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Abstract: - This study introduces an integrated algorithm for the purpose of discriminating between EEG channels
(electrodes) leading or not to an ictal state, using interictal subdural EEG data. The importance of this study is in
determining among all of these channels, all containing interictal spikes, why some electrodes eventually lead to
seizure while others do not. A first finding in the development process of the algorithm is that these interictal spikes
had to be asynchronous and should be located in different regions of the brain, before any consequential
interpretations of EEG behavioral patterns are possible. A singular merit of the proposed approach is that even
when the EEG data is randomly selected (independent of the onset of seizure), we are able to classify those
channels that lead to seizure from those that do not. It is also revealed that the region of ictal activity does not
necessarily evolve from the tissue located at the channels that present interictal activity, as commonly believed. The
contributions of this study emanates from (a) the choice made on the discriminating parameters used in the
implementation, (b) the unique feature space that was used to optimize the delineation process of these two type of
electrodes, (c) the development of back-propagation neural network that automated the decision making process,
and (d) the establishment of mathematical functions that elicited the reasons for this delineation process.

Key llords: - Seizure, interictal spikes, ictal, interictal activity

I Introduction
The EEG interictal data recorded inside the brain can
be processed to define similar pattems evident in
those electrodes that lead to a given seizure to further
facilitate surgical planning [1-3].

This study provides a mathematical framework
for the study of interictal EEG leading or not to an
epileptic seizure. The EEG of epileptic subjects can
be divided into two main categories, interictal and
ictal. The interictal EEG is the EEG taken when the
patient is not having seizures or in between seizures

[2]. Interictal activity is considered to be abnormal if
it can occur in a patient with epilepsy in the absence
of an actual seizure. The ictal EEG activity on the
other hand is when the acfual seizure occurs.

The study of this new application elicits how
different patients react prior to a seizure in view of
the collected EEG data such as to better detect such
neurological disorders. The main objectives of this
study are as follows: (1) to extract features that best
chancterize those EEG electrodes that lead to an ictal
activity; (2) to establish mathematical derivations that
provide not only quantitative measures, but also

describes and locates the focus of an ictal activity;(3)
to identifu and formulate those pattems in EEG

recordings that are inherent to those electrodes that
lead to a seizure; (4) to conelate the clinical features
with the EEG findings in order to determine whether
the patient has a consistent source of ictal activity,
which is coming from the location conceming the
group of channels that present interictal activify; (5)
to classifu and to group those EEG channels that are
known in advance to lead to seizures in order to
extract similarities in their behavior, so a common
behavioral pattern could be found; (6) to find a

suitable classifier that discriminates in the feature
space the two regions of electrodes leading and not
leading to an ictal state.

2 Method
Eight children with medical refractory partial
seizures that underwent pre-surgical evaluation have
been analyzed in this study. The subdural EEG data
was recorded using XLTEK Neuroworks Ver.3.0.5
(equipment manufactured by Excel Tech Ltd.
Ontario, Canada). Sampling frequency of 500H2 with
0.1-70 Hz bandpass filter settings and 12 bits A/D
conversion were used to obtain the digital EEG
recordings.
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To classi$u those electrodes that lead to an
epileptic seizure, a program was developed in order
to quantiSr the patterns that are inherent to those
electrodes. Input data in this study was subdural EEG
segments from 20 to 3600 seconds of duration of
epileptic patients. The first step in the procedure
involved identifuing the pertinent electrodes in the
overall interictal EEG recordings in which the
seizures occurred. The physicians performed this
task initially through visual inspection of the
recorded data. A computer program was earlier
[4],[6] developed in order to detect automatically
interictal spikes so as to provide more accurate and
consistent input data to the proposed classification
algorithm.

The classification algorithm consists of the
following steps. Results obtained are revealed in the
next section in order to assess both the validity of
such steps and the merit of each step for identi$zing a
suitable linear classifier.
Step 1- Filtering the input EEG data
In this preprocessing step, filtering was performed
applying the Singular Value Decomposition (SVD),
which is based on the eigenvalues decomposition

[7,8]. The larger singular values were retained (in
this case the first five were deemed sufficient for the
analysis), so a better approximation is obtained, or
equivalently, more information is contained in that
approximation and the other values are set to zero,
thus a new matrix was created. The approximated
matrix, containing less noise was used in the
subsequent steps. This implementation concluded the
fi ltering preprocessing step.
Step 2- Assessment of the EEG Nonlinear Dynamics

Since brain dynamics are nonlinear, this study
investigated methods such as the calculation of
correlation dimension integral, mobility and
complexity.

The correlation dimension integral R(r) given in
equation (l) is a measure of spatial organization,
where the space is occupied by a set of random
points. It determines the degree of complexity in the
EEG signal.

