A Delay-Optimal Quorum-Based Mutual Exclusion Scheme with

Fault-Tolerance Capability *

Guohong Cao and Mukesh Singhal
Computer and Information Science
The Ohio-State University
Columbus, OH43201
{gcao,singhal }@cis.ohio-state.edu

Abstract

The performance of a mutual exclusion algorithm is
measured by the number of messages exchanged per
critical section execution and the delay between suc-
cessive executions of the critical section. There is a
message complerity and synchronization delay trade-
off in mutual exclusion algorithms. Lamport’s algo-
rithm and Ricart-Agrawal algorithm both have a syn-
chronization delay of T, but their message complez-
ity is O(N). Maekawa’s algorithm reduces message
complezity to O(v/N); however, it increases the syn-
chronization delay to 2T. After Maekawa’s algorithm,
many quorum-based mutual exclusion algorithms have
been proposed to reduce message complezity or increase
the resiliency to site and communication link failures.
Since these algorithms are Maekawa-type algorithms,
they also suffer from long synchronization delay 2T. In
this paper, we propose a delay-optimal quorum-based
mutual exclusion algorithm which reduces the synchro-
nization delay to T and still has the low message com-
plezity O(K) (K is the size of the quorum, which can
be as low as logN). A correctness proof and detailed
performance analysis are provided.

Key words: Quorum, synchronization delay, dis-
tributed mutual exclusion, fault-tolerance.

1 Introduction

In distributed system, many applications involv-
ing replicated data, atomic commitment, distributed
shared memory, and others require that a resource
be allocated to a single process at a time. This is
called the problem of mutual exclusion. The problem
of mutual exclusion becomes much more complex in
distributed systems (as compared to single-computer

"This research was supported in part by NASA (under
grants NAGW-4080, NAGS5-5095, and NRA-97-MTPE-05),
NSF (CDA-9313624, CDA-9711582, IRI-9409661, and HRD-
9707076), ARO (DAAH04-96-1-0049 and DAAH04-96-1-0278).

0-8186-8292-2/98 $10.00 © 1998 IEEE

Yi Deng, Naphtali Rishe, and Wei Sy,
School of Computer Science
Florida International University
Miami, FL 33199
{deng,rishen,weisun }@fiu.edu

systems) because of the lack of both a shared memory
and a common physical clock and due to unpredictable
message delays.

Since a shared resource is expensive and processes
that can not get the shared resource must wait, the
performance of the mutual exclusion algorithm is crit-
ical to the design of high performance distributed sys-
tems. The performance of mutual exclusion algorithms
is generally measured by message complexity and syn-
chronization delay. The message complexity is mea-
sured in terms of the number of messages exchanged
per Critical Section (CS) execution. The synchroniza-
tion delay is the time required after a site exits the
CS and before the next site enters the CS, and it is
measured in terms of the average message delay (T').

Over the last decade, many mutual exclusion algo-
rithms [17] have been proposed to improve the perfor-
mance of distributed systems, but they either reduce
the message complexity at the cost of long synchro-
nization delay or reduce the synchronization delay at
the cost of message complexity.

Lamport uses logical timestamp [6] to implement
distributed mutual exclusion. For each CS execution,
each site needs to get permissions from all other (N =
1) sites. The message complexity of this algorithm I8
3% (N — 1) and the synchronization delay is T.

Ricart-Agrawal algorithm [13] is an optimization

of Lamport’s algorithm that reduces the release mes

sage by cleverly merging them with reply messages: .

This merging is achieved by deferring the lower pri-
ority request. In this algorithm, the messages per ¢

execution is reduced to 2 * (N — 1) messages and the

synchronization delay is still T. The dynamic algo-

rithm in [16] on the average requires N — 1 messag?s "
per CS execution at light load and 2% (N —1) at heavy ,

load. The synchronization delay is still T'.

In Maekawa’s scheme [8], a set of sites called & quo-
rum is associated with each site, and this set .has a
nonempty intersection with the sets corresponding ;‘;
every other sites. To execute CS, a site only .loC s
all sites in its quorum; thus, message complexity

444

dramat
to excl
tual ex
to hanc
5% (V1
comes -
becaus:
messag:
a reply
serial n
site anc
Sing
achieve
rithm |
exchan;
solve d:
delay i:
type al
creases

dramatically reduced. At light load, a site needs
to exchange 3 * (\/N — 1) messages to achieve mu-
tual exclusion. At heavy load, because of the need
to handle deadlocks, the message complexity becomes
5% (\/N —1). However, the synchronization delay be-
comes 271" as opposed to T in other algorithms. This is
pecause a site exiting the CS must first send a release
message to unlock the arbiter site which in turn sends
a reply message to the next site to enter the CS (two
serial message delays between the exit of the CS by a
site and enter into the CS by the next site).

Singhal uses the concepts of mutable locks to
achieve an optimal deadlock-free Maekawa-type algo-
rithm [15] which is free from deadlocks and does not
exchange messages like inquire, fail, and yield to re-
solve deadlocks. In this algorithm, the synchronization
delay is reduced to T as opposed to 2T in Maekawa-
type algorithms; however, the message complexity in-
creases to O(N).

