
Haze: Privacy-Preserving Real-Time Traffic Statistics

Joshua W. S. Brown Olga Ohrimenko Roberto Tamassia
{jwsbrown,olya,rt}@cs.brown.edu

Brown University
Providence, RI 02912

ABSTRACT
We consider mobile applications that let users learn traffic
conditions based on reports from other users. However, the
providers of these mobile services have access to such sensi-
tive information as timestamped locations and movements
of its users. In this paper, we introduce the model and
general approach of Haze, a system for traffic-update appli-
cations that supports the creation of traffic statistics from
user reports while protecting the privacy of the users. We
also present preliminary experiments that indicate potential
for a practical deployment of Haze.

Categories and Subject Descriptors
D.4.6 [Security and Protection (K.6.5)]: Cryptographic
controls

General Terms
Security

Keywords
Privacy, traffic statistics, private aggregation

1. INTRODUCTION
Several popular mobile applications provide real-time traf-

fic data to its users. This data comes from the users them-
selves, who contribute fresh data by uploading their GPS
coordinates. For example, the Waze app leverages 30 mil-
lion users to offer real-time traffic updates (see Figure 1).

User location data, however, contains very sensitive infor-
mation. Analyzing GPS travel data can reveal the location
of an individual’s house and work, since there is a limited
number of possible routes that one can take [8]. Moreover,
since these data points are timestamped, one can also learn
home departure and arrival times, as well as trip duration
and purpose [2, 11].

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Owner/Author.
Copyright is held by the owner/author(s).
SIGSPATIAL’13, Nov 05-08 2013, Orlando, FL, USA
ACM 978-1-4503-2521-9/13/11. http://dx.doi.org/10.1145/2525314.2525323
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Figure 1: Snapshot
of Waze traffic update.
The icon with multiple
cars indicates a traf-
fic jam and the color
of the roads shows the
traffic speed.

The challenge in preserv-
ing user privacy in services
such as Waze is due to the
nature of their functional-
ity. In order to give qual-
ity service to its users, lo-
cation data has to be col-
lected for aggregation and
statistical processing. How-
ever, we observe that pre-
cise user data is not re-
quired to provide traffic in-
formation such as current
speed on the roads or pres-
ence of congestions. Con-
sider the traffic informa-
tion displayed by Waze in
Figure 1. It consists of
color-coded road segments
representing traffic level,
which is enough to plan
routes effectively. To re-
port such statistics, the ser-
vice provider only needs to
know if enough drivers are traveling at full speed, or if a sig-
nificant number of users has reported slight or severe delays.
Also, note that the maps display no data for the less-traveled
roads. Conveniently for this type of application, areas which
do not receive enough observations to allow reliable statis-
tics are typically not a source of travel delays and can be
safely ignored.

Motivated by the goal of providing privacy protection in
crowdsourced real-time traffic update services, we propose
a privacy-preserving version of such services, called Haze.
Given that the data used by the navigation mobile app is
already contributed by the drivers, we show that also the
aggregation functionality can be outsourced and distributed
among the users. Moreover, we develop a method that, al-
lows meaningful traffic statistics to be extracted even when
operating on data encrypted by users.

Haze is a history-independent protocol that is invoked by
the service provider whenever she wishes to update the traf-
fic map. Figure 2 gives a high-level overview of the Haze
framework. The task of traffic map update is outsourced to
the users and is split in several phases: some users upload
their data (users on the left in Figure 2), while others aggre-
gate this data (users, aka authorities, on the right), and the
final result is reported back to users by the service provider.

530



Smith	  Str	  
20-‐30mph	  

Atwells	  Ave	  
30-‐40mph	  

Charles	  Str	  
20-‐30mph	  

1.	  Upload	  Traffic	  Data	   2.	  Crowdsource	  Data	  Aggrega8on	  

Sta6s6cs	  

3.	  Announce	  Traffic	  
Status	  

U
se
rs
	  

Real-‐*me	  Traffic	  
Update	  Service	  

U
se
rs
	  (A

ut
ho

ri*
es
)	  

Figure 2: Haze overview: 1. Traffic data is uploaded
encrypted by the users. 2. Other users (authorities)
process encrypted data to extract aggregate statis-
tics. 3. Traffic statistics are published by the service
provider.

