
Proceedings of the lA:iTED International Conference
Parallel and Distributed Computing and Systems
October 16-19, 1996 Chicago, lllinois, l iSA

A Nonblocking Consistent Checkpointing Algorithm
for Distributed Systems *

Guohong Cao
Computer and Information Science

The Ohio-State University
Columbus, OH43201

gcao@cis.ohio-state.edu

Abstract

Consistent checkpointing simplifies failure recovery and
eliminates the domino effect in case of failure by pre
serving a consistent global checkpoint in stable storage.
However, the approach suffers from high overhead associ
ated with the checkpointing process . This paper presents
an efficient non-block scheme to address this problem. In
the proposed scheme, a checkpoint sequence number vec
tor is used to identify orphan messages; as a result, pro
cesses involved in checkpointing need not to be blocked.
Based on inter-process dependencies created since the
last checkpointing, our scheme only forces a minimal set
of processes to take their checkpoints. It is shown that
the proposed algorithm ensures the global state consis
tency of the distributed system.

1 Introduction

The parallel processing capacity of a network of work
stations is seldom exploited in practice. This is due in
part to the difficulty of building application programs
that can tolerate the failures that are common in such
environments. Consistent checkpointing is an attractive
approach for transparently adding fault tolerance to dis
tributed applications without requiring additional pro
grammer effort. With consistent checkpointing, the state
of each process in a system is periodically saved on sta
ble storage, which is called a checkpoint of the process.
To recover from a failure, the system restarts its execu
tion from a previous error-free, consistent state recorded
by the checkpoints of the processes. More specifically,
the failed processes are restarted on any available ma
chine and their address space is restored from their latest
checkpoints on stable storage. Other processes may have
to rollback to their latest checkpoints on stable storage in
order to remain consistent with the recovering processes.

•This research was supported in part by NASA (under grant
NAGW-4080), ARO (under grant DAH04-96-1-0049), BMDO (un
der ARO grant DAAH04-0024), NATO (under grant HTECH .LG-
931449), and NSF (under grant CDA-9313624 for CATE Lab).

254-338 302

N aphtali Rishe
School of Computer Science

Florida International University
Miami, FL 33199

rishen@fiu.edu

A system state is said to be consistent if it conta111 .
no orphan message; i.e. , a message whose receiving PY1· r1·
is recorded in the state of the destination process, hut 11 .

sending event is lost [3, 8, 13]. In order to record a ro11 ~ 1 .
tent global checkpoint in stable storage, processc~ m11 , ·

be synchronized during checkpointing. In other w11rd·
before a process takes a checkpoint, it asks (by sl'ud
ing checkpoint requests to) all relevant processes to t:•~·
checkpoints. Therefore, consistent checkpointing sulf• ·1·
from high overhead associated with t he checkpoi11t u ~: ·
process.

Much of the preYious work in consistent cherkp11inr
ing has focused on minimizing the number of pron·~,, .
that must participate in taking a consistent chcrkp1111. '
[4, 8, 9] or to reduce the number of messages requin·d :.
synchronize the consistent checkpoint [14, 15]. Hom·1 1:
these algorithms (called blocking algorithm) fow· allr•<
evant processes in the system to 'freeze their rornput.,
tions during the checkpointing process. A checkpoiut1 r..
process includes the time to trace the dependcncv '"'
and save the state of processes on stable storage. wh it!.
needs a long time. Therefore, blocking algorithm~ dr .•
matically reduce the performance of the system [~. :, .

Recently, some nonblocking algorithms [5, 12j h.•.' '
received considerable attention. They avoid the rH'''" 1' ·

processes to be blocked during checkpointing b~· u~lll.' ··
checkpointing sequence number to identify orphan 11 "

sages. However, these algorithms [5, 12] assume th.,: :·
distinguished initiator decides when to take a cberkP"''· ·
Therefore, they suffer from the disadvantages of rrnr:.~
ized algorithms, such as one-site failure, bottle-nc.rk . ··.:.

