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ABSTRACT
The evolution of the World Wide Web (WWW) and the
smart-phone technologies have played a key role in the rev-
olution of our daily life. The location-based social networks
(LBSN) have emerged and facilitated the users to share the
check-in information and multimedia contents. The Point
of Interest (POI) recommendation system uses the check-in
information to predict the most potential check-in locations.
The different aspects of the check-in information, for in-
stance, the geographical distance, the category, and the tem-
poral popularity of a POI; and the temporal check-in trends,
and the social (friendship) information of a user play a cru-
cial role in an efficient recommendation.
In this paper, we propose a fused recommendation model
termed MAPS (Multi Aspect Personalized POI Recom-
mender System) which will be the first in our knowledge to
fuse the categorical, the temporal, the social and the spatial
aspects in a single model. The major contribution of this
paper are: (i) it realizes the problem as a graph of location
nodes with constraints on the category and the distance as-
pects (i.e. the edge between two locations is constrained
by a threshold distance and the category of the locations),
(ii) it proposes a multi-aspect fused POI recommendation
model, and (iii) it extensively evaluates the model with two
real-world data sets.
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1. INTRODUCTION
The LBSNs, such as, the Facebook1, the Foursquare2, the

Gowalla3, and so forth have facilitated the users to share the
check-in information of the places of interest. Such check-in
information has been the subject of interest to predict the
POIs that are most likely to be visited in the future. Albeit,
the generic recommendation concept has been used for POI

1
www.facebook.com

2
www.foursquare.com

3
www.gowalla.com
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domain (for instance, the Collaborative Filtering (CF) [5],
the Content Based Filtering [16], and the Hybrid approaches
[13]), its special aspects have motivated the community to-
wards more sophisticated approaches for better results.
The frequency of check-ins varies across different users and
places, resulting in the sparsity of the user-location fre-
quency matrix in comparison to the user-item rating matrix
in the generic systems. The check-in preference to a near
place introduces the spatial aspect (the distance to a POI).
Though the social aspect encourages to incorporate the so-
cial tie (for instance, friendship), it costs the challenge from
the unreliability of check-in information diffusion, as only ∼
96% of people share < 10% of the commonly visited places
and ∼ 87% of people share nothing at all [14]. The temporal
aspect depicts the temporal check-in pattern. For instance,
the popularity of the bars is in the evenings and the nights.
Many other relevant factors, such as, (i) the utility of a POI,
regardless of the distance, cost, (ii) the popularity of the POI
(due to social or other impact), and (iii) the dynamic mo-
bility of a user (trend to visit new places) exist. Although
the problem is well explored [1, 4, 11, 15, 17, 18], the incor-
poration of all the major aspects (the social, the spatial, the
temporal, and the categorical) is barely explored.

2. RELATED RESEARCH

2.1 Simple similarity based approaches
Yuan et. al [17] used the Tobler’s First Law of Geogra-

phy [10], (”everything is related to everything else, but near
things are more related than the distant things”) and pro-
posed a model with the spatial and the temporal aspect.
The similarity between any two users was computed using
the cosine similarity of their check-in profiles. The recom-
mendation score for a user-location pair was computed as
the aggregate of visits count on that location across all the
users. The temporal similarity was incorporated by assum-
ing the similarity of check-ins that have the same location
and the check-in time. The willingness of a check-in was
claimed to have an inverse relation to the distance. The so-
cial, and the categorical aspects were not well defined.
Ye et. al. [15] fused the social and the spatial aspects in their
model. Though the willingness factor and the weighted co-
sine similarity measure was used to compare the user profiles
for the recommendation, they didn’t incorporate the cate-
gorical, and the temporal aspects.

