

j, cj , j) =

[E(uj , cj), E(u′

j , j)], where uj and u
′

j are random obfuscating

factors and E(u,M) denotes the Benaloh encryption of a

message M using random factor u. That is, an encrypted

counter is stored for each sub-range of domain R of dimension

D. The encrypted counter consists of two records, encoding

the number of users whose values on dimension D fall within

a particular sub-range of R.
Let RE(vj , v

′

j , E(uj , u
′

j , cj, j) denote the re-encryption of

the j-th record with two random values vj and v′j :
RE(vj , v

′

j , E(uj , u
′

j , cj, j)) = [RE(vj , E(uj , cj)),
RE(v′j , E(u′

j , j))] = [E(ujvj , cj), E(u′

jv
′

j , j)]. Let

Ci[j] + + = E(uj , u
′

j , cj + 1, j) denote the encryption

of the incremented j-th counter. Note that incrementing the

counter can be done without decrypting Ci[j] or knowing the

current counter’s value: Ci[j] + + = [E(uj , cj)y, E(u′

j , j)] =
[ycj+1ur

j , E(u′

j , j)] = [E(uj , cj + 1), E(u′

j , j)].
In the following we use the above definitions to introduce

PROFILR . PROFILR instantiates PP (k), where k is the pri-

vacy parameter. The notation P (A(paramsA), B(paramsB))
denotes the fact that protocol P involves participants A and

B, each with its own parameters.
Setup(V(),S(k)): The provider S runs the key generation func-

tion KG(l) of the Benaloh cryptosystem (see Section II-D).

Let p and q be the private key and n and y the public key.

S sends the public key to SPOTRV . SPOTRV generates a

signature key pair and registers the public key with S. For
each user profile dimension D of range R with b sub-ranges,

SPOTRV performs the following steps:

• Initialize counters c1, .., cb to 0.

• Generate C0 = {E(x1, x
′

1, c1, 1), .., E(xb, x
′

b, cb, b)},
where xi, x

′

i, i = 1..b are randomly chosen values. Store C0

indexed on dimension D.

• Initialize the share set Skey = ∅.

• Generate system wide parameters k and m > k and

initialize the (k,m) TSS.

Spotter(U(L,T ),V(),S(k)): Let L and T denote U ’s location

and current time. To ensure anonymity, U generates fresh

random MAC and IP addresses. These addresses are used for

a single execution of the Spotter and CheckIn protocols.

SPOTRV uses one of the location verification procedures

proposed in [8] to verify U ’s presence at L and T (see

Section II-D).
Let U be the i-th user checking-in at V . If the verification

succeeds and i ≤ k, S uses the (k,m) TSS to compute a share

of p (Benaloh secret key, factor of the modulus n). Let pi be
the share of p. S sends the (signed) share pi to U . If i > k,
S calls Setup to generate new parameters for V .

CheckIn(U(pi, n, V), V(n, y, Ci−1, Skey)): Executes only if

the previous run of Spotter is successful. U uses the same

random MAC and IP addresses as in the previous Spotter
run. Let U be the i-th user checking-in at V . Then, Ci−1 is

the current set of encrypted counters. SPOTRV sends Ci−1

to U . Let v, U ’s value on dimension D, be within R’s j-th
sub-range, i.e., v ∈ Rj . U runs the following steps:

• Generate b pairs of random values {(v1, v′1), .., (vb, v
′

b)}.
Compute the new encrypted counter set Ci, where the order

of the counters in Ci is identical to Ci−1: Ci =

{RE(vl, v
′

l, Ci−1[l])|l = 1..b, l 6= j} ∪ RE(vj , v
′

j , Ci−1[j] +
+)}.

• Send Ci and the signed (by S) share pi of p to V .

If SPOTRV successfully verifies the signature of S on the share

pi, U and SPOTRV engage in a zero knowledge protocol ZK-

CTR (see Section III-B). ZK-CTR allows U to prove that Ci

is a correct re-encryption of Ci−1: only one counter of Ci−1

has been incremented. If the proof verifies, SPOTRV replaces

Ci−1 with Ci and adds the share pi to the set Skey . Otherwise,

SPOTRV drops Ci and rolls back to Ci−1.

PubStats(V(Ck,Sh,V),S(p,q)): SPOTRV performs the follow-

ing actions:

• If |Sh| < k, abort.

• If |Sh| = k, use the k shares to reconstruct p, the private

Benaloh key.

• Use p and q = n/p to decrypt each record in Ck, the final

set of counters at V . Publish results.