1

If they are modified to permit other sites to 111111 ~ 1 ',:
checkpoint, which makes them truly distributed. t~_t' r. !:
algorithm suffers from another problem as folio

1
· , •.

order to keep the checkpoint sequence number UP' a . .'. ~
.t has to n,, ...

any time a process takes a checkpoint, 1 r · '

all processes in the system. If every process ~~ '~ ;; :
ate checkpointing, the network would be flooh;i'r r:'-·'
control messages and processes might waste t

making unnecessary checkpoints.
1

k ,::-
In this paper, we provide an efficient non-b ~~rh.-~ ·

tributed checkpointing algorithm to reduce the 0
'

0
1"".,.....:

associated with the checkpointing process. The pr

algoi.
durin
proce
proce
ing.

Tl
2 dest
theal
tion 4
with •
paper

2

The s:
cesses
The p
work t
proces
messa1
eysterr
correc1
plicate

Thl
tributE
musa!
\'l!Jice c

3 ,.
J

Our a!
Wtiatc
~
live ch
~gnter
the alg,
JlrO<:ess
~~\anent

tains
~vent

1t its
>nsis
must
ords,
~end- ·
take

1ffers
nting

•oint
·esses
point
·ed to
vever,
Jl rel
puta
nting
· tree
vhich
. dra
. 5].
have

2d for
;ing a
. mes
h.ata
point.
ntral
'• etc.
ate a
e new
·s: In
lated,
notify
initi
witb

· time

k <lis- ·
•rhead
•pos.ed

....... __

:Ugorithm avoids the need for processes to be blocked
'1 ring checkpointing and forces only a minimal set of
l ~1ocesses to take their local checkpoints, based on inter
~rocess dependencies created since the last checkpoint-

,ng.
The rest of the paper is organized as follows. Section

·J describes the system model. In Section 3, we present
;he algorithm. The correctness proof is provided in Sec
tion 4. In Section 5, we compare the proposed algorithm
with the existing algorithms. Section 6 concludes the
paper.

2 Computation Model

The system is composed of a set of communicating pro
cesses executing on a collection of fail stop processors.
The processes are connected by a communication net
work that is riot subject to network partitions, and the
processes can only communicate with each other through
message passing. It is assumed that the communication
system is reliable; i.e. a message sent will be received
correctly in finite time. However, messages may be du
plicated or delivered out-of-order.

The messages generated by the underlying dis
tributed application will be referred to as computation
messages. Messages generated by the processes to ad
ranee checkpoints will be referred to as system messages.

3 The Algorithm

Our algorithm has two phases. In the first phase, an
initiator makes a tentative checkpoint and forces every
process on which it causally depends to take a tenta
tive checkpoint. After the initiator receives acknowl
edgments from all the processes on which it depends,
the algorithm enters the second phase in which all these
processes change their tentative checkpoints to be per
manent.

3.1 Basic Ideas

Because the algorithm does not require any process to
suspend its underlying computation, it is possible for a
process to receive a message from another process, which
is already running in a new checkpoint interval, result
ing in inconsistency. Most of algorithms [5, 12] use a
Checkpoint Sequence Number (csn) to avoid inconsis
~ency. More specifically, a process takes a checkpoint if
It receives an application message whose appended csn
IS greater than the local csn. However this scheme only
works when every process in the computation can receive
each checkpoint request and then increase its own csn.

Since our algorithm forces only the causally depen
dent processes to take checkpoints, the csn of some pro
~esses may be out-of-date, and hence insufficient to avoid
Inconsistency. To deal with this problem, each process

303

has an array to save the csn of all processes in the com
putation, where csn[i) is the expected csn of P; . Note
that Pi's csn[i] may be different from Pj 's csn[j] if there
is no communication between them during several check
point periods. By using the csn and the initiator iden
tification number (id), we can avoid inconsistency and
unnecessary checkpoints during the checkpointing.