We reduce data upload to a voting protocol where instead
of sending the exact data value, the user casts a vote for an
observation that fits his data, e.g., instead of sending 45mph
as his current speed, he votes for the range 40–50mph. The
user’s vote is protected by encryption performed by the user
before the upload. Hence, neither the service provider nor
authorities have access to plain data of other users. Au-
thorities tally the encrypted votes for all observations and
report those that are deemed significant, i.e., enough users
have reported the same observation.

Haze also takes into account privacy leaks that data en-
cryption cannot solve, as well as some of the problems it
introduces. First, a potential privacy leak due to multiple
runs of Haze arises when a user is not present at all invo-
cations, e.g., because the user reached his destination. The
Haze protocol guarantees differential privacy [7], i.e., it pro-
tects the privacy of each individual user by adding noise to
the reported statistics so that a user’s observation cannot
significantly change the traffic status. Secondly, submitting
encrypted data may encourage malicious users to report in-
valid data, e.g., by submitting speed reports for multiple
roads. Haze prevents this behavior by enforcing users to
prove the validity of their submitted observations.

In this paper, we introduce a general approach for real-
time privacy-preserving traffic statistics. Unlike previous
work in this area [12, 13, 14, 15], we model gathering of
traffic data as a voting protocol that allows us to hide the
exact number of users that have made a certain observa-
tion. Our approach also supports differential privacy, which
prevents an individual user vote from changing the reported
statistics. Previous work on protecting location-based data
either employs a centralized model, where a trusted curator
adds noise to the data [1, 9], or a distributed framework that
only supports reports for a single aggregated result [14, 15].
We also overview preliminary experiments conducted on a
simulation of Haze, using a real-world dataset. An extended
version of this paper presents the Haze protocol, its crypto-
graphic primitives, and a formal security analysis [3].

2. MODEL

We refer to the provider of the traffic information service
as the server and to the drivers that use this service, e.g.,
by downloading an app, as the users. The subset of users
that participate in the aggregation phase is referred to as
the authorities. Data aggregation is more expensive than
data upload, hence, the role of an authority is assigned at
random every time the protocol is invoked.

Since the protocol is run on modern mobile devices, the
application can easily determine the GPS coordinates of a
user. We assume that user speed can be automatically de-
termined by two timestamped GPS coordinates. Other data
such as traffic jam, accident, hazards, road closure, gas sta-
tion, or presence of a speed camera are manually entered by
a user. We also assume that roads and their partition into
segments by the server are publicly available and the user
can determine them from his GPS coordinates.

Our method can report aggregates of the above obser-
vations. As noted earlier, in order to report such data, the
service provider does not need to know how many users have
reported the presence of a traffic jam, as long as she knows
that enough users have observed it. We model such func-
tionality as a voting procedure: users vote either 0 or 1 if
they observed some event or not, the votes are then tallied,
and the event is reported only if there were enough obser-
vations. For example, for speed reports, we create several
non-overlapping speed ranges that users can vote for. A user
then votes for the speed range that corresponds to his travel
speed. To report the speed on segment i, one can pick the
range that at least Ti users have voted for.

We assume that users that upload their data are legitimate
users and have a certified signing public key that allows them
to sign their messages to the server. This allows anyone
downloading the message to verify that it came from a valid
user and has not been tampered with.

The server is malicious and is interested in learning as
much as possible about user data and, hence, cannot be
trusted. The server may also collude with users and at most
half of the authorities. The users are not trusted with their
data reports and may try to swing traffic in their favor.
In view of this attack model, Haze guarantees the following
properties. Server and Authority Obliviousness [15]: the ser-
vice provider and the authorities should not learn anything
about user data beyond the aggregated information. User
Differential Privacy: the user’s data is protected by a differ-
entially private mechanism that adds noise to the statistics
before it is released. User Accountability: Haze verifies that
data uploaded by the users is valid without learning individ-
ual information. Fault Tolerance: Haze can report statistics
as long as at least half of the users serving as authorities
remain active during an invocation. Moreover, we do not
require all legitimate users to participate in the protocol ev-
ery time it is invoked.

