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Abstract: - This study introduces an integrated algorithm for the purpose of discriminating between EEG channels 
(electrodes) leading or not to an ictal state, using interictal subdural EEG data. The importance of this study is in 
determining among all of these channels, all containing interictal spikes, why some electrodes eventually lead to 
seizure while others do not. A first finding in the development process of the algorithm is that these interictal spikes 
had to be asynchronous and should be located in different regions of the brain, before any consequential 
interpretations of EEG behavioral patterns are possible.  A singular merit of the proposed approach is that even 
when the EEG data is randomly selected (independent of the onset of seizure), we are able to classify those 
channels that lead to seizure from those that do not.  It is also revealed that the region of ictal activity does not 
necessarily evolve from the tissue located at the channels that present interictal activity, as commonly believed. The 
contributions of this study emanates from (a) the choice made on the discriminating parameters used in the 
implementation, (b) the unique feature space that was used to optimize the delineation process of these two type of 
electrodes, (c) the development of back-propagation neural network that automated the decision making process, 
and (d) the establishment of mathematical functions that elicited the reasons for this delineation process. 
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1 Introduction 
The EEG interictal data recorded inside the brain can 
be processed to define similar patterns evident in 
those electrodes that lead to a given seizure to further 
facilitate surgical planning [1-3].  
 This study provides a mathematical framework 
for the study of interictal EEG leading or not to an 
epileptic seizure. The EEG of epileptic subjects can 
be divided into two main categories, interictal and 
ictal. The interictal EEG is the EEG taken when the 
patient is not having seizures or in between seizures 
[2]. Interictal activity is considered to be abnormal if 
it can occur in a patient with epilepsy in the absence 
of an actual seizure. The ictal EEG activity on the 
other hand is when the actual seizure occurs. 
 The study of this new application elicits how 
different patients react prior to a seizure in view of 
the collected EEG data such as to better detect such 
neurological disorders. The main objectives of this 
study are as follows: (1) to extract features that best 
characterize those EEG electrodes that lead to an ictal 
activity; (2) to establish mathematical derivations that 
provide not only quantitative measures, but also 
describes and locates the focus of an ictal activity;(3) 
to identify and formulate those patterns in EEG 

recordings that are inherent to those electrodes that 
lead to a seizure; (4) to correlate the clinical features 
with the EEG findings in order to determine whether 
the patient has a consistent source of ictal activity, 
which is coming from the location concerning the 
group of channels that present interictal activity; (5) 
to classify and to group those EEG channels that are 
known in advance to lead to seizures in order to 
extract similarities in their behavior, so a common 
behavioral pattern could be found; (6) to find a 
suitable classifier that discriminates in the feature 
space the two regions of electrodes leading and not 
leading to an ictal state. 
 
 
2 Method 
Eight children with medical refractory partial 
seizures that underwent pre-surgical evaluation have 
been analyzed in this study. The subdural EEG data 
was recorded using XLTEK Neuroworks Ver.3.0.5 
(equipment manufactured by Excel Tech Ltd. 
Ontario, Canada). Sampling frequency of 500Hz with 
0.1-70 Hz bandpass filter settings and 12 bits A/D 
conversion were used to obtain the digital EEG 
recordings.  
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To classify those electrodes that lead to an 
epileptic seizure, a program was developed in order 
to quantify the patterns that are inherent to those 
electrodes. Input data in this study was subdural EEG 
segments from 20 to 3600 seconds of duration of 
epileptic patients. The first step in the procedure 
involved identifying the pertinent electrodes in the 
overall interictal EEG recordings in which the 
seizures occurred.  The physicians performed this 
task initially through visual inspection of the 
recorded data. A computer program was earlier 
[4],[6] developed in order to detect automatically 
interictal spikes so as to provide more accurate and 
consistent input data to the proposed classification 
algorithm.  