Huang's algorithm [6) has been modified to detect the
termination of the first phase in our algorithm. When
a process (the initiator) initiates a checkpointing, it sets
its weight to 1, then sends checkpoint request message
to all the processes on which it depends. Each request
message carries a portion of the weight of the sender,
which is decreased by an equal amount after sending
a request. When a process Pi receives a request from
Pj, Pi forwards the request to all the sites on which
it depends, but Pj does not depend. Similarly, Pi also
.appends a portion of its received weight to the outgoing
request. Finally, Pi takes a tentative checkpoint, and
sends a reply message appending the remaining portion
of its received weight to the initiator. Receiving a reply,
the initiator adds the appended weight to its own weight.
If the sum is equal to 1, the first phase is finished. In
this way, the termination information needs not to be
propagated along a tree rooted at the initiator. They
send it directly to the initiator.

3.2 Data Structures

The following terms and notation are used in our algo
rithms :

Rc: an array maintained at each process. It is used
to save the casually dependent information among
processes. The array has n bits, representing n pro
cesses. If one process Pi depends on Pj (i.e., Pj
sends a message to Pi), the bit j of Pi's dependent
vector will be 1; otherwise, it is 0. Any time a site
sends a computation message, it appends the Rc to
the message. As a result, the receiver updates its lo
cal Rc based on dependent vector piggybacked with
the computation message.

Rt : similar to Rc, but it saves the dependent informa
tion of the last checkpoint period.

Rt: similar to Rt. Besides setting all the bits corre
sponding to those in Rt to 1, it also sets all the bits
corresponding to the processes on which it transi
tively depends to 1.

weight : a non-negative variable of type real with maxi
mum value of 1. It is used to detect the termination
of the checkpointing.

first: a boolean array of size n maintained by each
process. The array is initialized to all zeroes each
time a checkpoint at that process is taken. When a
process Pi sends a computation message to process
Pi, it sets first[j] to 1.

csn: an array of n checkpoint sequence number (csn) at
each process. Each checkpoint sequence number is
represented by an integer. For process P;, csn[j]

represents the checkpoint sequence number of Pj
that P; knows. In other words, P; expects to receive
a message from Pj with sequence number csn[j].
Note that, csn[i] is the checkpoint sequence number
of P;.

trigger: a tuple (pid, inurn) maintained by each pro
cess . pid indicates the checkpointing initiator that
triggered this process to take its latest checkpoint.
inurn indicates the csn at process pid when it took
its own local checkpoint on initiating the check
pointing process. trigger is appended to every sys
tem message and the first computation message that
a process sends to every other process after taking
local checkpoint.

propagate: a boolean to decide if there is a need to
propagate the checkpoint request. It is initialized
to 0, and set to 1 after a checkpoint is triggered by
a computation message.

request: a system message to request the receiver to
take a checkpoint.

reply: a system message sent to the initiator after the
sender has finished its checkpointing.

The csn is initialized to an array of 1 's at all pro
cesses. The trigger tuple at process P; is initialized to
(i, 1). The weight at a process is initialized to 0. When
a process P; sends any computation message, it appends
its csn[i) and the Rc to the message.

3.3 Checkpointing Algorithm

Any site can initiate a checkpointing, and the algorithm
does not require any process to suspend its underlying
computation. When a process P; initiates a checkpoint
ing, it takes a local checkpoint, increments its checkpoint
sequence number, sets weight to 1, and stores its own
identifier and the new checkpoint sequence number in its
trigger. Then it sends checkpoint request to all the pro
cesses, such that Rc(j)=1 and resumes its computation.
Each request message carries the trigger of the initiator,
the Rt and a portion of the weight of the initiator , whose
weight is decreased by an equal amount. .

When a process P; receives a request from Pi, it
compares the P1.trigger (msg_trigger) with P;.trigger
(own_trigger). If these two triggers are different, P;
takes a tentative checkpoint and forwards the request
to all the processes on which it depends, but Pi does not
depend (P1 has sent request to the processes on which
it depends). Then P; sends a reply to the initiator with
the remaining weight and resumes its underlying com
putation.