B. ZK-CTR: Proof of Correctness

We now present the zero knowledge proof of the set Ci

being a correct re-encryption of the set Ci−1, i.e., a single

counter has been incremented. Let ZK-CTR(i) denote the

protocol run for sets Ci−1 and Ci. U and SPOTRV run the

following steps s times:

• U generates random values (t1, t
′

1), .., (tb, t
′

b) and random

permutation π, then sends to SPOTRV the proof set Pi−1 =
π{RE(tl, t

′

l, Ci−1[l]), l = 1..b}.

• U generates random values (w1, w
′

1), .., (wb, w
′

b). It sends
to SPOTRV the proof set Pi = π{RE(wl, w

′

l, Ci[l]), l = 1..b}

• SPOTRV generates a random bit a and sends it to U .

• If a = 0, U reveals random values (t1, t
′

1), .., (tb, t
′

b) and

(w1, w
′

1), .., (wb, w
′

b). SPOTRV verifies that for each l = 1..b,
RE(tl, t

′

l, Ci−1[l]) occurs in Pi−1 exactly once, and that for

each l = 1..b, RE(wl, w
′

l, Ci[l]) occurs in Pi exactly once.

• If a = 1, U reveals ol = vlwlt
−1
l and o′l = v′lw

′

lt
′−1
l , for all

l = 1..b along with j, the position in Pi−1 and Pi of the incre-

mented counter. SPOTRV verifies that for all l = 1..b, l 6= j,
RE(ol, o

′

l, Pi−1[l]) = Pi[l] and RE(oj , o
′

j , Pi−1[j]y) = Pi[j].

• If any verification fails, SPOTRV aborts the protocol.

C. Preventing Venue-User Collusion

For simplicity of presentation, we have avoided the Sybil at-

tack problem: participants that cheat through multiple accounts
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they control or by exploiting the anonymizer. For instance,

a rogue venue owner, controlling k-1 Sybil user accounts

or simulating k-1 check-ins, can use PROFILR to reveal the

profile of a real user. Conversely, a rogue user (including

the venue) could bias the statistics built by the venue (and

even deny service) by checking-in multiple times in a short

interval. Sybil detection techniques (see Section VII) can be

used to control the number of fake, Sybil accounts. However,

the use of the anonymizer prevents the provider and the use

of the unique IP and MAC addresses prevents the venue from

differentiating between interactions with the same or different

accounts. In this section we propose a solution, that when

used in conjunction with Sybil detection tools, mitigates this

problem. The solution introduces a trade-off between privacy

and security. Specifically, we divide time into epochs (e.g., one

day long). A user can check-in at any venue at most once per

epoch. When active, once per epoch e, each user U contacts

the provider S over an authenticated channel. U and S run

a blind signature [16] protocol: U obtains the signature of

S on a random value, RU,e. S does not sign more than one

value for U for any epoch. In runs of Spotter and CheckIn
during epoch e, U uses RU,e as its pseudonym (i.e., MAC and

IP address). Venues can verify the validity of the pseudonym

using S’s signature. A venue accepts a single CheckIn per

epoch from any pseudonym, thus limiting the user’s impact on

the LCP. The privacy breach mentioned above is due to the

fact that now S can correlate CheckIns executed using the

same RU,e. However, S does not know the real user identity

behind RU,e – due to the use of blind signatures.

D. Analysis

Given a set of encrypted counters C, let C̄ denote the set of

re-encryptions of records of C, where only one record has its

counter incremented. To show that ZK-CTR(i) is a ZK proof

of Ci ∈ C̄i−1, we need to prove completeness, soundness and

zero-knowledge.

Theorem 1: ZK-CTR(i) is complete.

Proof: If Ci ∈ C̄i−1, in each of the s steps, U succeeds

to convince S, irrespective of the challenge bit a. If a = 0, U
can produce the random obfuscating values, showing that the

proof sets Pi−1 and Pi are correctly generated from Ci−1 and

Ci. If a = 1, U can build the obfuscating factors proving that

Pi ∈ P̄i−1.

Theorem 2: ZK-CTR(i) is sound.

Proof: We need to prove that if Ci /∈ C̄i−1, U cannot

convince S unless with negligible probability. For simplicity,

we assume Ci /∈ C̄i−1 due to a single record in Ci being “bad”:

Ci−1[j] = E(uj , u
′

j, cj , j) and Ci[j] = E(vj , v
′

j , c
′

j , j
′).