3. HAZE
The Haze protocol is invoked every time the service provider

wishes to report statistics about a certain event, e.g., aver-
age speed or presence of road work. The protocol consists
of three phases: Setup, Data Upload, and Aggregation.

The service provider, aka the server, is involved in every
phase of the protocol while users are engaged in two of the
three phases depending on their role. In particular, a user
can either contribute to the protocol by providing his traffic

531



observation or by assisting in the privacy-preserving aggre-
gation of the data provided by other users (the authorities).

During the Setup phase, the authorities establish encryp-
tion keys to allow users to encrypt their observations. The
server also specifies the set of plausible candidate observa-
tions for this event. Next, the users participate in the Upload
phase, where they send encrypted data to the server. The
transmitted data record consists of the votes by the user
for the candidate observations. Note that authorities also
can participate in this phase. Finally, during the Aggrega-
tion phase, the authorities operate on encrypted user data
to report data of the event in question. In this phase, the
authorities tally user votes, add noise to preserve the privacy
of individual votes, and notify the server of observations that
were reported by a significant number of users.

Haze is history independent and does not rely on a fixed
set of participating users (and, hence, authorities). Thus,
the role of a user is established during the setup phase of a
single invocation of Haze and can change the next time the
protocol is run. More importantly, the encryption keys that
are created during the setup phase are used only once.

Setup: The server sets up the protocol by specifying
a type of traffic for which she wishes to collect statis-
tics. She then picks a set C of possible categories of val-
ues for this event. For example, depending on the event
candidate observations could be C = {“traffic jam”} or
C = {(0, 30), (30, 60), (60, 90)} to denote speed ranges. The
server also picks N road segments for which she is interested
in traffic statistics. For each road segment i, she sets a min-
imum threshold Ti on the number of users that report an
observation for the statistics to be deemed significant.

The protocol relies on a set of users, A, called authorities,
to perform aggregation on user data in a privacy-preserving
manner. The authorities are picked at random to reduce the
chance of selecting users that may collude with the server.
A user may flip a coin and decide if he is an authority or
not. However, he may lie about the outcome of his coin.
To make this process publicly verifiable, we propose that
users extract randomness from a publicly verifiable random
source, such as temperature at an airport or stock-index
price. The authorities generate and announce the public
key PK and store their individual share of the secret key.

Data Upload: A user reports an observation by casting a
ballot V . Let C denote the size of set C of possible categories
for an event. Then the ballot V is a C-tuple of binary votes
on the observation categories for the event. The user votes 1
for only one category and 0 for the rest. Let r(j) be the
road segment that user j is traveling on, and let s(j) be his
observation (e.g., s(j) = 40mph). Instead of sending value
s(j), the user casts vote 1 for the component of the ballot
associated with the category c that includes value s(j), that
is, the user sets V [c] = 1 for category c such that s(j) ∈ c
(e.g., c denotes the speed range (30, 60)) and V [d] = 0 for
any other speed range d ∈ C −{c}. A user hides his location
by casting a fictitious ballot of 0’s for all other road segments
in the system besides its real ballot for road segment r(j).
Thus, each user submits N ballots with C votes each.

Since all the communication between the users is done via
the server, user encrypts the votes in the ballot by using the
public key PK, which had been generated by the authorities
during the setup phase.

To detect invalid votes cast by users, whether with mali-
cious intent or due to glitches, users submit a proof of the

integrity of the votes without revealing their value. In par-
ticular, each user has to give a proof that in his ballot, at
most one vote is 1 and the remaining votes are 0. Overall,
a user j submits a ballot Vj [i] (consisting of C encrypted
votes) for every road i, and a proof Πj of the validity of the
ballots.