R(rv = +5' 5' t(, - l*, - *,1) (r)
N' j=l 1=j+t ' I J'

Where, r is the threshold value used to
evaluate the similarify between two reconstructed
vectors Xi and Xj. N is the total number of points in
the time series. The vector X1 is a point in the

embedded phase constructed from the input EEG
signal as a single time series according to the
following formula:

Xi =(Xi,Xi +r,Xi+2r,....X;+(m-1)t) , where m is the

so called embedding dimension and t is a time
delay.

Additionally, the Hjorth's parameters, mobility
and complexify were calculated using equations 2
and 3. Mobility (equation 2) gives a measure of
deviation of the voltage changes with respect to
deviation of the EEG voltage amplitude, while
complexity (equation 3) provides a measure of
excessive details with regard to the slightest possible
signal's shape [9, 10]. The mobility is computed
using the following formula.

vr(y(t)) = (o(y')ro1y1;| Q)

where o is the varianc" *d y'is the first derivative

of the primary signal y. The complexity,

C(y(t)) involves the first derivative of the mobility

M(y') and the mobility of the signal itselfM(y) and it
is expressed as:

I
C(v(t)) = (M(y')nrl1y;7 (3)

Step 3- Extraction of features from the EEG data
The next step dealt with extracting features from

the filtered EEG matrix using the aforementioned
parameters of step 2 in order to discriminate between
the two groups of electrodes. All these three
parameters were computed for each electrode
separately using successive epochs or non-
overlapping windows of 1 second for all the recorded
subdural EEG data. By computing these parameters,
a behavior for each feature over time was established
for each electrode.
Step 4- Implementation of regression lines for each
electrode and oarameter

As all the different parameters were represented
in time, regression lines for all of these parameters
were calculated in order to keep a suitable track of
the behavior of each electrode with respect to the
computed parameter. This also helps in determining a

linear classifier that separates in the parameter vs.
time space the two different classes of electrodes.
One condition to make this study more relevant from
a clinical point of view was to require from these two
classes of electrodes to be totally independent in
terms of source location, and synchronicity of the
spike firing. After obtaining regression lines for all
electrodes, two groups of regression lines per
parameter were created. These computed linear
approximations were used for each electrode to
facilitate visualization of the overall trend of each
electrode.
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Step 5- Neural network strucfure for linear
classification

At this stage, a plot of the three selected features
revealed well defined electrodes clusters. No other
features produced class clusters so compact and
separated from each other. But extrapolation of this
mechanism of classification in time did not work as

anticipated since the time dynamics of the parameters

strongly changed from one recording to the other,
despite visible class clustering. In a parameter vs.
time plot, the separating points between the two
electrode groups changed from one recording to
another.

This is best illustrated in Figure 1. Note that each
plot is represented only for 20 seconds in two
different segments of the EEG data. The real time,
where the data was taken, is displayed at the bottom
of the two plots.

In order to consider this relative change and yet
make real-time classification possible, time
independent analysis was performed by computing
for each feature three statistical parameters, namely
the mean of the regression line that represents the
feature behavior, the standard deviation of the
parameter over time and the power of the frequency
spectrum of the feature over time.

The average and the standard deviation for each
regression line were computed for each group of
electrodes. Also, the Fourier Transform was applied
to the behavior of each parameter over time and its
power frequency was calculated for each electrode.
These statistical parameters were then inputted to an
artificial neural network (AI.IN) in order to obtain a

linear classifier for each feature [6]. Linear decision
functions could then be established for classifying the
electrodes based on these statistical parameters. One
decision function was created exclusively for each of
the three parameters (correlation, mobility, and
complexity). These specific decision functions would
find the optimum separating plane between the two
classes of electrodes in a 3D space where the axis are

represented by the statistical parameters used (mean,

standard deviation, and frequency power).
The training and testing process was carried out

using a cross validation training technique. The
network was trained with a 25 percentage of the EEG
data and tested in the remaining.

Establishing an artificial neural network (A}.IN)
that is trained to extract seizure-leading features of
interictal EEG is a significance outcome, since this
ANN: (1) can help to overcome the subjective factor
associated with human classification; (2) can serve as

a second expert for decision process validation; and
(3) can be used for fast automated seizure leading

channels detection, even for on-line recordings,
sparing EEG technicians the tedious task of long-
term monitoring.

The network configuration used in this research
consist of 3 input neurons that correspond to the
mean, standard deviation, and frequency power
(p,o,@) of the parameter analyzed. The output would
be I or - 1, which indicates if a given channel leads to
seizure or not, respectively.

The classifiers are three decision functions of the
form:

frQf) = w1.p€6) + w2.opff) r wj.Qff)+wa g)

The subscript ( is defined as follows:
[n forCorrelaticn
I

€=jM forMobiliry
I

IC forComplexity

Where X is a vector containing the values of the
specific parameter (correlation integral, complexity,
or mobility) for all time windows; wl, w2, w3, flfld w4

are coefficients and p€ (X) . o 
€ 
(X) and O6 (X )

are the mean, the standard deviation, and the
frequency power of vector X, respectively.
Electrodes are classified as leading to seizure only if
f ,(X\> 0 for a specific feature.