If msg_trigger is equal to own_trigger when P; re
ceives the request, P; does not need to take a checkpoint
because it has already taken a checkpoint for this check
pointing initiation. A checkpoint may be triggered by a
computation message. In this situation, the checkpoint
request is not propagated. Therefore, when P; receives a
system checkpoint request, it needs to check whether it
has propagated the checkpoint request or not. If propa
gate==O, P; has propagated the request, so it only sends

a reply to the initiator with the received weight . Othr·r .
wise, P; reset propagate to 0 and forwards the req11 t.,

to all the processes on which it depends, but P1 does IH,·

depend. Then , P; sends a reply to the initiator with th•
remaining weight.

When P; receives a computation message from p p
compares the P1 .csn[j] with its local csn[j). If Pi .c~;, i:
less than or equal to P; .csn[j), the message is processr·r!
and no checkpoint is taken . Otherwise, it implies that p
has taken a checkpoint before sending the message, an;!
this message is the first computation message sent lJ'.
P1 to P; since P1 's checkpoint. Therefore, the messag·.
must have a trigger tuple. P; first updates its P; .cs11 [J
to the P1 .csn[j], then do the follows depending on tl l'
information of P1.trigger (msg_trigger) and P;.triy!lr r
(own_trigger):

• If msg_trigger==own_trigger, it means that th•
latest checkpoints of P; and Pi were both takP11
in response to the same checkpoint initiation event
Therefore, no new local checkpoint is needed.

• If msg_trigger.pid own_.trigger.pid r
msg_trigger.inum > own_trigger.inum, it mean'
that P1 has sent the message after taking a n('l\
checkpoint, while P; has not taken a checkpoint for
this checkpointing. Therefore, P; takes a chcrk·
point before processing this message. P; does not
immediately propage this checkpoint request ; how
ever, it sets propagate to 1. When P; recei\'es tlw
request later, from the initiator or other proccsst··
which forwards the initiator 's request, it propa~,.,
the request. Note that, P; only takes a tentati1·•·
checkpoint , which can not be made permanent til l ·

til P; receives a request from other processes.
• If msg_trigger.pid =f. own_trigger.pid, P; executt··

as follows: If P; has not . processed any HH'' ·

sage satisfying the condition msg_trigger.pid ::
own_trigger.pid since its last local checkpoint. "1

if the initiator casually depends on P; (Rt[i)== I I
P; takes a checkpoint, sets propagate to 1, and
sets own_trigger to be msg_trigger before procr~,
ing the message. Otherwise, if Rt[i)=O, and r,
has already processed a message from any pw
cess satisfying the condition msg_trigger.pid ::
own_trigger.pid since its last local checkpomt. 11''

new local checkpoint is needed.

In order to clearly present the algorithm, wr :t··

sume that at any time, at most one checkpointin~ :·
in progress. Techniques to handle concurrent initiat nr.'
of checkpointing by multiple processes can be found J ••

[8, 11]. . hlll '•
A formal description of the checkpointing algont ·
given below:

The checkpointing algorithm

type trigger = record (pid, inurn: integer;) end
var own_trigger, msg_trigger: trigger;

csn: array[l..n] of integers;
weight : real;
process...set: set of integers;
Rc, Rr, Rt, first: bit array of size n ;

Act:
tol
i/ fir.

fiJ
se

we :
Acti
awn
clear
take.
prop
resui

Oth•
fron
recei·

ifms
if

se:

resun
Actio
sage
receh
ifrec

eLse {
CSI

i/ r
{
t.
e

el.s

take_
{take
prop;
OWn.
~=

prop.
{Rt =

for a

{"
Bel

prop
send

· Actio
lteceb

wei
Pro
ifv

{

. Actio
. ~V!
1llake

c
~

es
;e
1·

~

5·

f.
or
~)I
:Jd
55·

pi
ro-
1
no

as
is

ors
. in

J is

Actions taken when P; sends computation message
tO pJ:
,Jfirst[jj=O then {

first[j]=1;
send(?;, message, Rc, Rt, csn[i], own.trigger);}

else send(?;, message, Rc , csn[i], NULL);