In any round of the ZK-CTR protocol, U has two options

for cheating. First, U could count on the bit a to come

up 0. Then, U builds Pi−1[j] = E(ujtj , u
′

jt
′

j , cj , j) and

Pi[j] = E(vjwj , v
′

jw
′

j , c
′

j , j
′). If however a = 1, U has to

produce a value αj , such that RE(αj , E(uj, cj)) = E(v′j , c
′

j)
or RE(αj , E(uj, cj + 1)) = E(v′j , c

′

j). In the first case, this

means ycj(ujαj)
l = yc′

j
v′lj mod n. Without knowing n’s

factorization, U cannot compute l’s inverse modulo φ(n).
Then, the equation is satisfied only if c′j = cj + zl, for an

integer z. Note however that Benaloh’s cryptosystem only

works for values in Z
∗

l , making this condition impossible to

satisfy.
The second case is similar. The second cheating option is

to assume a will be 1 and build Pi[j] to be a re-encryption

of Pi−1[j]. It is then straightforward to see that if a = 0, U
can only succeed in convincing S, if c′j = cj + zl, which we

have shown is impossible for z 6= 0. Thus, in each round, U
can only cheat with probability 1/2. Following s rounds, this

probability becomes 1/2s.
Theorem 3: ZK-CTR(i) is “zero-knowledge”.
Proof: We show that ZK-CTR conveys no knowledge to

any verifier, even one that deviates arbitrarily from the proto-

col. We prove this by following the approach from [17], [18].

Specifically, let S∗ be an arbitrary, fixed, expected polynomial

time interactive Turing machine (ITM). We generate an ex-

pected polynomial time machine M∗ that, without being given

access to the client, produces an output whose probability

distribution is identical to the probability distribution of the

output of 〈C, S∗〉 (which denotes the protocol run by a client

C and S∗).
We now build M∗ that uses S∗ as a black box many times.

Whenever M∗ invokes S∗, it places input x = (L0, L1) on

its input tape ITS and a fixed sequence of random bits on

its random tape, RTS . The input x consists of L0 = C0 and

L1 = C1. The content of the input communication tape for

S∗, CTS will consist of tuples (P2i, P2i+1, πi), where P2i

and P2i+1 are sets and πi is a permutation. The output of M∗

consists of two tapes: the random-record tape RTM and the

communication-record tape CTM . RTM contains the prefix of

the random bit string r read by S∗. The machine M∗ works

as follows (round i):

• Step 1: M∗ chooses a random bit a ∈R {0, 1}. If

a = 0, M∗ picks a random permutation πi, gener-

ates tl, t
′

l, l = 1..b randomly and computes P2i =
πi{RE(tl, t

′

l, Ci−1[l]), l = 1..b}. It then generates ran-

dom values wl, w
′

l, l = 1..b, randomly and computes the

set P2i+1 = πi{RE(wl, w
′

l, Ci[l]), l = 1..b}. Note that

M∗ does not need to know the counters to perform this

operation. If a = 1, M∗ generates a random set P2i, then

generates random values ol, o
′

l randomly, l = 1..b. It then
generates a random j ∈ 1..b and computes P2i+1 such

that for all l = 1..b, l 6= j, RE(ol, o
′

l, P2i[l]) = P2i+1[l]
and for the j-th position, RE(oj , o

′

j , P2i[j]y) = P2i+1[j].
• Step 2: M∗ sets

b = S∗(x, r;P0, P1, π0, .., P2i−2, P2i−1, πi−1, P2i, P2i+1).
That is, b is the output of S∗ on input x and random

string r after receiving i − 1 pairs (P2j , P2j+1, πj),
j = 1..i − 1 and proof P2i, P2i+1 on its communication

tape CTS . We have the following three cases.

(Case 1). a = b = 0. M∗ can produce tl, t
′

l, wl, w
′

l, l =
1..b and πi to prove that P2i = πi{RE(tl, t

′

l, Ci−1[l]), l =
1..b} and P2i+1 = πi{RE(wl, w

′

l, Ci[l]), l = 1..b}. M∗

sets bi to b, appends the tuple (P2i, P2i+1, πi, bi) to CTM

and proceeds to the next round (i+1).

(Case 2). a = b = 1. M∗ can produce ol, o
′

l, l = 1..b,
and index j such that RE(ol, o

′

l, P2i[l]) = P2i+1[l], l =
1..b, l 6= j and RE(oj , o

′

j , P2i[j]y) = P2i+1[j]. M
∗ sets
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bi to b, appends the tuple (P2i, P2i+1, πi, bi) to CTM and

proceeds to the next round (i+1).