In Singhal’s token-based heuristic algorithm [14],
each site maintains information about the state of
other sites in the system and uses it to select a set
of sites that are likely to have the token. The site re-
quests the token only from these sites, reducing the
number of messages required to execute the CS. Al-
though the synchronization delay is T, the message
complexity varies between 0 and N.

The mutual exclusion algorithms in [9, 12] on the
average require only O(log V) messages to execute the
critical section; however, the average delay in these al-
gorithms is also O(log V). The worst case delay of the
algorithm in [9] can be as much as O(N). These al-
gorithms have long delays because they impose some
logical structure on the system topology (like a graph
or tree) and a token request message must travel seri-
ally along the edges of the graph or tree. Besides the
long delay, token-based algorithms suffer from token
loss problem [1].

Recently, quorum-based mutual exclusion algo-
rithms, which are a generalization of Maekawa’s al-
gorithm, have attracted considerable attention. Many
algorithms [1, 2, 4, 5, 7, 8, 10, 11] exist to construct
quorums that can reduce the message complexity or
Increase the resiliency to site and communication fail-
ures. However, not much work has been done on mini-
mizing the synchronization delay. Because all quorum-
based algorithms are Maekawa-type algorithms 8],
they all have a high synchronization delay (2T).

In this paper, we present a delay-optimal quorum-
based algorithm which reduces the synchronization de-
lay to T', and still has a low message complexity cx K,
Wwhere ¢ is a constant between 3 and 6, and K is the av-
Crage size of the quorum. The basic idea is as follows:
Instead of first sending a release message to unlock
the arbiter site which in turn sends a reply message
to the next site to enter the CS, a site exiting the CS

445

directly sends a reply message to the site which will
enter the CS. This reduces the synchronization delay
from 27" to T'. However, this change brings some com-
plications and we discuss how to deal with them in this
paper.

Our scheme is independent of the quorum being
used. K is VN if we use Maekawa’s quorum con-
struction algorithm [8] and K becomes log N when we
use Agrawal-Abbadi quorum construction algorithm
[1]. Moreover, the redundancy in the quorum can in-
crease the resiliency to site and communication link
failures.

The rest of the paper is organized as follows. Sec-
tion 2 describes the system model. In Section 3, we
present the algorithm. The correctness proof and the
performance analysis are provided in Section 4 and
Section 5 respectively. In Section 6, we explain how to
make this algorithm fault tolerant. Section 7 concludes
this paper.

2 System Model

A distributed system we consider consists of N pro-
cesses. The term site is used to refer to a process
as well as the computer that the process is executing
on. Sites are fully connected and communicate asyn-
chronously by message passing. There are no global
memory and no global clock. The underlying commu-
nication medium is reliable and sites do not crash. (If
we use fault tolerant quorum construction algorithm,
our algorithm can handle site and communication fail-
ures.) Message propagation delay is unpredictable, but
it has an upper bound and the messages between two
sites are delivered in the order sent. A site executes
its CS request sequentially one by one.

Let U denotes a non-empty set of IV sites. A coterie
C is a set of sets, where each set g in C is called a
quorum. The following conditions hold for quorums in
a coterie C under U [3]:

. (VgeQ)lg#¢ A gCUJ

. Minimality Property : (Vg,h € C)[g ¢ h]; and
3. Intersection Property : (Yg,h € C)[gNh # ¢].

[N

For example, C={{a,b},{b,c}} is a coterie under
U={a,b,c}, and g={a,b} is a quorum.

The concept of intersecting quorum captures the
essence of mutual exclusion in distributed systems. For
example, to obtain mutually exclusive access to a re-
source in the network, a site, say S;, is required to
receive permissions from a quorum of S; in the sys-
tem. If all sites in the quorum of S; grant permissions
to S;, S;i is allowed to access the resource. Since any
pair of quorums has at least one site in common (by
the Intersection Property), mutual exclusion is guar-
anteed. The Minimality Property is not necessary for
correctness but is useful for efficiency.

3 A Delay-Optimal Quorum
Based Algorithm

Our algorithm reduces the synchronization delay to T
as follows: When a site exists the CS, instead of first
sending a release message to unlock the arbiter site
which in turn sends a reply message to the next site
to enter the CS, the site directly sends a reply message
to the site to enter the CS next. Although the idea may
sound simple, its implementation is difficult in order
to ensure mutual exclusion and to avoid deadlocks.
For example, there are two ways for a site S; to get
permission to enter the CS from a site S;: First is to
get the permission from S; directly; the other is to
get the permission from a site Sy which has gotten
the permission from S; and works as the proxy of ;.
Then, after Sy exists the CS, if Sy has sent a reply to
S; on behalf of S;, S; can not send reply to any other
site to ensure mutual exclusion. If S has not sent a
reply to any site on behalf of S;, S; should send a
reply to S; to avoid deadlock. Also, to deal with out-
of-order request messages, Maekawa assumes that a
channel is FIFO. Consequently, an inquire message
always arrives at a site later than the reply from the
same sender. In our algorithm, a reply message from
a site S; may come from different channels: from S; or
Si’s proxy. Then, FIFO assumption is not enough to
ensure that an tnguire arrives later than the reply. If
this situation is not properly dealt with, it may result
in a violation of the mutual exclusion. There are many
other issues that must be dealt with. Before presenting
the algorithm, we first introduce control messages and
data structures used in our algorithm.