2.2 Graphical approaches
Jin et. al [4] used the personalized PageRank [3] to realize
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the problem as a graph with the users as the nodes, and the
following/followers relation as the directed edges. The rank
of a user with respect to the location and a time range was
defined using the personalized PageRank [3]. The topic sen-
sitive factor for the (user, location (p), time (t1, t2)) tuple
was taken as the ratio of the number of check-ins for the
tuple to the number of check-ins for the (location (p),time
(t1, t2)) tuple over all the users. Similarly, the rank of a
location within a time interval was defined. This model also
ignored the geographical, categorical and the social aspects.
Wang et. al. [11] had the users and the locations as the
graph nodes, the user-user friendship edges, and the user-
location check-in edges. The friendship similarity was real-
ized by starting from the target user and by ranking all the
users (that form user-user link). This was followed by the
ranking of all the places visited by those users. The places
with the highest rank and within a given threshold distance
from the past visits were recommended to the user. Their
model also ignored the categorical aspect.

3. METHODOLOGY
The PageRank [8] approach used the number and the

quality of the links to a web page to estimate its impor-
tance. It was extended to the Topic-Sensitive PageRank
[3] by introducing some bias to the PageRank vector. It
incorporated the set of influential or representative (or ad-
ditional context relevant attributes) topics to address the im-
portance of particular topics. For a given query, it identified
the most closely associated/contextual topics and such rel-
evant topic-sensitive (biased) vectors were used to rank the
documents satisfying the query. The convergence of PageR-
ank is assured only if the graph is strongly connected and
aperiodic [7]. This becomes true if we add the damping con-
stant (1 − α) to the rank propagation which improves the
quality of PageRank not only by limiting the effect of the
rank sinks [2], but also by assuring the convergence to a
unique rank vector [3].
The MAPS is based on the Topic-Sensitive PageRank, where
the representative topics are the spatial and the categorical
aspects of the LBSN. The rank of a location (l) in the context
of a user (u) and the time (t) is influenced by the check-in
history of the user (u) at the time (t). For instance, if a
user’s check-in history has frequent check-ins in Starbucks
coffee shop at 2 pm, then it is more likely that she will visit
a coffee shop at that time in future. This temporal aspect
should be taken care while recommending some coffee (or
relevant category) shops to her. If that coffee shop is in-
accessible, the user might not be surprised if a nearby cafe
is recommended. Such a dual affinity of the time and the
location category has motivated the MAPS to incorporate
the categorical and temporal bias in the POI rankings.
Given two candidate POIs, suggesting the near one is more
relevant [10]. If the check-in history of a user depicts that the
check-ins were made within some distance of other check-ins,
then introducing the distance constraint might give better
recommendation. MAPS uses such check-in trends to incor-
porate the spatial bias in the location ranking problem.
In MAPS, every location is termed as a node of a graph and
the bag of user, time tuple is considered as an attribute of
the location node. The location-location edges exist if they
have the same category or are located within some thresh-
old distance. It uses the categorical and the spatial bias
in its Topic-Sensitive PageRank model. The terms used in

this paper are defined in Table -1. The categorical sensitive
PageRank for MAPS is defined as:

Πc
t1,t2(l) = α ∗ βt1,t2(l) + (1− α) ∗

∑
(l′.cat=l.cat)

Πc
t1,t2(l′) (1)

where βt1,t2(l) is the categoric sensitive factor, defined as:

βt1,t2(l) = τ1 ∗

∑
u∈U
| Vu,t1,t2(l) |∑

u∈U,l.cat=l′.cat
| Vu,t1,t2(l′) |

+τ2 ∗

∑
u∈U,l.cat=l′.cat

| Vu,t1,t2(l′) |∑
p∈L,u∈U

| Vu,t1,t2(p) |

(2)

where τ1, and τ2 are constant tuning factors. The relation
(1) is somewhat similar to LBSNRank [4] but the equation
is specific to our approach.