(Case 3). a 6= b. M∗ discards all the values of the current

iteration and repeats the current round (Step 1 and 2).

If all rounds are completed, M∗ halts and outputs

(x, r′, CTM ), where r′ is the prefix of the random bits r
scanned by S∗ on input x. We first prove thatM∗ terminates in

expected polynomial time and then that the output distribution

of M∗ is the same as the output distribution of S∗ when

interacting with the client, on input (L0, L1).

• Lemma 1: M∗ terminates in expected polynomial time.

Proof: Given C0 and C1, during the i-th round

P2i and P2i+1 are either built from C0 and C1 or

from each other. During each run of round i, the bit a
is chosen independently. Then P2i and P2i+1 are also

chosen independently. This implies that the probability

that a = b is 1/2 and the expected number of repetitions

of round i is 2. S∗ is expected polynomial time, which

implies that M∗ is also polynomial time.

• Lemma 2: Let 〈C, S∗〉|(L0, L1) denote the output of the
interaction between client C and the ITM S∗, given input

L0, L1. The probability distribution of 〈C, S∗〉|(L0, L1)
and of M∗|(L0, L1) are identical.

Proof: The output of 〈C, S∗〉|(L0, L1) and of

M∗|(L0, L1) consists of a sequence of t tuples of format

(P2i, P2i+1, πi, bi). Let Π
(x,r,i)
M∗ and Π

(x,r,i)
CS∗ be the prob-

ability distributions of the first i tuples output by M∗

and 〈C, S∗〉. We need to show that for any fixed

random input r, Π
(x,r,t)
M∗ = Π

(x,r,t)
CS∗ . We prove this

by induction. The base case, where i = 0, holds

immediately. In the induction step we assume that

Π
(x,r,i)
M∗ = Π

(x,r,i)
CS∗ = T (i). We need to prove that the

i + 1st tuples in Π
(x,r,i+1)
M∗ , denoted by Π

(i+1)
M∗ and in

Π
(x,r,i+1)
CS∗ , denoted by Π

(i+1)
CS∗ have the same distribution.

We show that Π
(i+1)
M∗ and Π

(i+1)
CS∗ are uniform over the

set V = {(P2i, P2i+1, πi, b)|b = S∗(x, r, T (i)||P ) ∧
((P2i = πiRE(C0), P2i+1 = πiRE(C1), if b = 0)
∨ (P2i+1[l] = RE(P2i[l]), l = 1..b, l 6= j, P2i+1[j] =

yRE(P2i[j]), if b = 1)}. For Π
(i+1)
CS∗ , this is the case,

by construction. If Π
(i+1)
M∗ has output, it is also uniformly

distributed in V .

M∗ terminates in expected polynomial time and its output has

the same distribution as the output of the interaction between

S∗ and a client. This completes the theorem proof.
We can now prove the following result:
Theorem 4: PROFILR provides k-privacy.
Proof: (Sketch) Following the definition from Sec-

tion II-B, let us assume that the adversary A has access to an

encrypted counter set Ci generated after C has run Spotter
followed by CheckIn on behalf of i < k different users. The

records of set Ci are encrypted and A has i shares of the

private key. For any j = 1..b, let c′j be A’s guess of the value

of the j-th counter in Ci. If |Pr[Ci[j] = c′j ]−1/(k+1)| = ǫ is
non-negligible we can use A to construct an adversary B that

has ǫ advantage in the (i) semantic security game of Benaloh

or in the (ii) hiding game of the (k,m) TSS. We start with

the first reduction. B generates two messages M0 = 0 and

M1 = 1 and sends them to the challenger C. C picks a bit

d ∈R {0, 1} and sends to B the value E(u,Md), where u
is random and E denotes Benaloh’s encryption function. B
initiates a new game with A, with counters set to 0. B runs

Spotter and CheckIn (acting as challenger) with A. B re-

encrypts all counters from A, except the j-th one, which it

replaces with E(u,Md). B runs ZK-CTR with A (used as a

black box) a polynomial number of times until it succeeds.

A outputs its guess of the values of all counters. B sends the

guess for the j-th counter to C. The advantage of B in this

game comes entirely from the advantage provided by A.

