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ABSTRACT

Providing input to targeted advertising, profiling social net-
work users is an important source of revenue for geosocial
networks. Since profiles contain personal information, their
construction introduces a trade-off between user privacy and
incentives of participation for businesses and geosocial net-
work providers. In this paper we introduce location centric
profiles (LCPs), aggregates built over the profiles of users
present at a given location. We introduce PROFILR , a
suite of mechanisms that construct LCPs in a private and
correct manner. Our Android implementation shows that
PROFILR is efficient: the end-to-end overhead is small even
under strong correctness assurances.

Categories and Subject Descriptors

D.4.6 [Security and Protection]: Cryptographic controls;
C.2.4 [Distributed Systems]: Distributed applications

General Terms

Security, Verification

Keywords

Privacy, Location verification, Social networks

1. INTRODUCTION

Online social networks have become a significant source
of personal information. Facebook alone is used by more
than 1 out of 8 people today. Social network users voluntar-
ily reveal a wealth of personal data, including age, gender,
contact information, preferences and status updates. A re-
cent addition to this space, geosocial networks (GSNs) such
as Yelp [1], Foursquare [2] or Facebook Places [3], further
provide access even to personal locations, through check-ins
performed by users at visited venues.

From the user perspective, personal information allows
GSN providers to offer targeted advertising and venue own-
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ers to promote their business through spatio-temporal incen-
tives (e.g., rewarding frequent customers through accumu-
lated badges). The profitability of social network providers
and participating businesses rests on their ability to collect,
build and capitalize upon customer and venue profiles. Pro-
files are built based on user information — the more detailed
the better. Providing personal information exposes however
users to significant risks, as social networks have been shown
to leak [4] and even sell [5] user data to third parties. Con-
versely, from the provider and business perspective, being
denied access to user information discourages participation.
There exists therefore a conflict between the needs of users
and those of providers and participating businesses: With-
out privacy people may be reluctant to use geosocial net-
works, without feedback the provider and businesses have
no incentive to participate.

In this paper we take first steps toward breaking this dead-
lock, by introducing the concept of location centric profiles
(LCPs). LCPs are aggregate statistics built from the profiles
of users that have visited a certain location.

We introduce PROFILR , a framework that allows the con-
struction of LCPs based on the profiles of present users,
while ensuring the privacy and correctness of participants.
Informally, we define privacy as the inability of venues and
the GSN provider to accurately learn user information, in-
cluding even anonymized location trace profiles.

Correctness is a by-product of privacy: under the cover of
privacy users may try to bias LCPs. We consider two cor-
rectness components (i) location correctness — users can only
contribute to LCPs of venues where they are located and (ii)
LCP correctness — users can modify LCPs only in a prede-
fined manner. Location correctness is an issue of particular
concern. The use of financial incentives by venues to reward
frequent geosocial network customers, has generated a surge
of fake check-ins [6]. Even with GPS verification mechanisms
in place, committing location fraud has been largely simpli-
fied by the recent emergence of specialized applications for
the most popular mobile eco-systems (LocationSpoofer [7]
for iPhone and GPSCheat [8] for Android).

We propose a venue centric PROFILg . To relieve the GSN
provider from a costly involvement in venue specific activi-
ties, PROFILR stores and builds LCPs at venues. Participat-
ing venue owners need to deploy an inexpensive device inside
their business, allowing them to perform LCP related activ-
ities and verify the physical presence of participating users.
PROFILR relies on (Benaloh’s) homomorphic cryptosystem
and zero knowledge proofs to enable oblivious and provable
correct LCP computations.



2. BACKGROUND AND MODEL

We model the geosocial network (GSN) after Yelp [1]. It
consists of a provider, S, hosting the system along with in-
formation about registered venues, and serving a number of
subscribers. To use the provider’s services, a client appli-
cation needs to be downloaded and installed. Users register
and receive initial service credentials, including a unique user
id. We use the terms subscriber and user interchangeably to
refer to users of the service and the term client to denote
the software provided by the service and installed by users
on their devices.

The provider supports a set of businesses or venues, with
an associated geographic location (e.g., restaurants, yoga
classes, towing companies, etc). Users are encouraged to
write reviews for visited locations, as well as report their lo-
cation, through check-ins at venues where they are present.

Participating venue owners need to install inexpensive equip-

ment, present on most recent smartphones. An important
assumption that we do not make, is that the equipment
installed has Internet connectivity and is able to communi-
cate directly with the GSN provider. Besides ensuring the
portability of our approach (e.g., can be installed anywhere
inside the venue) this also implies solely a one-time cost for
the venue owner (no monthly fees).