3.1 Control Messages and Data Struc-
tures

Every site S; has a reg.set(i) which is determined
by the quorum algorithm. In order to enter the CS,
each site must get permissions from all the sites in
req_set(1).

Every request message is assigned a timestamp (the
sequence number and the site number) according to
Lamport’s scheme [6]. The sequence number assigned
is greater than that of any request message sent, re-
ceived, or observed at that site. The site with lower
timestamp has higher priority which is determined as
follows:

1. The massage with smaller sequence number has
higher priority.

2. If the massages have equal sequence numbers,
the massage with smaller site number has higher
priority.

There are seven types of control messages used in our
scheme:

446

request: A request(sn,i) message from a site S, tq a
site S; indicates that S; with sequence numbe
is asking for S;’s permission to enter the CS,

otherwise, I
those sites.

When a
Si (S; has s
Sk. S; put:
request has
sends a tra
reply messé
tion. Note t
message, it

S;j even tho
may send se
to out-of-o1
CS, site S;

is the top e
lowing entri
‘This proces
Since a site
it has sent ¢
from anoth:
to 1; otherw
‘and should

I sn

reply: A reply{i) message to a site S; indicates thyy
S; grants S;’s request to enter the CS.

release A release(i,j) message to Sy indicates thay
S; has exited the CS. If j # maz, S; has trayps.
ferred Si’s permission to a site S; which is in S.'s
tran_stack (defined later).

inquire: An inquire(i) message from S; to S; indj.
cates that S; wants to find out if S; has succeeded
in getting reply messages from all sites in req-set(j).

fail: A fail(i) message from S; to S; indicates that S,
can not grant 5;’s request because it has currently
granted permission to a site with a higher priority
request.

yield: A yield(i) message from S; to S; indicates that
S; yields the right to enter the CS to a higher pri-
ority request, and is waiting for S;’s permission to
enter the CS.

transfer: A transfer(i,j) message from site S; to
site Sy indicates that S; asks Sy to send a reply

message to S; on behalf of S; after Sy exits the CS, ; When a
A nod intains the following d os: it first dete
A node S; maintains the fo owling data structures: B ot on

lock: A tuple (sn,j) maintained by each node, where
j is the site number of the request site to which Sy
has granted a reply, and sn is the sequence nume
ber of the request message. lock is initialized to
(max,maz), where maz is a number more than any.
site number and sequence number.

failed: A boolean which is initialized to zero e_ach
time a new CS request is sent. When S; receives
a fail or sends a yield, it sets failed; to 1.

replied: A boolean vector of size m (m is the siz@
of quorum). The vector is initialized to zero eac
time a new CS request is sent. When S; receives &
reply(j), it sets replied;[j] to 1.

hether S,

req_queue: To queue the received request messagp ges from

Each entry in this queue is a tuple (sn,J) W}}‘Ch- et reply m

is the timestamp of a request. The reg-queue 1S 8 has sent o
priority queue (the request with the highest priority :

is on the top of the queue).

inq_queue: To queue the inquire(j) messages which

arrive at S; earlier than reply(j). site send

Y request
ansfer.

tran_stack: To save all the transfer messages Si m;
ceives. Every entry in this stack is a pair "

which represents a transfer(k,j) message-

The algorithm does not depend on any partlcul::
quorum construction method and works for any typos
of quorums.

3.2 The Algorithm

To enter the CS, a site S; requests permissl sions
each site in its quorum. If S; has gotten Pemtlle .
from all members in its quorum, it can enter :

~ otherwise, it continues to wait for the permission of all

those sites.

When a site S;, which has already been locked by
§; (S; has sent a reply to Si), receives a request from
S. Sj puts Sk’s request in its req- queue(j). If Si’s
request has the highest priority in req_queue(j), S;
sends a transfer message to S;, which forwards a
reply message to Sy after it completes its CS execu-
tion. Note that when Sy receives the forwarded reply
message, it gets the permission to enter the CS from
S; even though the reply is not directly sent by S;. S;
may send several trans fer messages to S; in response
to out-of-order request messages. Upon exiting the
S, site S; only sends reply to the site whose request
is the top entry in tran_stack(i), and deletes the fol-
lowing entries in tran_stack(i) from the same sender.
This process is repeated until the tran_stack is empty.
~ Since a site only sends a transfer to the site to which
it has sent a reply, when a site S; receives a transfer
from another site, say S;, replied;[j] should be equal
to 1; otherwise, the transfer is an outdated transfer
and should be discarded.

When a site S; receives a release message from S;,
it first determines whether S; has transferred a reply
or not on its behalf based on the parameters of the
release message. If S; has transferred a reply to a site
called Si, S; saves Si’s request to lock(j) to reflect
that Sy is locking S;. If reg-queue(j) is not empty,
S; sends a transfer to Si based on the top entry in
req-queue(j). S; sends a reply to the top entry site in
req-queue(j) if S has not transfered the reply.