For the second reduction, B runs Setup as the provider and

obtains the secret key p0 and p1 (renamed from p and q).
B sends p0 and p1 to the challenger C, as its choice of two

random values. C generates a random bit a, uses the (k,m)
TSS to generate i < k shares of pa, sh1, .., shi, and sends

them to B. B generates a new random prime q and picks

randomly a bit d. Let the Benaloh modulus be n = pdq. Then,
acting as i different users, Uj , j = 1..i B runs Spotter with

S (which it also controls) to obtain S’s signature on shj . For

each of the i users, B runs CheckIn with A. At the end of

the process, A outputs its guess of the encrypted counters.

If the guess is correct on more than d/(j + 1) counters, B
sends d to C as its guess for a. Otherwise, it sends d̄. Thus,
B’s advantage in the hiding game of TSS is equivalent to A’s

advantage against PROFILR .

Location correctness: The user’s location is verified in

the Spotter protocol. A malicious user not present at venue V ,

is unable to establish a connection with the device deployed

at V , SPOTRV . Thus, the user is unable to participate in the

challenge/response protocol and receive at its completion a

provider signed share of the Benaloh secret key. Without the

share, the user is unable to initiate the CheckIn protocol.

LCP Correctness: A user U can alter the LCP of a

venue V in two ways. First, during the ZK-CTR protocol,

it modifies more than one counter or corrupts (at least)

one counter. The soundness property of ZK-CTR, proved in

Theorem 2 shows this attack succeeds with probability 1/2s.
Second, it attempts to prevent V from decrypting the counter

sets after k users have run CheckIn. This can be done by

preventing SPOTRV from reconstructing the private Benaloh

key. Key shares are however signed by the provider, allowing

SPOTRV to detect invalid shares.

CI-IND Satisfaction: To see that PROFILR satisfies the

CI-IND property, let A be an adversary that has an ǫ advantage
in the CI-IND game. We assume a honest challenger, who does

not run Spotter and CheckIn twice for the same (user, epoch)

pair. Otherwise, the use of the signed pseudonyms provides

an advantage to A. Note that if pseudonyms are not used, this

requirement is not necessary.

No identifying information is sent by users during the

Spotter and CheckIn procedures: the pseudonyms are blindly

signed by S, all communication with S takes place over an

anonymizer, and all communication with a venue is done using

randomly chosen MAC and IP addresses. Thus, we can use A
to build another adversary B that has the advantage ǫ either

against (i) the blind signature protocol [16], or against the (ii)

privacy property provided by the anonymizer.
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Finally, we note that an adversary can use the CheckIn
procedure to launch denial of service attacks against a venue,

consuming its computation resources.

IV. SNAPSHOT LCP

We extend PROFILR to allow not only venues but also users

to collect snapshot LCPs of other, co-located users. To achieve

this, we take advantage of the ability of most modern mobile

devices (e.g., smartphones, tablets) to setup ad hoc networks.

Devices establish local connections with neighboring devices

and privately compute the instantaneous aggregate LCP of

their profiles.

A. Snapshot PROFILR

We assume a user U co-located with k other users U1, .., Uk.

U needs to generate the LCP of their profiles, without in-

frastructure, GSN provider or venue support. An additional

difficulty then, is that participating users need assurances

that their profiles will not be revealed to U . However,

one advantage of this setup is that location verification

is not needed: U intrinsically determines co-location with

U1, .., Uk. Snapshot PROFILR consists of three protocols,

{Setup, LCPGen, PubStats}:
Setup(U(r), U1, .., Uk()): U runs the following steps:

• Run the key generation function KG(l) of the Benaloh

cryptosystem (see Section II-D). Send the public key n and y
to each user U1, .., Uk.

• Engage in a multi-party secure function evaluation proto-

col [19] with U1, .., Uk to generate shares of a public value

R < n. At the end of the protocol, each user Ui has a share

Ri, such that R1..Rk = R mod n and Ri is only known to

Ui.

• Assign each of the k users a unique label between 1 and

k. Let U1, .., Uk denote this order.

• Generate C0 = {E(x1, x
′

1, 0, 1), .., E(xb, x
′

b, 0, b)}, where
xi, x

′

i, i = 1..b are randomly chosen. Store C0 indexed on

dimension D.

Each of the k users engages in a 1-on-1 LCPGen with U to

privately and correctly contribute her profile to U ’s LCP.
LCPGen(U(Ci−1), Ui()): Let Ci−1 be the encrypted counters

after U1, .., Ui−1 have completed the protocol with U . U sends

Ci−1 to Ui. Ui runs the following:

• Generate random values (v1, v
′

1), .., (vb, v
′

b). Let j be the

index of the range where Ui fits on dimension D.