The decision functions consisted of feed-forward
ANNs trained via back-propagation. These ANNs are
structured with 3 input neurons and 1 output neuron,
with linear activation functions. This type of structure
produces a linear classifier.

3 Results
Results of this study indicate that this EEG analysis
technique allows defining two regions of electrodes,
one for electrodes leading to an ictal state and another
for the remaining electrodes that do not lead to such
state. Also, using different parameters,
characteization of the behavior of the interictal EEG
over time is possible. The rate of missed detections as

well as the rate of incorrect positive detections were
extracted and are given in percentages in Table 1. As
it can be observed, the complexity results are the best
compared to the other two parameters. Two
misclassification percentage rates are calculated: one
for the group of electrodes leading to seizure (False
Negative Rate) and the other for to the group of
electrodes that do not lead to seizure (False Positive
Rate).

Making the ANN converges and yielding
accurate classification results should be emphasized
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as well as that the separability is achieved because of
the choices of the 3 discriminant feafures of mean,
standard deviation, and frequency power. This in
itself constitutes a mayor contribution of this
dissertation.

In assessing the examples treated before, the

complexity parameter produces the most consistent
and reliable results across all 8 patients included in
the sfudy.

The total number of electrodes that presented

interictal activity was 75, out of which 30 lead to
seizure onset and 45 did lead to an ictal state. The
following evaluation results were obtained.

p.""irion= -il- = 9404 (5)
TP+FP

Sensitivity==2=nv, (6)' TP+FN

SPecificirY = -J!- = ea"n (7)' FP+TN
The terminology used is explained as follows: FP

(Not leading to seizure), FN (Leading to seizure), FN
(Leading to seizure), and TN Q.{ot leading to seizure).

The complexity outcomes are given in Figures 2
and 3. The red (-) and blue (+.) channels are the ones
leading and not leading to seizure. Note that the three
features ( p,o,O ) have great potential for classifiring

electrodes leading to seizure, regardless on what type
of classifier used with respect to the 3 parameters.

Key findings can be affirmed as follows: (l) it
was found that at any window of time along the EEG
signal (independent of time), acceptable classifiers
could be obtained using just the complexity values;
(2) A search for such decision functions across
patients is ineffectual, because experiments reveal
that such decision functions are patient dependent;
(3) It is extremely important that when one is to
search for such decision functions, electrodes should
be analyzed only if they are localized in different
locations and with recorded interictal spikes not
happening simultaneously.

Table 2, provides a summary of the results for of
all the patients. The arrows indicate if for a given
parameter, the values of the red group of electrodes
are higher or lower with respect to the blue group of
electrodes. As can be observed, for 5 patients out of
8, the complexity values for those electrodes that lead
to an ictal state are higher than the values of those
electrodes that do not lead to seizure. Also, the
mobility values for these five patients behave in the

same manner. Two patients behave in a similar
fashion, and their complexity and mobility values are

reversed if we compare them with the other five
patients.

Table 2 Lower U or higher f) values of the leading to
seizure with respect to the not leading to seizure

channels.

Patient Mobility
M)

Complexity
(c)

Correlation
R)

I r' i['l u
2 .fi ;ti

J U U ft
4 f+ u
5 fI fi t1

6 fl 11 ,u

7 U u n
8 u f) 1.I

A closer look at this table reveals the following
conditions: If we assign a negative O to U and a (+)
to fl, then, the following relations hold:

CxR<0
M*R<O (s)
MxC>0
M*CxR<0

These relations as established in equation 8

constitute another mayor observation in this study. It
could be concluded that the integration of these 3

parameters could augment our results.

4 Conclusion
The likelihood of the success of surgery is increased
when all test results point to a single epileptogenic
focus [11-14]. The unique contribution ofour study is
to understand better the characteristics of the
different interictal epileptiform activities. In all of
these performance values of the 3 parameters
implemented, it can be said that the results obtained
show great promise in delineating electrodes that lead
to seizure from those that do not. It is fitting to note
that when our results failed to discriminate between
these two sets of electrodes, a clinical analysis
revealed that those electrodes were indeed situated in
the same region and their interictal spikes were
happening simultaneously. As this sfudy will involve
a higher number of patients as they become available,
additional results will provide more credence to our
findings.

The uniqueness of this algorithm is in the

establishment of a mathematical foundation capable
of extracting features from interictal EEG signals
using the above mentioned parameters, which served
as change indicators for our analysis. The integration
of several parameters (conelation integral, mobility,
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and complexity) constitutes a unified method for
assessing differences in the EEG channels.
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