Since there is a danger of deadlock when more than
one site simultaneously request the CS, a site yields to
another site if the priority of its request is lower than
that of the other site. If a request with high priority
from S; arrives at S; such that S; has sent a reply
to Sk, S; sends an inguire message to Sy to inquire
whether S has succeeded in getting the reply mes-
sages from all sites in its quorum. If Si is unable to
get reply messages from all sites in its quorum; e.g., it
has sent a yield or it has received a fail, Sy returns
a yield message. Otherwise, it returns a release after
it completes its CS execution. We use piggybacking
to reduce message complexity. For example, whenever
a site sends an inquire in response to a high prior-
ity request, the inquire is always piggybacked with a
trans fer.

If an inquire arrives earlier than the reply from
the same sender, the receiving site defers responding
to the inquire by putting it into ing_queue. When a
reply arrives, the algorithm first checks to see if there
are any inquire that came from the same sender as
that of the reply. If so, process this inquire. If an
inquire or fail from a site S; arrives at S; after S

has sent release to S, S; just ignores it.
The following is the formal description of our delay-

optimal quorum-based mutual exclusion algorithm.

A: Requesting the Critical Section:

1

/* For a site S; wishes to enter CS */

S; sends request(sn, i) to every site S; € req_set(i);

clear tran_stack(t), ing-queue(i), and tran_set(i);
failed; := 0; replied; := 0; lock(i) := (maz, ma

2. Actions when S; receives a request(sn,i):

1

if lock(y) = (maz, maxz)

else (sn, k) := lock(j);
/* Let (sn, k) represent the contents of lock(j) */

5. Actions when a site S; receives a transfer(k,

case (req_queue(j) = ¢) A ((sn,1) < lock(j)

)

then lock(j) := (sn,1); send a reply(j) message to S;;

)

S; sends inquire(j) and transfer(i,j) to Sk,

case (req-queue(j) = ¢) A ((sn,1) > lock(j)
S; sends transfer(i,j) to Sk, sends faul(
case (req_queue(j) #)\
((sn, i) > head(req-queue(j)))
S; sends fail(j) to Si;
case (req_queue(j) # ¢)A

)

j) to S;;

((sn,1) < head(reg-queue(j)) < lock(j)):

S; sends fail(j) to head (reg_queue(y));
S; sends transfer(i,j) to Sk;
case (req_queue(j) # ¢)A

((sn, i) < lock(j) < head(reqqueue(j))):
S; sends inquire(j) and transfer(s,) to Sk;

case (req-queue(j) # @)A

(lock(j) < (sn,t) < head(req-queue(j))):

S; sends transfer(i,) to Sk;
enqueue (reg_queue(j), (sn,1));
Actions when a site S; receives an inquire(j):
if (replied;[j] = 1) A (failed; = 1)

/* S; has received a fail or sent a yield */

then replied;[j] := 0; failed; := 1;
send a yield(i) to Sj;

delete all entries sent by S; in tran_stack(i);

else enqueue(ing-queue(i), 7);
Actions when a site S; receives a yield(k):
enqueue (req-queue(j),lock(j));

(sn,7) := dequeue (reg-queue(j)); lock(j) :=

(sn,p) := head(req-queue(j));

(sn,1);

send reply(y) piggybacked with transfer(p,j) to Si;

if reply:[j] =1
then push (tran_stack(z), (k,7));
else ignore this transfer;

6. Actions when a site S; receives a reply(j):

447

replied;[j] := 1;
if j € ing_queue(i)
then delete j from ing_queue(z);
Execute A.3 as if S; receives inquire(j);
7. Actions when a site S; receives a fail(j):
failed; = 1;
for any j € inq-queue(i)
delete j from ing_queue(i);
Execute A.3 as if S; receives inquire(j);
B: Executing the Critical Section:

A site Si can accesses the CS only when fo
req_set(i), replied;[k] = 1.
C: Releasing the Critical Section:

7):

r oall Sk in

Actions when §; exits the CS:
while tran_stack(i) # ¢

(7, k) := pop(tran_stack(i));

S; sends reply(k) to Sj;

tran_set(i) := tran_set(i) U (5, k);

delete other entries sent by Sy in tran_stack(i);
For each Sy € reg_set(i):

if 3(4, k) € tran_set(1):

/* there exists an entry sent by S in tran_set(i) */
then send release(i,j) to Si;
else send release(i, maz) to S;

". Actions when a site Sk receives a release(i, j):
if j # max
then lock(k) := (sn,j);
delete (sn,j) from req.-queue(k);
if req_queue(k) # ¢
then (sn,p) := head(req-queue(k))
if (sn,p) < (sn,j)
then send inquire(k) and transfer(p, k) to Sj;
else send transfer(p, k) to Sj;
else if req_queue(k) = ¢
then lock(k) := (maz, maz);
else (sn,p) := dequeue(req_queue(k));
lock(k) := (sn,p);
if req_queue(k) = ¢
then send reply(k) to Sp;
else (sn,q) := head(req-queue(k));
send reply(k) and transfer(q,k) to S.

4 Correctness Proof

Theorem 1 Mutual exclusion is achieved.

Proof. Assume the contrary that two sites S; and S;
are executing the CS simultaneously. From the Co-
terie Intersection Property:
VG, He Q:GNH # ¢,

We know that the quorums (reg_set) of S; and S; at
least have one common site, say Sij. From step B of
the algorithm, if S; and S; are executing the CS simul-
taneously, both of them must have locked Sij’s reply
at the same time. We prove that this is impossible.