2.1 Location Centric Profiles

Each user has a profile Py = {u1, u2, .., uq}, consisting of
values on d dimensions (e.g., age, gender, home city, etc).
Each dimension has a range, or a set of possible values.
Given a set of users U at location L, the location centric
profile at L, denoted by LCP(L) is the set {51, S2, .., 54},
where S; denotes the aggregate statistics over the i-th di-
mension of profiles of users from .

In the following, we focus on a single profile dimension,
D. We assume D takes values over a range R that can
be discretized into a finite set of sub-intervals (e.g., set of
continuous disjoint intervals or discrete values). Then, given
an integer b, chosen to be dimension specific, we divide R
into b intervals/sets, Ri,.., Ry. For instance, gender maps
naturally to discrete values (b = 2), while age can be divided
into disjoint sub-intervals, with a higher b value. We define
the aggregate statistics S for dimension D of LCP(L) to
consist of b counters c1, .., cx; ¢; records the number of users
from U whose profile value on dimension D falls within range
R;,i=1..b.

2.2 Solution Definition

We define a private LCP solution to be a set of functions,
PP(k) = {Setup, Spoter, CheckIn, PubStats}. Setup is
run by each venue where user statistics are collected, to gen-
erate parameters for user check-ins. To perform a check-in,
a user first runs Spoter, to prove her physical presence at the
venue. Spoter returns error if the verification fails, success
otherwise. If Spoter is successful, CheckIn is run between
the user and the venue, and allows the collection of profile
information from the user. Specifically, if the user’s pro-
file value v on dimension D falls within the range R;, the
counter ¢; is incremented by 1. Finally, PubStats publishes
collected LCPs.

Let C'y be the set of counters defined at a venue V. Let
Cv denote the set of b sets of counters derived from Cv, such
that each set in Cy has exactly one counter incremented over
the set Cy .
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3. PROFILg

Let SPOTRy denote the device installed at venue V. For
each user profile dimension D, SPOTRy stores a set of en-
crypted counters — one for each sub-range of R. Initially,
and following each cycle of k check-ins executed at venue
V', SPOTRy initiates Setup, to request the provider S to
generate a new Benaloh key pair. Thus, at each venue we
divide time into cycles: a cycle completes once k users have
checked-in at the venue.

When a user U checks-in at venue V, it first engages in
the Spoter protocol with SPOTRy . This allows the venue
to verify U’s physical presence through a challenge/response
protocol between SPOTRy and the user device. Further-
more, a successful run of Spoter provides U with a share of
the secret key employed in the Benaloh cryptosystem of the
current cycle. For each venue and user profile dimension, S
stores a set Sh of shares of the secret key that have been
revealed so far.

Subsequently, U runs CheckIn with SPOTRy , to first
send its share of the secret key and to receive the encrypted
counter sets. During ChecklIn, for each dimension D, U in-
crements the counter corresponding to her range, re-encrypts
all counters and sends the resulting set to SPOTRy . U and
SPOTRy engage in a zero knowledge protocol that allows
SPOTRy to verify U’s correct behavior: exactly one counter
has been incremented. SPOTRy stores the latest, proved
to be correct encrypted counter set, and inserts the secret
key share into the set Sh. Once k users successfully com-
plete the CheckIn procedure, marking the end of a cycle,
SPOTRy runs PubStats to reconstruct the private key, de-
crypt all encrypted counters and publish the tally.

3.1 The Solution

Let C; denote the set of encrypted counters at V', following
the 4-th user run of CheckIn. C; = {C;[1], .., C;[b]}, where
C;[j] denotes the encrypted counter corresponding to Rj,
the j-th sub-range of R. We write Ci[j] = E(uj,uj,c;, j)
= [E(uy,¢;), E(u}, )], where u; and v/} are random obfus-
cating factors and F(u,m) denotes the Benaloh encryption
of message m using random factor u. That is, an encrypted
counter is stored for each sub-range of domain R of dimen-
sion D. The encrypted counter consists of two records, en-
coding the number of users whose values on dimension D
fall within a particular sub-range of R.

Let RE(vj, v}, E(uj,u},cj,7) denote the re-encryption of
the j-th record with two random values v; and vj:

RE(UWU;’:E(Uﬁu;:ijj)) = [RE(UJ7E(Uj7cj))7 RE(’U;,E(U;,]))]

= [E(ujvjvcj)vE(u;'v37j)]' Let CZ[J] ++ = E(uﬁu;’vcj +
1, j) denote the encryption of the incremented j-th counter.
Note that incrementing the counter can be done without
decrypting C;[j] or knowing the current counter’s value:
Ol[]] ++ = [E(Uj7 Cj)va(U;‘J)] = [ycj+17-b;7 E(U;m])] =
[E(ujvcj + 1)7E(u37j)]‘

In the following we use the above definitions to introduce
PROFILg . PROFILR instantiates PP(k), where k is the pri-
vacy parameter. The notation P(A(paramsa), B(paramsg))
denotes the fact that protocol P involves participants A and
B, each with its own parameters.