Actions for the initiator Pi :
,1wn.trigger .pid=Pi; own...inum=csn[i] ; clear Rt;
dear process..set;
take.cp(Rc , Rt , Rc , Pit own.trigger);
prop.cp(Rt, R t , P;, msg.~rigger, 1.0)
rrsume normal computatwn;
Other processes, P;, on receiving checkpoint request
from Pi :
r!'ccive{Pj, request, m .Rt , recv .csn, msg.trigger ,

recv _weight);
1J msg.trigger==own.trigger then {

if propagate== 1· then
prop.cp(R, , R t, P;, msg.trigger, recv.weight)

send(?;, reply, recv _weight) to initiator; }

else { csn[j]=recv .csn;
take.cp(Rc, R,, m .Rt, P,, msg.trigger);
prop.cp(R,, Rt , P;, msg.trigger , recv.weight)}

rrsume normal computation;
Actions for process P;, on receiving computation mes
sage from Pj:
rcceive((Pi, m, m.Rc , m.Rt, recv.csn , msg.trigger);
1/ recv .csn $ csn[i] then process the message and exit;

rise {
csn[i]=recv .csn;
if msg_trigger. pid==own_trigger. pid then

{if msg.trigger .inum==own.trigger .inurn
then process the message;
else { take..cp(Rc, R,, P; , msg.trigger, m .Rt , P;,

msg.trigger); ·
process the message; rfirst=1 ; propagate=1;}}

else {if (rfirst ==0) OR (m.Rt[i]==1) then
{ take.cp(Rc , Hi, m.Rt ,P; , msg.trigger) ;

process the message;
rfirst= 1; propagate= 1; }

else process the message; } }

take.cp(Rc, R,, m.Rt, P;, msg_trigger)
{take local checkpoint;
propagate =0; rfirst=O; increment(csn[i]);
own.trigger=msg.trigger; Rt =m.R t;
Rt=Rc; reset Rc and first ; }

prop_cp(Rt, m.Rt, P;, msg_trigger, recv_weight)
{Rt == Rt OR m.Rt;
for all processes Pk, such that Rt[k]==l and m.Rt[k] ::1- 1

{ weight=weight/2; send.weight=weight;
send{P;, request , R t, csn[i], own.trigger, send.weight);}

propagate=O;
send(P;, reply , recv.weight) to initiator; }

Actions in the second phase for the initiator P;:
Receive(Pi, reply , recv_weight)

weight=weight+recv _weight ;
process..set=process..set UPi;
if weight==1 then

{for any Pk, such that Pk E process..set
send(make.permanent) to Pk ; }

Actions for other process Pi:
receive (make.permanent)
rnake the tentative checkpoint permanent.

3.4 An Example

The basic idea of the algorithm can be better understood
by an example presented in Figure 1. In Figure 1, P1 ini
tiates a checkpointing by taking its own checkpoint and
sends checkpoint request to P2 and P3, since P1 depends
on P2 and P3. When P1 's request reaches P2 , P2 takes a
checkpoint, then it sends message m4 to P3 . When m4
arrives at P3, P3 takes a checkpoint before processing
the message because m4 is the first message received by
P3 such that msg.trigger.pid-:/: own_trigger.pid.

P4 has not communicated with other processes before
it takes a local checkpoint. Later, it sends a message m5
to P3 . Because P4 has taken a checkpoint, its checkpoint
sequence number is larger than P3 expected. However,
m5 is not the first computation message received by P3
with a larger checkpoint sequence number than expected.
Therefore, a checkpoint is not needed. Another reason
for P3 not taking a new checkpoint is that it may lead
to an avalanche effect, in which processes in the system
recursively ask others to take checkpoints. For example,
if P3 takes a checkpoint after it receives m5, then it re
quires P2 to take another checkpoint. If P2 has received
messages from other processes after it sends m4, then
those processes have to take checkpoints. This chain
may never end.

When the request sent by P1 arrives at P3 , P3
does not need to take another checkpoint because the
msg.trigger is equal to own.trigger. However, it needs
to propagate this checkpoint request to P5 , because its
current checkpoint is triggered by a computation mes
sage m4 and ?:3 depends on Ps. In (10), P3 first propa
gates the request when it receives m4, then propagates
again when it receives the request from P1 • But our
algorithm only propagates once. Note that the propa
gation is transitive, therefore our algorithm significantly
reduces the message complexity.