Aggregation: The aggregation phase begins after the
server receives and forwards to the authorities the encrypted
ballots (Vj [i]) and proofs of integrity (Πj). We assume that
the server will forward all data received since she is inter-
ested in providing informative service to her users and stay
competitive with similar applications.

Every authority verifies the integrity of the users’ votes by
running a verification protocol on the encrypted ballots Vj [i]
of every user j, using proof Πj . Once all the votes are veri-
fied, every authority tallies the votes for every road segment
and category into an array E. Note that E contains en-
crypted sums of votes since we assume the underlying crypto
system allows addition of encrypted values.

We wish to protect every user from an adversary who is
trying to trace the user between several runs of Haze. Since
a user leaving the protocol may lead to changes in the traffic
results reported for the road he was traveling on, and in turn
reveal the information we are trying to hide. We protect
from such attacks by adding noise to the statistics before
releasing them to the service provider. In particular, we
make the output of the protocol differentially private. Thus,
the change in the protocol output caused by an individual’s
data is bounded.

4. RELATED WORK
In PrivStats [13], mobile users report encrypted posi-

tion data to location-based applications via a trusted device
that generates noise and performs decryption of aggregated
statistics. Hence, PrivStats’s trust model is very different
from ours. The system by Carbunar et al. [5] collects aggre-
gated location-based statistics via a voting protocol. Unlike
Haze, it relies on a trusted third-party for privacy protec-
tion, it does not support differential privacy, and assumes
that users receive encryption keys from the service provider.

Monreale et al. [12] describe a differentially-private mech-
anism that allows every node to report a perturbed trajec-
tory of its moves, while preserving privacy of the individual
moves. However, perturbing the reported trajectory does
not hide the link between the user and his data, and reveals
the behavior trend to the server. On the other hand, in
the framework of Rastogi and Nath [14] and that of Shi et
al. [15], the server never sees user data in the clear. In their
schemes, every user adds noise to his data, encrypts it, and
sends it to the server, who then aggregates received data.
Both methods are described in the scenario where all users
are observing the data that can be aggregated into a single
result, e.g., sum over data points of the same type. It be-
comes tricky to adapt these methods to statistics over mul-
tiple traffic events that we consider here, where every road
has its own set of observations. Also, Haze applies a differ-
entially private mechanism to the aggregated result instead
of adding noise in a distributed manner before aggregation,
which can potentially reduce the utility of the final result.

Sepia [4] describes a framework for private monitoring of
network traffic for multiple events. Their approach is sim-
ilar to ours in the sense that the system also consists of
input peers, who deliver their data encrypted, and privacy

532



peers (called authorities in our protocol), who perform ag-
gregation of this data. Although the setup is similar, the
cryptographic primitives used for data collection and aggre-
gation are very different from those of Haze. Additionally,
the statistics reported by Haze are differentially private.

5. EXPERIMENTAL RESULTS
We have developed a preliminary prototype implementa-

tion of Haze based on several primitives implemented in the
Civitas [6] voting system. The experiments were conducted
on a 32 core 2.6GHz Opteron 6282 SE with 64GB RAM run-
ning 64bit Debian Wheezy. We used data from the TAPAS
Cologne Project [10]. This dataset contains actual GPS co-
ordinates and speeds of drivers in the city of Cologne, as
measured during a 6am–8am time period.

In Table 1, we measure the total time to run the proto-
col for different numbers of users and 10 authorities. The
reported time is the total time it takes to run Haze. We
allowed one core per protocol participant (the time for 100
participants is estimated from the total time of the sequen-
tial execution). It is interesting to note that our protocol
takes advantage of the growing number of users since some
steps of the aggregation phase can be distributed over a
larger set of users.

In Figure 3, we show the split of the total time across
different phases in the protocol for 30 users and 5 authorities.
The most expensive part of the protocol is the aggregation
phase. We also vary the number of observation categories
that users can vote for: a single category in Figure 3 (left)
(e.g., whether road work has been observed) and 3 categories
(e.g., low/mid/high speed ranges) in Figure 3 (right).