The classification algorithm consists of the 
following steps. Results obtained are revealed in the 
next section in order to assess both the validity of 
such steps and the merit of each step for identifying a 
suitable linear classifier.  
Step 1- Filtering the input EEG data  
In this preprocessing step, filtering was performed 
applying the Singular Value Decomposition (SVD), 
which is based on the eigenvalues decomposition 
[7,8].  The larger singular values were retained (in 
this case the first five were deemed sufficient for the 
analysis), so a better approximation is obtained, or 
equivalently, more information is contained in that 
approximation and the other values are set to zero, 
thus a new matrix was created. The approximated 
matrix, containing less noise was used in the 
subsequent steps. This implementation concluded the 
filtering preprocessing step.  
Step 2- Assessment of the EEG Nonlinear Dynamics 

Since brain dynamics are nonlinear, this study 
investigated methods such as the calculation of 
correlation dimension integral, mobility and 
complexity.  

The correlation dimension integral )r(R given in 
equation (1) is a measure of spatial organization, 
where the space is occupied by a set of random 
points. It determines the degree of complexity in the 
EEG signal.  
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Where, r is the threshold value used to 
evaluate the similarity between two reconstructed 
vectors Xi and Xj.  N is the total number of points in 
the time series. The vector iX  is a point in the 
embedded phase constructed from the input EEG 
signal as a single time series according to the 
following formula: 

( )τ−+τ+τ+= )1m(X,....2X,X,XX iiiii , where m is the 
so called embedding dimension and τ  is a time 
delay. 

Additionally, the Hjorth's parameters, mobility 
and complexity were calculated using equations 2 
and 3. Mobility (equation 2) gives a measure of 
deviation of the voltage changes with respect to 
deviation of the EEG voltage amplitude, while 
complexity (equation 3) provides a measure of 
excessive details with regard to the slightest possible 
signal’s shape [9, 10]. The mobility is computed 
using the following formula. 
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where σ  is the variance and 'y is the first derivative 
of the primary signal y . The complexity, 

))t(y(C involves the first derivative of the mobility 

)'y(M and the mobility of the signal itself )y(M and it 
is expressed as: 
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Step 3- Extraction of features from the EEG data 

The next step dealt with extracting features from 
the filtered EEG matrix using the aforementioned 
parameters of step 2 in order to discriminate between 
the two groups of electrodes. All these three 
parameters were computed for each electrode 
separately using successive epochs or non-
overlapping windows of 1 second for all the recorded 
subdural EEG data. By computing these parameters, 
a behavior for each feature over time was established 
for each electrode.  
Step 4- Implementation of regression lines for each 
electrode and parameter 

As all the different parameters were represented 
in time, regression lines for all of these parameters 
were calculated in order to keep a suitable track of 
the behavior of each electrode with respect to the 
computed parameter. This also helps in determining a 
linear classifier that separates in the parameter vs. 
time space the two different classes of electrodes. 
One condition to make this study more relevant from 
a clinical point of view was to require from these two 
classes of electrodes to be totally independent in 
terms of source location, and synchronicity of the 
spike firing. After obtaining regression lines for all 
electrodes, two groups of regression lines per 
parameter were created. These computed linear 
approximations were used for each electrode to 
facilitate visualization of the overall trend of each 
electrode. 
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Step 5- Neural network structure for linear 
classification 

At this stage, a plot of the three selected features 
revealed well defined electrodes clusters. No other 
features produced class clusters so compact and 
separated from each other. But extrapolation of this 
mechanism of classification in time did not work as 
anticipated since the time dynamics of the parameters 
strongly changed from one recording to the other, 
despite visible class clustering. In a parameter vs. 
time plot, the separating points between the two 
electrode groups changed from one recording to 
another.  

This is best illustrated in Figure 1. Note that each 
plot is represented only for 20 seconds in two 
different segments of the EEG data. The real time, 
where the data was taken, is displayed at the bottom 
of the two plots. 

In order to consider this relative change and yet 
make real-time classification possible, time 
independent analysis was performed by computing 
for each feature three statistical parameters, namely 
the mean of the regression line that represents the 
feature behavior, the standard deviation of the 
parameter over time and the power of the frequency 
spectrum of the feature over time. 