Suppose P4 takes another checkpoint after it receives
m6 , it sends a checkpoint request to P3. If the channel
is not FIFO, there is a possibility that m7 arrives at
P3 earlier than the request. In (10], P3 does not take
checkpoint until it receives the request, which results in
inconsistency (m7 will be an orphan). In our algorithm,
because P3 causally depends on P4, it takes a checkpoint
before processing m 7.

checkpoint

P1 ------,---,-~~----------------------

ehockpolnl

Figure 1: An example of checkpointing

4 Correctness Proof

Lemma 1 If process P; takes a checkpoint and P; de
pends on P;, then P; takes a checkpoint for the same
checkpointing initiation.

Proof. If P; is the initiator, to initiate a checkpointing,
it sends request to all process on which it depends. If P;
is not the initiator and takes a checkpoint on receiving
a request from Pk, then for the process Pj on which P;
depends, there are two possibilities:

Case 1: If m.Rt[j]==O in the request received by P;
from Pk, then P; sends a request to Pi .

Case 2: If m.Rt[j]==1 in the request received by P;
from PK, then a request has been sent to Pi by at least
one process in the checkpoint request propagation path
from the initiator to Pk.

Therefore, if a process takes a checkpoint, every pro
cess on which it directly depends receives at least one
checkpoint request. There are two possibilities when Pi
receives the first checkpoint request:

1: Pj has not taken its checkpoint when the first
request for this initiation arrives: Pi takes its checkpoint
on receiving the request.

2: Pi has taken a checkpoint for this checkpoint ini
tiation when the first checkpoint request arrives: this
request and all subsequent request messages for this ini
tiation are ignored.

Hence, when a process takes a checkpoint , every pro
cess on which it is directly dependent takes a checkpoint.
0

Applying the transitivity property of the dependence
relation, we conclude that every process on which the
initiator is dependent, directly or transitively, takes a
checkpoint. These dependencies may have been present
before the checkpointing was initiated, or may have
been created while the consistent checkpointing was in
progress.

Theorem 1 The algorithm creates a consistent global
checkpoint.

Proof. Assume the contrary. Then there must be a pair
of processes P; and Pj such that at least one message m
has been sent from Pi after Pj 's last checkpoint and has
been received by P; before P; 's last checkpoint. In this
case, P; depends on Pj. From Lemma 1, Pj has taken
a checkpoint. There are three possible situations under
which Pj 's checkpoint is taken:

Case 1: Pjs checkpoint is taken due to a request from
P;, Then:
send(m) at Pi => receive(in) at P; => checkpoint
taken at P; => request sent by P; to Pi => check
point taken at Pi

Using the transitivity property of =>, we have:
send(m) at Pi => checkpoint taken at Pj, Thus
sending of m is recorded at Pi . A contradiction.

Case 2: Pi 's checkpoint is taken due to a request frorn
a process Pk , k f. i . According to the assumption .
Pi sends m after taking its local checkpoint , which
is triggered by Pk . Therefore, when m arrives at
P; , its checkpoint sequence number is greater than
Pi .csn[j]. As a result, Pi takes its checkpoint before
processing m. In other words, reception of m is not
recorded in the checkpoint of Pi. A contradiction.

Case 3: Pi 's checkpoint is taken due to the arrival of a
computation message m 1 at Pi from Pk . Similar to
Case 2, the sequence number of m is greater than
Pi.csn[j] and then we have a similar contradiction .
0

The checkpointing algorithm terminates within a fi.
nite time. The proof is similar to [10] and [6] .

5 Related Work

The first consistent checkpointing algorithm was pr<'·
sented in [1]. However , the algorithm assumes that all
communications between processes are atomic, which i~

too restrict. The Koo and Toueg algorithm [8] relax<'~
this assumption, and only requires message exchange uP·
tween processes that have dependency relationship, tllll ~
reducing the number of messages required. Later , L!•u
and Bhargava [9] presented another algorithm, which i~
resilient to multiple process failures, and does not a.'·
sume that the channel is FIFO, which is necessary in [8)
These two algorithms have a common drawback in that
they assume a complex scheme (such as slide window) to
deal with the message loss problem, and do not consid!'t
lost messages in checkpointing and recovery. Deng and
Park [4] proposed an algorithm, which addresses both
orphan message and lost inconsistencies.