Table 1: Total time to run Haze for N = 100 roads,
|C| = 3, |A| = 10 and T = 10 for all roads.

Number of Users 20 25 30 100
Total Protocol Time (secs) 351 314 274 40

Figure 3: Breakdown of the running time of the
Haze protocol into phases for 30 users, |A| = 5,
|C| = 1 (left) and |C| = 3 (right).

Acknowledgments
This research was supported in part by the National Science
Foundation under grants IIS-1212508 and CNS-1228485.
We are grateful to Isabel Cruz for valuable advice on this
project. We also thank Naphtali Rishe and Goce Trajcevski
for useful discussions.

References
[1] R. Assam, M. Hassani, and T. Seidl. Differen-

tial private trajectory protection of moving objects.
In ACM SIGSPATIAL Workshop on GeoStreaming,
IWGS, pages 68–77, 2012.

[2] T. Bhattacharya, L. Kulik, and J. Bailey. Extracting
significant places from mobile user GPS trajectories:
a bearing change based approach. In ACM Conf. on
Advances in Geographic Information Systems, SIGSPA-
TIAL, pages 398–401, 2012.

[3] J. W. S. Brown, O. Ohrimenko, and R. Tamassia. Haze:
Privacy-preserving real-time traffic statistics. CoRR,
abs/1309.3515, 2013.

[4] M. Burkhart, M. Strasser, D. Many, and X. Dim-
itropoulos. SEPIA: privacy-preserving aggregation of
multi-domain network events and statistics. In USENIX
Conf. on Security, 2010.

[5] B. Carbunar, M. Rahman, J. Ballesteros, and N. Rishe.
Eat the cake and have it too: Privacy preserving
location aggregates in geosocial networks. CoRR,
abs/1304.3513, 2013.

[6] A. M. Davis, D. Chmelev, and M. R. Clarkson. Civitas:
Implementation of a threshold cryptosystem. Comput-
ing and Information Science Technical Report, Cornell
U., 2008. http://hdl.handle.net/1813/11661.

[7] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Cal-
ibrating noise to sensitivity in private data analysis. In
Theory of Cryptography, TCC, pages 265–284, 2006.

[8] V. V. Elango, S. Khoeini, Y. Xu, and R. Guensler. Lon-
gitudinal GPS travel data and breach of privacy via
enhanced spatial and demographic analysis. In Trans-
portation Research Board 92nd Annual Meeting, 2013.

[9] L. Fan, L. Xiong, and V. Sunderam. Differentially
private multi-dimensional time series release for traffic
monitoring. In 27th Annual IFIP WG 11.3 Conference,
DBSec, pages 33–48, 2013.

[10] TAPASCologne Project. Accessed in June, 2013.

[11] J. Krumm. Inference attacks on location tracks. In Int.
Conf. on Pervasive Computing, PERVASIVE, pages
127–143, 2007.

[12] A. Monreale, W. Wang, F. Pratesi, S. Rinzivillo, D. Pe-
dreschi, G. Andrienko, and N. Andrienko. Privacy-
preserving distributed movement data aggregation. In
Geographic Information Science at the Heart of Europe,
AGILE, pages 225–245, 2013.

[13] R. A. Popa, A. J. Blumberg, H. Balakrishnan, and F. H.
Li. Privacy and accountability for location-based aggre-
gate statistics. In ACM Conf. on Computer and Com-
munications Security, CCS, pages 653–666, 2011.

[14] V. Rastogi and S. Nath. Differentially private aggrega-
tion of distributed time-series with transformation and
encryption. In ACM Conf. on Management of Data,
SIGMOD, pages 735–746, 2010.

[15] E. Shi, T.-H. H. Chan, E. G. Rieffel, R. Chow, and
D. Song. Privacy-preserving aggregation of time-series
data. In Symp. on Network and Distributed System Se-
curity, NDSS, 2011.

533