Setup(V(),S(k)):. The provider S runs the key generation
function K (k) of the Benaloh cryptosystem [9]. Let p and ¢
be the private key and n and y the public key. S sends the
public key to SPOTRy . SPOTRy generates a signature key



pair and registers the public key with S. For each user profile
dimension D of range R, SPOTRy performs the following
steps:

e Initialize counters ci,..,cp to 0. b is the number of R’s
sub-ranges.

e Generate Co = {F(z1,1,c1,1), .., E(xp, 7}, b, b) }, where
2,25, 1 = 1..b are randomly chosen values. Store C indexed
on dimension D.

e Initialize the share set Sie, = 0.

Spoter(U(K),V(),S(k)):. U sets up a connection with
SPOTRy using fresh, random MAC and IP address values.
SPOTRy initiates a challenge/response protocol, by sending
to U the currently sampled time 7', an expiration interval
AT and a fresh random value R. The user’s device generates
a hash of these values and sends the result back to SPOTRy .
SPOTRy ensures that the response is received within a spe-
cific interval from the challenge (see Section 4 for values
and discussion). If the verification succeeds, SPOTRy uses
its private key to sign a timestamped token and sends the
result to U. U contacts S over Mix and sends the token
signed by SPOTRy . S verifies V'’s signature as well as the
freshness (and single use) of the token. Let U be the i-th
user checking-in at V. If the verifications pass and i < k, S
uses the (k,n) TSS to compute a share of p (Benaloh secret
key, factor of the modulus n). Let p; be the share of p. S
sends the (signed) share p; to U. If i > k, S calls Setup to
generate new parameters for V.

CheckIn(U(pi, n, V), V(n, y, Ci—1, Skey)). : Executes
only if the previous run of Spoter is successful. Let U be
the i-th user checking-in at V. Then, C;_; is the current
set of encrypted counters. SPOTRy sends C;—1 to U. Let
v, U’s value on dimension D, be within R’s j-th sub-range,
i.e.,, v € Rj. U runs the following steps:

e Generate b pairs of random values {(v1,v1), .., (vs, vp)}-
Compute the new encrypted counter set C;, where the order
of the counters in C; is identical to C;_1: C; =

{RE(Uh Ul,7 lel[l])” =1.b,1# .7} U RE(vj7 UJ,'7 lel[J]"_J'_)
e Send C; along with the signed (by S) share p; of the pri-
vate key p to V.

If SPOTRy successfully verifies the signature of S on the
share p;, U and SPOTRy engage in a zero knowledge protocol
ZK-CTR (see Section 3.2). ZK-CTR allows U to prove that
C; is a correct re-encryption of C;_1: only one counter of

C'i—1 has been incremented. If the proof verifies, SPOTRy replaces

Ci—1 with C; and ads the share p; to the set Skey.

PubStats(V(Cx,Sh,V),S(p,q)). : SPOTRy performs the
following actions:

o If [Sh| < k, abort.

e If |Sh| = k, use the k shares to reconstruct p, the private
Benaloh key.

e Use p and ¢ = n/p to decrypt each record in C}, the final
set of counters at V. Publish results.

3.2 ZK-CTR: Proof of Correctness

We now present the zero knowledge proof of the set C;
being a correct re-encryption of the set C;_1, i.e., a single
counter has been incremented. Let ZK-CTR(i) denote the
protocol run for sets C;—1 and C;. U and SPOTRy run the
following steps s times:
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Figure 1: (a) Setup dependence on Benaloh mod size.
(b) Storage and communication overhead (in KB) as
a function of range count.

e U generates random values (t1,t), .., (ts,t;,) and random
permutation 7, then sends to SPOTRy the proof set P;_1 =
m{RE(t;,t;,Ci—1[l]),1 = 1..b}.

e U generates random values (w1, w}), .., (ws, w} ), then sends
to SPOTRy the proof set P; = m7{ RE(wi,w;, C;[l]),l = 1..b}
e SPOTRy generates a random bit a and sends it to U.

e If a = 0, U reveals random values (t1,t}), .., (s, ;) and
(w1,w)), .., (Wp, wy,). SPOTRy verifies that for each I = 1..b,
RE(t;,t;,C;—1[l]) occurs in P;_; exactly once, and that for
each | = 1..b, RE(w;, w;, C;[l]) occurs in P; exactly once.

e If a =1, U reveals o, = vywit; * and o] = vjwjt,”*, for all
I = 1..b along with j, the position in P;_1 and P; of the incre-
mented counter. SPOTRy verifies that for all [ = 1..b,1 # 7,
RE(oy, 01, Pi—1[l]) = P[] and RE(oy, 0}, Pi—1[jly) = Pilj].
e If any verification fails, SPOTRy aborts the protocol.