Case 1: Both S; and S; obtain reply messages from
Si; directly (without the transfer of another site).
Assume S;; sends a reply to S; after it has sent a
reply to S;. From the algorithm, after S;; has sent
areply to S;, the lock is changed to (sn,i). There
are two possible situations:

Case 1.1: S; does not send a yield to S;; after
it gets the reply. In this case, S; will not release
the reply until it gets out of the CS (release can
only happen in step C), which means that the lock
is not equal to (max,maxz) until S; gets out of the
CS. Therefore, S; can not get a reply directly from
Si; before S; gets out of the CS.

Case 1.2: S; sends a yield to S;;. According to
A3, S; sends yield to S;; only when it is locking
Sij’s reply. After sending the yield, S; assumes it
has not received the reply from S;; and releases the

lock. As aresult, when S; obtains a reply from Si;,
S; is not locking S;;'s reply.

Case 2: Site S; obtain the reply from S;; directly.

while S; gets the reply indirectly (by the transfor
of another site). There are two possible situations:
Case 2.1: S; gets a reply directly from S;; before
Sij sends reply to any other site, then S; is locking
Sij's reply. In order to get a reply indirectly frop,
Sij, Sj can only be in the tran_stack(i) or in a site,
say Si’s tran_stack(k). From step C, a site cay
only transfer a reply on behalf of other site when it
gets out of the CS. Therefore, S; can only get reply
indirectly after S; releases the CS.
Case 2.2: S; gets areply directly from S;; after S;;
sends reply to a site, say Sk. In this situation, Sij
is locked by Sy, and sends transfer to S, then S;
is in tran_stack(k). From the algorithm, a site can
only transfer a reply in C.1. In C.1, after sending a
reply on behalf of S;;, Sy also sends a release which
asks S;; to change its lock to be (sn, j) according to
C.2. Then, S; is locking S;;’s reply. Since S; can
only directly obtain S;;’s reply, from the result of
Case 1, it can not get S;;’s reply until S; releases
its lock on S;;’s reply.

Case 3: Both S; and S; obtain reply messages from
Si; indirectly. When our algorithm starts, a site
can only get Sji;’s reply directly, and later by the
transfer of other sites. Based on Case 1 and Case 2,
before S;; asks the site which is locking Si;’s reply
to transfer a reply to more than one site, there is
only one site locking S;;’s reply. Suppose a site,
say Sk, locks S;;’s reply. Then, the only possibility
of Case 3 is that S;; asks Sy to transfer a reply to
both S; and S;. According to C.1, when Sk exits
its CS, it responses to at most one transfer from
any sender. Therefore S, can not send two reply
messages to S; and S;. A contradiction. 0

Theorem 2 A deadlock is impossible.

Proof. Assume that a deadlock is possible. Then, non¢
of the sites in a set of requesting sites be able to execute
the CS because each is waiting for one or more reply
messages. After a sufficient period of time, there must

exist a waiting cycle among the sites requesting the

CS. Every site is waiting for another one in the cycle.

In this cycle, there must exist a site S; whose ¢
quest has the highest priority. Suppose S; is \x'let}llg
for S;’s reply, and S; has sent a reply to Sk. According
to algorithm A.2, C.2, S; sends an inquire tO Sk ¥

Case 1: Site Sy sends a yield to S;. Then, Sj
sends a reply to S; according to A.3 and A.4, and the
cycle is broken.

Case 2: Site Sy does not reply S;’s inquire- Them,
Sy either enters the CS and breaks the cycl
for the reply of some other site S,. Based on A2an
A.3, S, must have lower priority than Si.

448

e or waits

Otherwisés

Si gets a fazl
A.3. For the :

reply of a low
(S or sends y1
continues to o
either enters t
for its reply a

Theorem 3

Proof. Starva
to enter its c¢
peatedly ente:
is a starving ¢
a site enterin
S; must have
reg-set(i), an
the destinatic
reliable. In o
assigned a se
quence numb
will have the
messages rec
each site in

asked other ¢
S; receives a’
time. A cont

ten studied
light load a:

S requires
lease me
S executi
- The sy
faningles
Tival timg
is the ¢
Y mutua

g, gets a fail and replies a yield according to A.2 and
A. 3 For the same reason, S, must be waiting for the

reply of a lower priority 51te Otherwise, it enters the
CS or sends yield to break the cycle. The waiting chain
continues to one site with the lowest priority. This site

either enters the CS or sends a yield to the site waiting
{or its reply and breaks the cycle. A contradiction. O

Theorem 3 Starvation is impossible.

Proof. Starvation occurs when a site waits indefinitely
to enter its critical section while other sites are re-

catedly entering and exiting their CS. Assume there
is a starving site S;. From Theorem 2, there is always
a site entering and exiting the CS. The starving site
S, must have sent request messages to all the sites in
reg-set(?), and these request messages have arrived at
the destination sites since communication channels are
reliable. In our algorithm, any subsequent request is
assigned a sequence number larger than all known se-
quence numbers. After a period of time, Si’s request
will have the highest priority among all the request
messages received by each site in reg.set(i). Then,
each site in req_set(i) has sent a reply to S;, or has
asked other site to transfer a reply to S;. Therefore,
S; receives all the replies and enters the CS in a finite
time. A contradiction. |

5 A Performance Analysis

The performance of a mutual exclusion algorithm is of-
ten studied under two special loading conditions; i.e.,
light load and heavy load. In the analysis, a control
message piggybacked with another message is counted
as one message. The reason is as follows: The control
message size is very small, but the message header is
relatively large due to the requirements of the network
protocols. Thus, the communication cost is mainly
decided by the message header instead of the control
message itself; that is, piggybacking one message with
other control message will not increase the communi-
cation cost significantly.