The average and the standard deviation for each 
regression line were computed for each group of 
electrodes. Also, the Fourier Transform was applied 
to the behavior of each parameter over time and its 
power frequency was calculated for each electrode. 
These statistical parameters were then inputted to an 
artificial neural network (ANN) in order to obtain a 
linear classifier for each feature [6]. Linear decision 
functions could then be established for classifying the 
electrodes based on these statistical parameters. One 
decision function was created exclusively for each of 
the three parameters (correlation, mobility, and 
complexity). These specific decision functions would 
find the optimum separating plane between the two 
classes of electrodes in a 3D space where the axis are 
represented by the statistical parameters used (mean, 
standard deviation, and frequency power).  

The training and testing process was carried out 
using a cross validation training technique. The 
network was trained with a 25 percentage of the EEG 
data and tested in the remaining.  

Establishing an artificial neural network (ANN) 
that is trained to extract seizure-leading features of 
interictal EEG is a significance outcome, since this 
ANN: (1) can help to overcome the subjective factor 
associated with human classification; (2) can serve as 
a second expert for decision process validation; and 
(3) can be used for fast automated seizure leading 

channels detection, even for on-line recordings, 
sparing EEG technicians the tedious task of long-
term monitoring. 

The network configuration used in this research 
consist of 3 input neurons that correspond to the 
mean, standard deviation, and frequency power 
(µ,σ,Φ) of the parameter analyzed. The output would 
be 1 or -1, which indicates if a given channel leads to 
seizure or not, respectively. 

The classifiers are three decision functions of the 
form: 

4321 w)X(w)X(w)X(w)X(f +Φ⋅+σ⋅+µ⋅= ξξξξ    (4) 

 
The subscript ξ is defined as follows:      
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Where X is a vector containing the values of the 
specific parameter (correlation integral, complexity, 
or mobility) for all time windows; w1, w2, w3, and w4 
are coefficients and )X(ξµ , )X(ξσ and )X(ξΦ  

are the mean, the standard deviation, and the 
frequency power of vector X, respectively. 
Electrodes are classified as leading to seizure only if 

0)( >Xfξ   for a specific feature.  
The decision functions consisted of feed-forward 

ANNs trained via back-propagation. These ANNs are 
structured with 3 input neurons and 1 output neuron, 
with linear activation functions. This type of structure 
produces a linear classifier.  
 
 
3 Results 
Results of this study indicate that this EEG analysis 
technique allows defining two regions of electrodes, 
one for electrodes leading to an ictal state and another 
for the remaining electrodes that do not lead to such 
state. Also, using different parameters, 
characterization of the behavior of the interictal EEG 
over time is possible. The rate of missed detections as 
well as the rate of incorrect positive detections were 
extracted and are given in percentages in Table 1.  As 
it can be observed, the complexity results are the best 
compared to the other two parameters. Two 
misclassification percentage rates are calculated: one 
for the group of electrodes leading to seizure (False 
Negative Rate) and the other for to the group of 
electrodes that do not lead to seizure (False Positive 
Rate). 

Making the ANN converges and yielding 
accurate classification results should be emphasized 
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as well as that the separability is achieved because of 
the choices of the 3 discriminant features of mean, 
standard deviation, and frequency power. This in 
itself constitutes a mayor contribution of this 
dissertation.  

In assessing the examples treated before, the 
complexity parameter produces the most consistent 
and reliable results across all 8 patients included in 
the study.  

The total number of electrodes that presented 
interictal activity was 75, out of which 30 lead to 
seizure onset and 45 did lead to an ictal state. The 
following evaluation results were obtained.  

%94Precision =
+

=
FPTP

TP      (5) 

%97=
+

=
FNTP

TPySensitivit      (6) 

%96=
+

=
TNFP

TNySpecificit     (7) 

The terminology used is explained as follows: FP 
(Not leading to seizure), FN (Leading to seizure), FN 
(Leading to seizure), and TN (Not leading to seizure). 

The complexity outcomes are given in Figures 2 
and 3. The red (-) and blue (+.) channels are the ones 
leading and not leading to seizure. Note that the three 
features ( Φσµ ,, ) have great potential for classifying 
electrodes leading to seizure, regardless on what type 
of classifier used with respect to the 3 parameters. 