In these consistent checkpointing algorithms, the pro·
cesses are blocked when taking checkpoint and durin~
rollback recovery. The blocking dramatically reduces tht·
performance of the system [2, 5]. Kim and Park [7] at ·
temped to solve this problem. Their basic idea is: :\
process takes a checkpoint when it knows that all pro
cesses on which it computationally depends have taken
their checkpoints, and hence the process need not alwal'~
wait for the decision made by the checkpoint initiator ·,
decision. However , based on their algorithms, the pw
cesses in the system are still often need to be blocked .

In [16], when a process makes a checkpoint it m:l'
continue its normal operation without blocking, becau~•'
processes keep track of any delayed message. Their algt'"
rithm is based on the idea of atomic send-receive check·
points. Each sender and receiver 'make the balance h•
tween the messages exchanged, and keep the set. of un·
balanced messages as part of checkpoint data. Howrn' r.
this scheme requires each process to log every mess:~~·
sent, which may introduce some performance degracl:~·
tion, and require the system to be deterministic. , ~ ·

The Elnozahy-Johnson-Zwaenepoel algorithm :·:.
uses the checkpoint sequence number to identify orpJt;u.

'·

mess:
bloc!<

· requi
cesse
Silva
the I
durin
a ne~
a dis
point
centr
neck,
to in
tribu
!em a
numt
it ha
prOCE
be fi<
wastE

T
rithrr
COffiJ:

ifac
their
depe1
natio
desig
have
only
nifica

6

. A dil
comn
Scala
appr<
non-1
ically
ident
Point
depe1
schen
their

hJ
rithn
can a
goritl
loggu
tion ,
Btora

ll.eJ
II) (

(
v '

Ill
n,
::h
at
lll
re
Ot

a
to
an
>n.

fi-

re-
all
is

<CS
Jc
lUS

,eu
1 is
as-
:sJ.
nat
) to
der
tnd
Jth

ro
ing
the
at-
A

Jro
.ken
·ays
or's
Jro-
:i.
. 1ay
use
igo
~ck
be
un
ver,
age

·sages, thus avoiding the need for processes to be
: : ;~~ked during checkpointing. However , this approach
:'Quires the initiator to communicate with all of the pro
·. ~·sses in the computation. The algorithm proposed by
~il l'a and Silva [12] uses the same idea as (5] , except that
:he processes which did not communicate with others
Juring a previous checkpoint period do not need to take

:
1

new checkpoint. Both algorithms (5, 12] assume that

1
distinguished initiator decides when to take a check

:1oint. Therefore, they suffer from the disadvantages of
;.t>ntralized algorithms, such as one-site failure , bottle
:lt•ck, etc. If they are modified to permit other sites
:LJ initiate a checkpoint , which makes them truly dis
•ributed, the new algorithm suffers from another prob
;,.111 as follows : In order to keep the checkpoint sequence
:1umber updated, any time a process t akes a checkpoint ,
;t has to notify all processes in the system. If every
process can initiate checkpointing, the network would
he flooded with control messages and processes might
waste their time making unnecessary checkpoints.

The Prakash-Singhal (10] is also a non-block algo
rit hm. However their algori thm is designed for mobile
romputing system and has FIFO assumption . Moreover ,
if a checkpoint is triggered by a computat ion message,
1hrir algorithm propagates the checkpoint request to all
dc·pcndent processes twice in order to detect the termi
nation of the checkpointing. The proposed algorithm is
designed for general distributed system, and it does not
have the FIFO assumption . Furthermore , our algorithm
only propagates the checkpoint request once, which sig
nificant ly reduces message overhead .