• Compute the new encrypted counter set Ci as: Ci =
{RE(vl, v

′

l, Ci−1[l])Ri mod n|l = 1..b, l 6= j} ∪
RE(vj , v

′

j , Ci−1[j] + +)Ri mod n} and send it to U .

• Engage in a ZK-CTR protocol to prove that Ci ∈ C̄i−1.

The only modification to the ZK-CTR protocol is that all re-

encrypted values are also multiplied with Ri mod n, Ui’s share

of the public value R. If the proof verifies, U replaces Ci−1

with Ci.

After completing LCPGen with U1, .., Uk, U ’s encrypted

counter set is Ck = {Ej = E(uj , u
′

j , cj , j)R1..Rk|j = 1..d},
where uj and u

′

j are the product of the obfuscation factors used

by U1, .., Uk in their re-encryptions. The following protocol

enables U to retrieve the snapshot LCP.

PubStats(U(Ck)): : Compute EjK , ∀j = 1..d, where
K = R−1 mod n (R = R1..Rk), decrypt the outcome using

the private key (p, q) and publish the resulting counter value.

U verifies that the j-th decrypted record is of format (cj , j)
and that the sum of all counters equals k. If any verification

fails, U drops the statistics - a cheater exists. Otherwise, the

resulting counters denote the aggregate stats of U1, .., Uk.

Even though U has the private key allowing it to decrypt any

Benaloh ciphertext, the use of the secret Ri values prevents it

from learning the profile of Ui, i = 1..k.
This protocol is a secure function evaluation - the partic-

ipants learn their aggregated profiles, without learning the

profiles of any participant in the process. We note however

that existing SFE solutions cannot be used here: We need to

ensure the input user profiles are correct, that is, each user

increments a single counter.

V. APPLICATIONS

We now propose two PROFILR applications.

A. Public Safety

Is a person likely to be safe in a specific public space,

presently? The answer to this question is a function of the

context of the space and of the person considered. In addition

to location and time, the context is greatly influenced by the

people present in that space. In previous work [20] we have

proposed a personalized safety recommendation system, that

leverages the history of locations visited by U to define his

safety index. Specifically, we defined U to be safe within a

context Ct, if U has a higher chance of crimes to occur around

him, than the people in Ct.
We propose to use PROFILR to build finer grained personal-

ized safety recommendations, with privacy. PROFILR divides

the safety index interval ([0, 1]) into sub-intervals, and asso-

ciates a counter with each. PROFILR enables then a set of

users to privately and correctly compute the distribution of

their safety index values. Then, U is safe in a context Ct, if
the number (or percentage) of users in Ct whose safety index

values are smaller or equal to U ’s safety index (are safer than

U ), exceeds a system wide threshold parameter.

B. Real-Time Yelp Venue Stats

In a second application, we rely on PROFILR to enable

venues to collect fine grained, real time statistics over the pro-

files of patrons with Yelp accounts. To motivate participation,

PROFILR prevents venues from inferring the identity and even

the anonymous profiles of the currently present users.

Yelp is an excellent source of user profile information.

Yelp users own accounts storing a wealth of public and

personal information, including name, home city, friends,

reviews written, photos uploaded, check-ins, “Elite” badges,

etc. Knowing the real time distribution of current patron

profile information, such as locals vs. non-locals, gender, the

types of venues preferred, can help venues understand their

customers. Furthermore, by studying the evolution in time of

such information, e.g., using time series analysis, may enable

venues to generate forecasts and better cater to their customers.
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Fig. 2. Yelp venue stats: Distribution of the distance from one venue (“Ike’s
Place”) to the home cities of its reviewers. 3000+ reviews were written by
locals, but a large number of reviews were written by far-away visitors.
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Figure 2 illustrates this concept: it shows the distribution of

the (great-circle) distance in miles from “Ike’s Place” venue

in San Francisco, CA and the home cities of its (4000+)

reviewers. More than 3000 reviews were left by locals, but

far away customers also form a sizeable percentage.

VI. EVALUATION

For testing purposes we have used Samsung Admire smart-

phones running Android OS Gingerbread 2.3 with a 800MHz

CPU and a Dell laptop equipped with a 2.4GHz Intel Core

i5 processor and 4GB of RAM for the server. For local con-

nectivity the devices used their 802.11b/g Wi-Fi interfaces. All

reported values are averages taken over at least 10 independent

protocol runs.