Key findings can be affirmed as follows: (1) it 
was found that at any window of time along the EEG 
signal (independent of time), acceptable classifiers 
could be obtained using just the complexity values; 
(2) A search for such decision functions across 
patients is ineffectual, because experiments reveal 
that such decision functions are patient dependent; 
(3) It is extremely important that when one is to 
search for such decision functions, electrodes should 
be analyzed only if they are localized in different 
locations and with recorded interictal spikes not 
happening simultaneously. 

Table 2, provides a summary of the results for of 
all the patients. The arrows indicate if for a given 
parameter, the values of the red group of electrodes 
are higher or lower with respect to the blue group of 
electrodes. As can be observed, for 5 patients out of 
8, the complexity values for those electrodes that lead 
to an ictal state are higher than the values of those 
electrodes that do not lead to seizure. Also, the 
mobility values for these five patients behave in the 
same manner. Two patients behave in a similar 
fashion, and their complexity and mobility values are 
reversed if we compare them with the other five 
patients.  

 

Table 2 Lower ⇓ or higher ⇑ values of the leading to 
seizure with respect to the not leading to seizure 

channels. 
Patient Mobility   

(M) 
Complexity 

(C ) 
Correlation 

(R)  
1 ⇑ ⇑ ⇓ 
2 ⇑ ⇑ ⇓ 
3 ⇓ ⇓ ⇑ 
4 ⇑ ⇑ ⇓ 
5 ⇑ ⇑ ⇓ 
6 ⇑ ⇑ ⇓ 
7 ⇓ ⇓ ⇑ 
8 ⇓ ⇑ ⇑ 

 
A closer look at this table reveals the following 

conditions: If we assign a negative (-) to ⇓ and a (+) 
to ⇑, then, the following relations hold:  

0RCM
0CM
0RM

0RC

<∗∗
>∗
<∗
<∗

                         (8) 

These relations as established in equation 8 
constitute another mayor observation in this study. It 
could be concluded that the integration of these 3 
parameters could augment our results.  

 
 

4 Conclusion 
The likelihood of the success of surgery is increased 
when all test results point to a single epileptogenic 
focus [11-14]. The unique contribution of our study is 
to understand better the characteristics of the 
different interictal epileptiform activities. In all of 
these performance values of the 3 parameters 
implemented, it can be said that the results obtained 
show great promise in delineating electrodes that lead 
to seizure from those that do not.  It is fitting to note 
that when our results failed to discriminate between 
these two sets of electrodes, a clinical analysis 
revealed that those electrodes were indeed situated in 
the same region and their interictal spikes were 
happening simultaneously. As this study will involve 
a higher number of patients as they become available, 
additional results will provide more credence to our 
findings. 

The uniqueness of this algorithm is in the 
establishment of a mathematical foundation capable 
of extracting features from interictal EEG signals 
using the above mentioned parameters, which served 
as change indicators for our analysis. The integration 
of several parameters (correlation integral, mobility, 
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and complexity) constitutes a unified method for 
assessing differences in the EEG channels.  
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Fig. 1 Electrode clusters changing their relative location in the feature vs. time plot. 
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Fig. 2 Complexity results for patient 4.  

 
 
 

 
Fig. 3 Complexity results for patient 6. 

 
 

Table 1 Percentage of misclassification (results have been averaged across all EEG segments). 
Patient 

List 
Correlation 

FNr 
Correlation 

FPr 
Mobility 

FNr 
Mobility 

FPr 
Complexity 

FNr 
Complexity 

FPr 

Patient 1 40.7 % 0.0 % 14.3 % 12.9 % 14.3 % 0.0 % 
Patient 2 37.5 % 0.0 % 20.0 % 0.0 % 0.0 % 0.0 % 
Patient 3 0.0 % 8.2 % 0.0 % 0.0 % 0.0 % 0.0 % 
Patient 4 33.3 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 
Patient 5 0.0 % 5.0 % 0.0 % 0.0 % 0.0 % 0.0 % 
Patient 6 28.6 % 0.0 % 14.3 % 0.0 % 14.3 % 0.0 % 
Patient 7 42.8 % 0.0 % 28.6 % 0.0 % 14.3 % 0.0 % 
Patient 8 42.8 % 5.0 % 14.3 % 0.0 % 0.0 % 0.0 % 
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