5.1 Performance Under Low Load
Suppose the average quorum size is K. Under light
loads, the demand for the CS is low. Therefore, the
contention for the CS is rare and the execution of the
CS requires (K —1) request, (K —1) reply, and (K —1)
release messages, resulting in 3(K — 1) messages per
CS execution.

The synchronization delay in light load becomes
meaningless because it depends upon the inter-request
arrival time. The response time in light load is 27 + E
(E is the CS execution time) which is necessary for
any mutual exclusion algorithms in light traffic load.

5.2 Performance Under Heavy Load

Suppose a site S receives a request(sn, 1) from S; after
S;j has sent a reply to Si. When the demand is heavy,

there are several situations to consider:

Case 1: (req-queue(j) = (f))/\((sn i) > lock(j)): The
e\ecution of a CS requires (K — 1) request, (K —)
fail, (K —1) transfer, (K — 1) reply, and (K —
release messages, which results in 5(K — 1) mes-
sages.

Case 2: (req-queue(j)) A ((sn,1) < lock(j))
OR (req_queue(j) # A ((sn,i) < lock(j) <
head(req queue(j))): There are two cases depend-
ing on whether the inquired site has replied yield
or not.

Case 2.1: Has not replied a yield: The execution
of a CS requires (K — 1) request, (K — 1) inquire
piggybacked with transfer, (K — 1) reply, (K — 1)
release messages, (K —1) trans fer messages, which
results in 5(K — 1) messages to enter the CS.
Case 2.2: Has replied a yield: The execution of a
CS requires (K —1) request, (K —1) inquire piggy-
backed with transfer, (K —1) yield, (K — 1) reply
piggybacked with transfer, and (K — 1) release
messages, which results in 5(K — 1) messages per
CS execution.

Case 3: (req-queue(j) # ®) A ((sn,q) >
head(req_queue(j))): The execution of a CS re-
quires (K —1) request, (K —1) fail, (K —1) reply,
(K — 1) release and (K — 1) transfer messages,
which results in 5(K — 1) messages.

Case 4: (req- queue(j) # ®) AN ((sn,q) <
head(req_queue(j)) < lock(j)): There are two cases
to consider depending on whether the inquired site
has replied a yield or not.

Case 4.1: Has not replied a yield: The execution
of a CS requires (K — 1) request, (K — 1) fail,
(K — 1) transfer, (K — 1) release, and (K — 1)
reply messages, which results in 5(K — 1) messages
per CS execution.

Case 4.2: Has replied a yield: The execution of a
CS8 requires (K — 1) request, (K —1) fail, (K —1)
transfer, (K —1) yield, (K —1) reply piggybacked
with transfer, and (K —1) release messages, which
results in 6(K — 1) messages per CS execution.

Case 5: (reg-queue(j) # &) A (lock(j) < (sn,i) <
head(req-queue(j))): The execution of a CS re-
quires (K — 1) request, (K — 1) transfer, (K —1)
release, (K — 1) reply, and (K — 1) transfer mes-
sages, which results in 5(K — 1) messages per CS
execution.

Based on this analysis, the proposed algorithm re-
quires 5(K — 1) or 6(K — 1) messages per CS access
under heavy load. Note that, only in Case 4.2, our
algorithm requires 6(K — 1) messages per CS access.

In our algorithm, instead of first sending a release
message to unlock the arbiter site which in turn sends
a reply message to the next site to enter the CS, the
site exiting the CS directly sends a reply message to
the site to enter the CS next. Thus, after one site exits
the CS, it only needs one message delay for the next

449

[NON-TOKEN [Sync Delay(hl) | Messages({[) | Messages(hl)]
Lamport T 3(N — 1) 3(N — 1)
Ricart-Agrawal T 2(N - 1) 2(N = 1)
Singhal T 3(N — 1)/2 3(N —1)/2
Mackawa 2T 3(VN — 1) 5(VN — 1)
Ours (K = VN) T 3(VN - 1) 6(VN = 1)
Curs (K = log N) T 3(Jog N — 1) Gllog N — 1)

[(CTOKEN [Sync Delny [Messages({l) | Messages(hl)]
Suzuki-Kasami T N N
Singhal s heuristic T N/2 N
Raymond T(log N)/2 log N 2

Table 1: A comparison of performance(ll=light
load, hl=heavy load)

site to obtain the reply message from the site lock-
ing the arbiter site. Under heavy load, a site that is
walting to excute the CS has enough time to obtain
all reply messages except the reply from the site in
the CS before the site in the CS exists the CS. Thus,
the synchronization delay is mainly determined by the
site in the CS (not other sites). Therefore, our algo-
rithm reduces the synchronization delay from 27 in
Maekawa’s algorithm to 7. This has two very bene-
ficial implications: First, at heavy loads, the rate of
CS execution (i.e., throughput) is doubled. Second, at
heavy loads, the waiting time of requests is nearly re-
duced to half because the CS executions proceed with
twice the rate.