4. EVALUATION

We have implemented PROFILgr using Android. We used
the standard Java security library to implement the cryp-
tographic primitives employed by PROFILr . For secret
sharing, we used Shamir’s scheme and for digital signatures
we used RSA. We also used the kSOAP2 library to en-
able SOAP functionality on the Android app. We used the
Google map API to facilitate the location based service em-
ployed by our approach.

For testing purposes we have used Samsung Admire smart-
phones running Android OS Gingerbread 2.3 with a 800MHz
CPU and a Dell laptop equipped with a 2.4GHz Intel Core
i5 processor and 4GB of RAM for the server. For local con-
nectivity the devices used their 802.11b/g Wi-Fi interfaces.
All reported values are averages taken over at least 10 inde-
pendent protocol runs.

We have first measured the overhead of the Setup opera-
tion. We set the number of ranges of the domain D to be
5, Shamir’s TSS group size to 1024 bits and RSA’s modu-
lus size to 1024 bits. Figure 1(a) shows the Setup overhead
on the smartphone and laptop platforms, when the Benaloh
modulus size ranges from 64 to 2048 bits. Note that even a
resource constrained smartphone takes only 2.2s for 1024 bit
sizes (0.9s on a laptop). A marked increase can be noticed
for the smartphone when the Benaloh bit size is 2048 bit
long - 13.5s. We note however that this cost is amortized
over multiple check-in runs.

We now focus on the most resource consuming compo-
nent of PROFILR : the ZK-CTR protocol. We measure the
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client and venue (SPOTRy ) computation overhead as well
as their communication overhead. We set the number of
sub-ranges of domain D to 5. We tested the client side run-
ning on the smartphone and the venue component executing
on the laptop. Figure 2 shows the dependence of the three
costs for a single round of ZK-CTR on the Benaloh modu-
lus size. Given the more efficient venue component and the
superior computation capabilities of the laptop, the venue
component has a much smaller overhead. The communi-
cation overhead is the smallest, exhibiting a linear increase
with bit size. For a Benaloh key size of 1024 bits, the aver-
age end-to-end overhead of a single ZK-CTR round is 135ms.
The venue component is 29ms and the client component is
106ms. Furthermore, Figure 3 shows the overheads of these
components as a function of the number of ZK-CTR rounds,
when the Benaloh key size is 1024 bit long. For 30 rounds,
when a cheating client’s probability of success is 273°, the
total overhead is 3.6s.

We further examine the communication overhead in terms
of bits transferred during ZK-CTR between a client and a
venue. Let N be the Benaloh modulus size and B the sub-
range count of domain D. The communication overhead in
a single ZK-CTR round is 4BN + 3BN = 7TBN. The sec-
ond component of the sum is due to the average outcome of
the challenge bit. Figure 1(b) shows the dependency of the
communication overhead (in KB) on B, when N = 1024.
Even when B = 20, the communication overhead is around
17KB. Figure 1(b) shows also the storage overhead (at a
venue). The storage overhead is only a fraction of the (single
round) communication overhead, 2BN. For a single dimen-
sion, with 20 sub-ranges, the overhead is 5KB.

5. RELATED WORK
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Golle et al. [10] proposed techniques allowing pollsters to
collect user data while ensuring the privacy of the users.
The privacy is proved at “runtime”: if the pollster leaks pri-
vate data, it will be exposed probabilistically. Our work also
allow entities to collect private user data, however, the col-
lectors are never allowed direct access to private user data.

Toubiana et. al [11] proposed Adnostic, a privacy preserv-
ing ad targeting architecture. Users have a profile that al-
lows the private matching of relevant ads. While PROFILr can
be used to privately provide location centric targeted ads, its
main goal is different - to compute location (venue) centric
profiles that preserve the privacy of contributing users.

6. CONCLUSIONS

In this paper we proposed novel mechanisms for building
aggregate location-centric profiles while maintaining the pri-
vacy of participating users and ensuring their honesty during
the process. We propose centralized variants of the solution.
We show that our solution is efficient, even when running on
resource constrained mobile devices.
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