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Abstract—Aerial imagery is a powerful tool when it comes to
analyzing temporal changes in ecosystems and extracting valuable in-
formation from the observed scene. It allows us to identify and assess
various elements such as objects, structures, textures, waterways, and
shadows. To extract meaningful information, multispectral cameras
capture data across different wavelength bands of the electromagnetic
spectrum. In this study, the collected multispectral aerial images
were subjected to principal component analysis (PCA) to identify
independent and uncorrelated components or features that extend
beyond the visible spectrum captured in standard RGB images. The
results demonstrate that these principal components contain unique
characteristics specific to certain wavebands, enabling effective object
identification and image segmentation.

Keywords—big data, image processing, multispectral, principal
component analysis.

I. INTRODUCTION

THE technological advancements of the past have unde-
niably improved the overall quality of life in society.

However, these advancements have also led to negative im-
pacts on our ecosystem, resulting in serious consequences such
as climate change, global warming, rising sea levels, extreme
weather events, and air and sea pollution [1].

To assess the effects of these consequences, one effective
approach is the use of multispectral aerial imaging, which
involves capturing aerial imagery from unmanned aerial ve-
hicles (UAVs) and analyzing temporal changes reflected in
different wavelength bands of the electromagnetic spectrum.
A significant challenge faced with multispectral images is the
presence of clouds or haze caused by pollution. Clouds and
gases can obstruct parts of the scene or reduce visibility due to
light refraction, altering the way the camera perceives ground
colors [2]-[5].

Brauers et al. [6] affirm that multispectral cameras offer
superior color fidelity compared to RGB cameras, thanks to
their different methods of color acquisition with dedicated
filters. But, obtaining these images is difficult in their own
right because of the spatial resolution [7], [8]. Given these
challenges, there is a need to find new ways to obtain
more informative multispectral images that fully utilize the
information in their respective wavebands. These multispectral
images encompass 8 bands of color information compared to
the standard three channels of the RGB model, which opens

possibilities for incorporating both qualitative and quantitative
aspects of the analysis [9].

This study proposes using principal component analysis
(PCA) to identify all independent and uncorrelated com-
ponents in multispectral aerial images and understand their
potential implications for different elements within the scene.
[10]-[12] Once the green areas, trees, waterways, buildings,
roadways, roofs, etc., have been extracted, it becomes possible
to assess the damage caused by extreme weather events, such
as destruction, flooding, and fallen trees, by comparing the
scenes before and after the event. Additionally, longitudinal
studies of multispectral aerial imagery enable the assessment
of the lasting effects of global warming and sea level rise on
various areas viewed through multispectral imaging.

By separating multispectral images into their principal com-
ponents, we can ascertain the contribution of each independent
component in extracting or segmenting specific elements of
the scene, leading to valuable insights into environmental
monitoring and understanding the impact of human activities
on our ecosystem.

II. DATA

The dataset utilized for evaluating the proposed approach
consisted of multispectral aerial imagery obtained from the
WorldView-3 satellite, provided by Geoimage. The specific
image used in this study captures the city of Adelaide, South
Australia, as shown in Figure 1. Table 1 presents a summary
of the bands captured by the satellite sensor, including their
respective names, wavelengths, and resolutions, as provided
by Geoimage company[13]. The dimensions of the image are
4259x4277x8 pixels, with each pixel containing information
up to a 16-bit integer representation.

III. METHODOLOGY

A. Pre-processing

In this study, we utilized the MatLab R2023a platform to
transform the aerial image from a three-dimensional matrix
(MxNxK) to a two-dimensional matrix (MNxK). To change
the matrix dimension, we employed a column-by-column flat-
tening technique, wherein we traversed the matrix by columns
and concatenated the elements into a single-dimensional vec-
tor. This process was applied to all 8 bands, resulting in
8 one-dimensional vectors that were subsequently arranged
into a two-dimensional matrix. This step was necessary since



TABLE I
WORLDVIEW-3 BANDS

Number Name Wavelength (µm) Resolution (m)

1 Coastal 0.400-0.450 1.24
2 Blue 0.450-0.510 1.24
3 Green 0.510-0.580 1.24
4 Yellow 0.585-0.625 1.24
5 Red 0.630-0.690 1.24
6 Red Edge 0.705-0.745 1.24
7 NIR1 0.770-0.895 1.24
8 NIR2 0.860-1.040 1.24

Fig. 1. Original image from WorldView-3 of Adelaide, South Australia in
full detail.

MatLab requires a two-dimensional matrix for performing
PCA. The resulting matrix size has a total of 18,215,743 pixels
for each of the 8 bands.

B. Principal Component Analysis

To initiate the PCA process, the mean vector µ of the
columns is computed to center the data. The mean-adjusted
matrix is obtained by subtracting this mean vector from
the original data. Then, eigenvectors and eigenvalues are
computed using the EIG decomposition method. Prior to the
decomposition, the covariance matrix of the image needs to be
calculated. Equation 1 illustrates the procedure for computing
the covariance matrix, where X0 represents the mean-adjusted
matrix.