Since the site that exists the CS needs at least one
message delay to notify the next site to enter the CS,
the minimum synchronization delay is 7. Thus, our

algorithm is a delay-optimal quorum-based mutual ex-
clusion algorithm.

5.3 Comparison With Other
rithms

Algo-

The proposed algorithm is independent of the type
of quorum being used. K becomes VN if we use
Maekawa’s quorum construction algorithm [8], and
K is log N when we use Agrawal-Abbadi quorum
construction' algorithm [1]. Table 1 shows the mes-
sage complexity and the synchronization delay for the
proposed and various existing mutual exclusion algo-
rithms. We observe that our algorithm has the low-
est synchronization delay and still has a low message
complexity. Although Raymond’s algorithm has lower
message complexity, it has long synchronization delay
and suffers from the token loss problem.

6 Adding Fault-tolerance

Many quorum-based algorithms [1, 2, 4, 5, 7, 8, 10, 11]
have been proposed for mutual exclusion in distributed
system. In general, there is a trade-off between the
message complexity and the degree of the resiliency of
an algorithm. For example, majority voting [18] which
has high resiliency has relatively high message com-
plexity O(N), whereas Mackawa’s algorithm which has
low message complexity O(v/N) has relatively low re-

siliency to failures. Much progress has been made t,
increase the resiliency of mutual exclusion algorithig.
We consider four well known fault-tolerant quorup,
construction algorithms.

The tree algorithm [1] is based on organizing a set
of N sites as nodes of a binary tree. A quorum ig
formed by including all sites along any path that startg
at the root and terminates at a leaf. If a site in 4
path is unavailable, a quorum can still be formed by
substituting that site with sites along a path starting
from a child node of the unavailable site to a leaf of the
tree. The quorum size in the tree algorithm is log N
in the best case and becomes % in the worst case.

In HQC or Hierarchical Voting Consensus [4], sites
are organized in a multilevel hierarchy and voting is
performed at each level of the hierarchy. The lowest
level in the hierarchy contains groups of sites. In this
construction, the quorum size becomes N-83,

The Grid-set algorithm [2] has two levels. A major-
ity voting scheme is used at the upper level to increase
the resiliency, while a Maekawa-like grid structure is
used at the lower level to reduce message overhead.
The quorum size is ﬁ,,ii\/b‘, where G is the group
size.)

The Rangarajan-Setia-Tripathi algorithm [11] in
some sense is a dual of the Grid-set algorithm [2}.
Specifically, they use majority voting at the lower (sub-
group) level and a Maekawa-like grid structure at the
higher level. With this change, the quorum size in this

: G+l /N
algorithm reduces to Z5—=4/ %,

where G is the sub-
group size.

If our algorithm uses the fault tolerant quorum
coustructed by any of these algorithms [1, 2, 4, 11], it
becomes a fault tolerant mutual exclusion algorithm.
Since all these quorums satisfy the intersection prop-
erty, the correctness of the algorithm is maintained.

There is a difference between Rangarajan—Setia'
Tripathi algorithm [11] (or the Grid-set[2]) and the
tree algorithm [1] (or HQC algorithm [4]). When 2
site fails, the former can tolerate the failure without
any recovery scheme (this is achieved by majority vot-
ing in the subgroup), but the latter needs a recovery
scheme because a new quorum must be constructffd'
Note that, even in the former, a recovery scheme mn-
creases the failure resiliency. We enhance our mutu?
exclusion algorithm in the following way to make it
resilent to failures.)

When a site finds out that a site, say S;, has fal}ed,
it broadcasts (Based on known quorum inforr_rla“O“'
multicast is enough) a failure(i) message. A Sité say
S;, on receiving a failure(i) message acts as follows:

1. S; checks whether S; € reg-set(j). If so, makesteﬁ‘
inaccessible, releases all the resources it has .got tt;
and executes the quorum construction algorithm
select another quorum.

2. S]' che
TEQ-qu
Case !
entry i
than o1
and se:
the sit¢
from 7

Case
from t1

Case
ing S]'
sends 1
whose
formal
if req.
then [
else (:

loc

if 7

the

els

7 C«

Quorum
tual excl
massage
first quc

ithout
y vot-
covery:

me in-
nutual
ake it

failed,
nation,

ite, say

Hllows:

akes Si
gotten,
ithm to

2. S checks whnether oS53 s requesi(sn,t) 1S 1n 1S

req-queue(j), tran_stack(j) or lock(j):
Case 1: (sn,i) € req_queue(j): If (sn,1) is the top
entry in req-queue(y) and req_queue(y) has more
than one entry, S; deletes (sn,7) from req_queue(y)
and sends trans fer(tail(head(req_queue(3))),) to
the site in lock(j). Otherwise, S; just deletes (sn, 1)
from Teq_queue(]).
Case 2: (sn,i) € tran_stack(j): Delete (sn,i)
from tran_stack(j);
Case 3: (sn,1) € lock;: In this case, S; is lock-
ing Sj. Therefore, S; releases itself from S;, and
sends reply piggybacked with a transfer to the site
whose request is the top entry in reg_queue(j). The
formal description is as follows:
if req_queue(j) == ¢
then lock(j) := (maz, max);
else (sn,p) := dequeue(req-queue(j));

lock(j) = (sn, p);

if req_queuve(j) ==

then send reply(j) to Sp;

else (sn,q) := head(reg_queue(j));

send reply(j) and transfer(q,j) to Sp;