6 Conclusions

.\ distributed system is a collection of processes that
communicate with each other by exchanging messages.
Scalability in distributed system requires some effective
approach to deal with failure. We present an efficient
non-block scheme to address this problem. More specif
ically, a checkpoint sequence number vector is used to
identify orphan messages, so processes involved in check
pointing need not to be blocked. Based on inter-process
dependencies created since the last checkpointing, our
scheme only forces a minimal set of processes to take
their local checkpoints .
. In this paper, we only presented a checkpointing algo

nthm. It is easy to see that a similar recovery algorithm
can also be construct ed . If our consistent checkpoint al
gorithm is used in recovery algorithms based on message
logging, the algorithm does not require garbage collec
tion of obsolete checkpoints , thus saving a lot of stable
storage.

tda- References
[5] [1] G. Barigazzi and L. Strigini . "Application-Transparent

1han Setting of Recovery Points" . Digest of Papers FTCS-13,
pages 48- 55, 1983.

307

[2] B. Bhargava, S.R. Lian, and P .J . Leu. " Experimental
Evaluation of Concurrent Checkpointing and Rollback
Recovery Algorithms" . Proceedings of the International
Conference on Data Engineering, pages 182- 189, 1990.

[3] K.M. Chandy and L. Lamport. "Distributed Snap
shots: Determining Global States of Distributed Sys
tems" . ACM 'Jransactions on Computer Systems, Febru
ary 1985.

[4] Y. Deng and E.K. Park. "Checkpointing and Rollback
Recovery Algorithms in Distributed Systems" . Journal
of Systems and ~oftware, April 1994.

[5] E.N. Elnozahy, D.B. Johnson , and W . Zwaenepoel. "The
Performance of Consistent Checkpointing" . Proceedings
of the 11th Symposium on Reliable Distributed Systems ,
pages 86- 95, October 1992.

[6] S.T . Huang. "Detect ing Termination of Distributed
Computations by External Agents" . Proceedings of the
9th International Conference on Distributed Computing
Systems, pages 79- 84, 1989.

[7] J .L. Kim and T . Park. "An Efficient Protocol For
Checkpointing Recovery in Distributed Systems" . IEEE
'Jransactions on Parallel and Distributed Systems , pages
955- 960, August 1993.

[8] R. Koo and S. Toueg. "Checkpointing and Rollback
Recovery for Distributed Systems". IEEE 'Jransactions
on Software Engineering, pages 23- 31, January 1987.

[9] P.Y. Leu and B. Bhargava. "Concurrent Robust Check
pointing and Recovery in Distributed Systems" . Pro . 4th
IEEE Int . Conf. on Data Eng., pages 154-163, 1988.

[10] Ravi Prakash and Mukesh Singhal. "Low-Cost Check-
pointing and Failure Recovery in Mobile Computing Sys
tems" . Technical Report, the Ohio-state University.

[11] Ravi Prakash and Mukesh Singhal. " Maximal Global
Snapshot with Concurrent Initiators" . Proceedings of
the Sixth IEEE symposium on Parallel and Distributed
Processing, pages 344-351 , October 1994.

[12] L.M . Silva and J.G . Silva. "Global Checkpointing for
Distributed Programs" . Proceedings of the 11th Sym
posium on Reliable Distributed Systems, pages 155- 162,
October 1992.

[13] R .E . Strom and S.A. Yemini. "Optimistic Recovery In
Distributed Systems" . ACM 'Jransactions on Computer
Systems, pages 204- 226, August 1985.

[14] Z. Tong, R.Y. Kain, and W .T . Tsai. "A Lower Overhead
Checkpointing and Rollback Recovery Scheme for Dis
tributed Systems". Proceedings of the 8th Symposium
on Reliable Distributed Systems, pages 12-20, 1989.

[15] K. Venkatesh, T . Radhakrishnan, and H.F. Li. "Op
timal Checkpointing and Local Recording for Domino
free Rollback Recovery" . Information Processing Let
ters , pages 25 :295-303, July 1987 .

[16] Z. Wojcik and B.E. Wojcik . "Fault Tolerant Distributed
Computing Using Atomic Send Receive Checkpoints".
Proc. 2nd IEEE Symp. on Parallel and Distributed Pro
cessing, pages 215- 222, 1990.