CX0
= X0X

T
0 (1)

With our dataset, the covariance matrix would be 8x8
dimensions. With this covariance, we obtain the eigenvalues
which are an 8-element vector, and the eigenvectors which
are an 8x8 matrix. After ordering our eigenvectors using the
eigenvalues in the descending method, we are able now to
perform the transformation into principal components. To do
this, we multiply our mean-adjusted matrix (X0) with the
eigenvectors (A) as given in equation 2.

Y = X0A (2)

TABLE II
PCA SUMMARY

Number Explained (%) Eigenvalue (x105)

1 74.567 4.037
2 22.341 1.210
3 1.305 0.071
4 0.904 0.049
5 0.464 0.025
6 0.194 0.011
7 0.173 0.009
8 0.053 0.003

To present the image accurately, we need to restore the
matrix dimensions to their original size by performing the
reverse flattening process as seen above. Each of the 8 bands
now corresponds to a principal component.

IV. RESULTS

We analyze our principal components and assess the per-
centage of information each component contributes to the
entire image. Table II provides these percentages, and the
eigenvalues for each component arranged in descending order.
The first two principal components already capture more than
95% of the information contained in the image. However, we
note that the components containing the remaining 5% should
not be underestimated, as they could still contain relevant
characteristics or features in the analysis of the viewed scene.

In addition to analyzing the principal components through a
table, we also generate visual representations of each principal
component as images. Figure 2 depicts each principal compo-
nent individually. By visually examining principal components
1 and 2, we can validate the findings presented in Table II. On
the other hand, the remaining principal components appear to
contain minimal to no information, as evident from the lack
of discernible details.

However, upon closer examination by zooming in on these
images, intriguing features or patterns that were initially unno-
ticed can be revealed. This phenomenon is particularly evident
when analyzing principal component 2. Figure 3 provides a
comparison between principal component 2 and the original
image, focusing on the same area. Initially, in the original
image, the region surrounding the orange square appears to be
a typical grassy area. However, a closer inspection of principal
component 2 indicates that it does not possess the same color
as other grassy areas, as evidenced by the regions within the
red square. Instead, upon observing the areas within the blue
square, we can observe that it shares the same color as the
river. In other words, the green circular area in the original
image, which was presumed to be grass, is in fact water. Upon
verifying through Google Maps, it was confirmed that this is
a pond named Model Boat Pond.

This is not the only principal component that demonstrates
such behavior. By examining principal component 4, we also
discover some fascinating insights. Figure 4 illustrates how this
component emphasizes objects with significant reflection. In
this specific instance, two buildings reflect the rays of the sun,
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Fig. 2. Representation of all 8 principal components of the original image

and these reflections are prominently visible in the principal
component.

As indicated in Table II, principal component 3 contributes
slightly over 1% of the overall image information. However,
what makes this small portion of information intriguing is its
content. Upon zooming in on the roads within the image, one
can observe the presence of small rectangles that consistently
follow a specific pattern - a combination of white or gray
with a black dot at one end. Upon comparing these rectangles
with the original image, it becomes evident that they represent
vehicles on the road. Figure 5 visually presents the comparison

(a) Original

(b) PC2

Fig. 3. Comparison between the original image and principal component 2

and representation of these vehicle rectangles.
Lastly, a single principal component can assist in identi-

fying multiple objects or structures within an image. This is
exemplified by principal component 2, which not only aids
in identifying water bodies but also helps to identify trees.
Remarkably, these trees can be observed even in proximity to
buildings or within the shadows of other structures. Figure 6
highlights areas within red squares where trees, which were
inconspicuous in the original image, become apparent with the
assistance of principal component 2.



(a) Original
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Fig. 4. Comparison between the original image and principal component 4

V. CONCLUSION

The results obtained with the proposed PCA-based approach
demonstrate that each principal component contains relevant
information for identifying specific structures in the multispec-
tral images, such as water bodies, trees, green areas, and the
different urban structures. The merits of this research extend
to resolving ambiguous situations, such as green pond water
vs. green areas, and for extracting objects in shaded areas, that
standard image segmentation techniques would fail to resolve.
Our research group is working to expand and augment the

(a) Original
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Fig. 5. Comparison between the original image and principal component 3

present method by incorporating the independent component
analysis (ICA) to address added variability in the images and
the challenging issues of the multispectral nature of fog and
clouds. The first finding, in terms of fog and clouds, is that they
contribute to more than a single PCA component, and a future
research endeavor is to determine the extent and weight of their
contributions to the different PCA components before their
successful removal to reveal the hidden scenery and structures.
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Fig. 6. Comparison between the original image and principal component 2
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