7 Conclusions

Quorum is an attractive approach to provide mu-
tual exclusion in distributed systems since it has low
massage complexity and high resiliency. After the
first quorum-based algorithm [8] was proposed by
Maekawa more than a decade ago, many algorithms
1,2, 4, 5, 7, 10, 11] have been proposed to construct
different quorums, which reduce the message complex-
ity or increase the resiliency to site and communica-
tion failures. However, not much work has been done
towards minimizing the synchronization delay. Be-
cause all existing quorum-based algorithms depend on
Maekawa’s algorithm to ensure mutual exclusion, they
all have high synchronization delay (27).

In this paper, we presented a quorum-based mutual
exclusion algorithm which reduces the synchronization
delay to T and still has the low message complexity of
O(K) (K is the size of the quorum, which can be as
low as log V). In our algorithm, instead of first send-
ing a release message to unlock the arbiter site which
in turn sends a reply message to the next site to enter
the CS, a site exiting the CS directly sends a reply
message to the site to enter the CS next. Thus, after
one site exits the CS, it only takes one message de-
lay before the next site enters the CS, which reduces
the synchronization delay from 27T in Maekawa’s al-
gorithm to 7. Our algorithm is independent of the
quorum being used. By using a fault-tolerant quorum,
the algorithm increases the resiliency to site and com-
munication failures. Even though we mainly discussed
mutual exclusion in this paper, the proposed idea can
be used in,replicated data management, as long as the
quorum being used supports replica control.

ALALTLOU L LiltL U

(1] D. Agrawal and A.E. Abbadi. “An Efficient and Fault-
Tolerant Solution for Distributed Mutual Exclusion”.
ACM Trans. on Computer Systems, Feb. 1991.

[2] S.Y. Cheung, M.H. Ammar, and M. Ahamad. “The
Grid Protocol: A high performance scheme for main-
taining Replicated data”. IEEE Trans. knowl. Data
Eng., June 1992.

[3] H. Garcia and D. Barbara. “How to assign Votes in a
Distributed System”. J. ACM, May 1985.

[4] A. Kumar. “Hierarchical Quorum Consensus: A new
Algorithm for managing Replicated Data”. IEEE
Trans. Computers, pages 996-1004, September 1991.

[5] Y. Kuo and S. Huang. “A Geometric Approach for
Constructing Coteries and k-Coteries”. IEEE Trans.
on Parallel and Distributed Systems, 8:402-411, April
1997.

[6] L. Lamport. “Time, Clocks and Ordering of Events
in Distributed Systems”. Comm. of the ACM, July
1978.

[7] W. Luk and T. Wong. “Two New Quorum Based Al-
gorithms for Distributed Mutual Exclusion”. Proc.
of the 17" Intl. Conf. on Distributed Computing Sys-
temns, May 1997.

[8] M. Maekawa. “A VN Algorithm for Mutual Exclusion
in Decentralized Systems”. ACM Trans. on Computer
Systems, May 1985.

[9] M. Naimi and M. Trehel. “An Improvement of the
Log(n) Distributed Algorithm for Mutual Exclusion”.
Proc. of the 7" Intl. Conf. on Distributed Computing
Systems, pages 371-375, 1987.

[10] D. Peleg and A. Wool. “Crumbling Walls: A Class
of Practical and Efficient Quorum Systems”. Proc. of

14" ACM Symp. on Principles of Distributed Com-
puting, pages 120-129, August 1995.

[11] S. Rangarajan, S. Setia, and S.K. Tripathi. “A
Fault-Tolerant Algorithm for Replicated Data Man-
agement”. [EEE Trans. on Parallel and Distributed
Systems, pages 1271-1282, December 1995.

[12] K. Raymond. “A Tree-based Algorithm for Dis-
tributed Mutual Exclusion”. ACM Trans. on Com-
puting systems, pages 61-77, Feb. 1989.

[13] G. Ricart and A.K. Agrawal. “An Optimal Algorithm
for mutual Exclusion in Computer Networks”. Com-
munication of the ACM, Jan. 1981.

[14] M. Singhal. “A Heuristically-Aided Algorithm for Mu-
tual Exclusion in Distributed System”. IEEE Trans.
on Computers, May 1989.

[15] M. Singhal. “A Class of Deadlock-Free Maekawa-type
Algorithms for Mutual Exclusion in Distributed Sys-
tems”. Distributed Computing, 4:131-138, Feb. 1991.

[16] M. Singhal. “A Dynamic Information Structure Mu-
tual Exclusion Algorithm for Distributed Systems”.
IEEE Trans. on Parallel and Distributed Systems,
Jan. 1992.

[17] M. Singhal. “A Taxonomy of Distributed Mutual Ex-
clusion”. Journal of Parallel and Distributed Comput-
ing, 18:94-101, May 1993.

(18] T.H. Thomas. “A majority consensus approach to
concurrency control for multiple copy databases”.
ACM Trans. Database Systerns, June 1979.

451