We have first measured the overhead of the Setup operation.
If d is the number of profile dimensions, N is the Benaloh

modulus size and b the sub-range count of domain D, the

computation overhead of Setup is TSetup = Tkeysig +dbTE +
TTSS . Tkeysig is the time to generate the signature key, TE is

the average time of Benaloh encryption and TTSS is the time

to initialize the TSS (i.e., random polynomial generation). The

storage overhead of Setup is StoreSetup = dbN .

We set the b to be 10, Shamir’s TSS group size to 1024

bits and RSA’s modulus size to 1024 bits. Figure 3 shows

the Setup overhead on the smartphone and laptop platforms,
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Fig. 4. The overhead imposed by ZK-CTR as a function of the Benaloh
modulus size. Note the significant overhead increase for a 2048-bit modulus,
of approximately 260ms per ZK-CTR round.
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Fig. 5. The overhead of the ZK-CTR protocol as a function of the number
of proof rounds. The linear increase in the number of rounds leads to a 12s
overhead for 100 rounds. 100 rounds reduce however the probability of client
cheating to an insignificant value, 2−100.

when the Benaloh modulus size ranges from 64 to 2048 bits.

Note that even a resource constrained smartphone takes only

2.2s for 1024 bit sizes (0.9s on a laptop). A marked increase

can be noticed for the smartphone when the Benaloh bit size

is 2048 bit long - 13.5s. We note however that this cost is

amortized over multiple check-in runs.

The computation overhead of CheckIn is TCI = bTRE +
TZK , where TRE is the Benaloh re-encryption cost and

TZK is the overhead of the ZK-CTR protocol. The formula

does not consider the cost of modular multiplication, random

number generation and random permutation operations, that

are neglibile compared to the other costs. Given s, the number

of rounds of ZK-CTR, TZK = 2sbTRE + sbTRE + s
2bTRE =

7
2sbTRE . The communication overhead is Tcom CI = bN +
Tcom ZK . The communication cost of ZK-CTR, Tcom ZK is

s(2bN + 1
24bN + 1

22bN) = 5sbN .

We now focus on the most resource consuming component,

the ZK-CTR protocol. While the above formulas assume

similar capabilities for the client and venue components, we

now measure the client side running on the smartphone and the

venue component executing on the laptop. Figure 4 shows the

dependence of the three costs for a single round of ZK-CTR

on the Benaloh modulus size. Given the more efficient venue

component and the superior computation capabilities of the



1556-6013 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TIFS.2014.2307697, IEEE Transactions on Information Forensics and Security

9

2 4 6 8 10 12 14 16 18 20

Number of ranges in single ZK−CTR round

P
e

rf
o

rm
a

n
ce

 o
ve

rh
e

a
d

 (
K

B
)

0
5

1
0

1
5

2
0

Storage overhead
Communication overhead

Fig. 6. Storage and communication overhead (in KB) as a function of b,
the number of sub-intervals considered in the statistics computation. Even for
b = 20, the storage overhead is only 5KB and the communication is 17KB.

laptop, the venue component has a much smaller overhead. We

have set b = 10. The communication overhead is the smallest,

exhibiting a linear increase with bit size. For a Benaloh key

size of 1024 bits, the average end-to-end overhead of a single

ZK-CTR round is 135ms. The venue component is 29ms and

the client component is 106ms. Furthermore, Figure 5 shows

the overheads of these components as a function of the number

of ZK-CTR rounds, when the Benaloh key size is 1024 bit and

b = 10. For 30 rounds, when a cheating client’s probability of

success is 2−30 (1 in a billion), the total overhead is 3.6s.

We further examine the communication overhead in terms of

bits transferred during ZK-CTR between a client and a venue.

The communication overhead in a single ZK-CTR round is

4bN+3bN = 7bN . The second component of the sum is due

to the average outcome of the challenge bit. Figure 6 shows

the dependency of the communication overhead (in KB) on

b, when N = 1024. Even when b = 20, the communication

overhead is around 17KB. Figure 6 shows also the storage

overhead (at a venue). The storage overhead is only a fraction

of the (single round) communication overhead, 2BN . For a

single dimension, with 20 sub-ranges, the overhead is 5KB.

VII. RELATED WORK

This article significantly extends a short paper [21], [22]

with privacy and correctness definitions, an expanded version

of PROFILR , a decentralized, snapshot PROFILR , detailed

privacy and correctness proofs and applications.

Location cloaking. Location and temporal cloaking tech-

niques, or introducing errors in reported locations in order

to provide 1-out-of-k anonymity have been initially proposed

in [23], followed by a significant body of work [?], [24], [25].

We note that PROFILR provides an orthogonal notion of k-
anonymity: instead of reporting intervals containing k other

users, we allow the construction of location centric profiles

only when k users have reported their location. Computed

LCPs hide the profiles of participating users: user profiles are

anonymous, only aggregates are available for inspection, and

interactions with venues and the provider are indistinguishable.

l-diversity. Machanavajjhala et al. [26] have shown that k-
anonymity for published user data, where each record is

indistinguishable from at least k−1 other records (for sensitive
attributes), is not sufficient to provide anonymity. To address

this, they defined an l-diverse data block of tuples from various

users, as one that contains at least l “well-represented” values
for any sensitive attribute. We note that we do not collect

individual (anonymized) user data. Instead, we build statistics

over user data, that can be published only if k users contribute.

GSN privacy. Puttaswamy and Zhao [27] require users to

store their information encrypted on the GSN provider. This

includes ‘friendship” and “transaction” proofs, cryptographi-

cally encrypted tokens encoding friend relations and messages.

The proofs can only be decrypted by those who know the

decryption keys. Transaction proofs are stored in “buckets”

associated with approximate locations (e.g., blocks), enabling

users to retrieve information pertinent to their current location.

PROFILR takes the next step, by enabling the aggregation of

user data in a privacy preserving manner.

Mascetti et al. [28] propose solutions that hide user location

information from the provider and enable users to control the

information leaked to participating friends (e.g., co-location

events), with a view to improve service precision, computation

and communication costs. Freni et al. [29] argue that the

inherent nature of geosocial networks makes it hard for users

to gauge their privacy leaks. The proposed solution relies on

a trusted third party to process posted locations according

to user preferences, before publishing them on the GSN

provider. Wernke et al. [30] use secret sharing and multiple,

non-colluding service providers to devise secure solutions for

the management of private user locations when none of the

providers can be fully trusted. The position of a user is split

into shares and each server stores one. A compromised server

can only reveal erroneous user positions.

In contrast, PROFILR provides the novel functionality of

allowing the provider, venues and even users to privately

compute LCPs over visitors or co-located users. PROFILR does

not require multiple, mutually untrusted servers, or trusted

third parties.

Thompson et. al. [31] proposed a solution in which database

storage providers compute aggregate queries without gaining

knowledge of intermediate results; users can verify the results

of their queries, relying only on their trust of the data owner. In

addition to assuming a different environment, PROFILR does

not assume venue owners to be trustworthy. Toubiana et.

al [32] proposed Adnostic, a privacy preserving ad targeting

architecture. Users have a profile that allows the private

matching of relevant ads. While PROFILR can be used to

privately provide location centric targeted ads, its main goal

is different - to compute location (venue) centric profiles that

preserve the privacy of contributing users.

Online social network privacy. Recent work on preserving

the privacy of users from the online social network provider in-

cludes Cutillo et al. [33], who proposed Safebook, a distributed

online social networks where insiders are protected from

external observers through the inherent flow of information in

the system. Tootoonchian et al. [34] proposed Lockr, a system

for improving the privacy of social networks by using the

concept of a social attestation, which is a credential proving

a social relationship. Baden et al. [35] introduced Persona,



1556-6013 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TIFS.2014.2307697, IEEE Transactions on Information Forensics and Security

10

a distributed social network with distributed account data

storage. While PROFILR builds on this work by requiring users

to store their GSN information, its focus rests on protecting

the privacy of users while simultaneously allowing venues

to collect valuable statistics over visitors. This dual goal of

PROFILR differentiates this paper from previous work.

Sybil account detection. Our work relies on the assumption

that participants cannot control a large number of fake, Sybil

accounts. We briefly describe several relevant techniques for

detecting social network Sybils. When given access to data

collected by the social network provider, Wang et al. [36]

proposed an approach that detects Sybil accounts based on

their click stream behaviors (traces of click-through events in

a browsing session). Molavi et al. [37] introduce a practical

approach that focuses on the effects of Sybil accounts. They

propose to defend against reviews from multiple identities of

a single attacker, by associating weights with ratings and by

introducing the concept of “relative ratings”.

VIII. CONCLUSIONS

In this paper we have proposed PROFILR , a framework

and mechanisms for privately and correctly building location-

centric profiles. We have proved the ability of our solutions

to satisfy the privacy and correctness requirements. We have

introduced two applications for PROFILR . We have shown

that PROFILR is efficient, even when executed on resource

constrained mobile devices.
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