Terms Definition

Πa
t1,t2(l)

rank of location l in the time range
t1, t2 using the aspect a

βt1,t2(l)
categoric sensitive factor of location

l in the time range t1, t2

θt1,t2(l)
distance sensitive factor of location

l in the time range t1, t2

P (u, l, t1, t2)
likelihood of checkin by user u to
location l in the time range t1, t2

Vu,t1,t2(l)
visits by the user u to the location
l, within the time interval t1, t2

dist(l1, l2) distance between locations l1 and l2

U the users in the dataset

L the locations in the dataset

l.cat category of the location l

ε the threshold distance

α the damping factor

Table 1: Terms used in the paper

Similarly, the distance sensitive rank of a location is defined
using the following relation:

Πd
t1,t2(l) = α ∗ θt1,t2(l) + (1− α) ∗

∑
(l′,l)∈E

Πd
t1,t2(l′) (3)

where θt1,t2(l) is the distance sensitive factor, defined as:

θt1,t2(l) = γ1 ∗

∑
u∈U
| Vu,t1,t2(l) |∑

u∈U,dist(l,l′)≤ε
| Vu,t1,t2(l′) |

+γ2 ∗

∑
u∈U,dist(l,l′)≤ε

| Vu,t1,t2(l′) |∑
p∈L,u∈U

| Vu,t1,t2(p) |

(4)

where γ1, and γ2 are constant tuning factors. The unified
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rank is the fusion of the two ranks and is defined as:

Πt1,t2(l) = ξ1 ∗Πc
t1,t2(l) + ξ2 ∗Πd

t1,t2(l) (5)

where ξ1, ξ2 are tuning parameters for the two aspects.
The likelihood of the check-in for the user i at the location
l within the time frame t1,t2 is defined as:

P (u, l, t1, t2) = Πt1,t2(l) ∗ (ψd ∗
∑
l′∈L,

dist(l,l′)≤ε

| Vu,t1,t2(l′) |)

+ψc ∗
∑
l′∈L,

l.cat=l′.cat

| Vu,t1,t2(l′) |)

+ψs ∗
∑

(u′,u)∈friend

| Vu′,t1,t2(l) |)

(6)

The terms ψd, ψc, and ψs are defined using TF-IDF [9, 12]
for each user. For a user u,

ψd =
nd
n
.log(1 +

N

Nd
) (7)

where nd is the number of visits by the user u that are within
the threshold distance ε, n is the total visits count by u, N
is the number of POIs, and Nd is the number of POIs that
are within the threshold distance ε from the user’s check-in
history. For the categorial factor, we use the relation:

ψc =
nc
n
.log(1 +

N

Nc
) (8)

where nc is the number of visits by the user u to the cate-
gory c, and Nc is the number of POIs with the category c.
Similarly,

ψs =
ns
n
.log(1 +

N

Ns
) (9)

, where ns is the number of visits by the user u in common
to her friends, and Ns is the number of visits in common to
the friends for all the users u ∈ U .
Based on the aspects we considered, we have analyzed the
performance of three different models, the categorical link
based model (CLM) (defined in Eqn. (1) and (2)), the spa-
tial link based model (SLM) (defined in Eqn. (3) and (4)),
and the fused model MAPS (defined in Eqn. (5)).

4. EVALUATION

4.1 DataSet
We used the Weeplaces and the Gowalla dataset [6], which

was collected from the popular LBSNs Gowalla and the
Weeplaces. The Weeplaces dataset has 7,658,368 check-
ins from 15,799 users over 971,309 different locations. The
Gowalla dataset has 36,001,959 check-ins from 319,063 users
over 2,844,076 locations. These datasets were well defined
and had the attributes relevant to the context of the prob-
lem, such as, (i) the location category, (ii) the geospatial
co-ordinates, (iii) the friendship information, and (iv) the
check-in time. After avoiding incomplete records, the 5 most
checked-in categories (and their check-in count) were: (i)
Home/Work/Other: Corporate/Office (437,824), (ii) Food:
Coffee Shop (267,589), (iii) Nightlife:Bar (248,565), (iv) Shop:
Food& Drink:Grocery/Supermarket (161,016), and (v) Travel:
Train Station (152,114) for Weeplaces, and (i) Corporate

Models Precision Recall F-Score
Weeplaces Dataset

Ye et. al [15] 0.02417 0.00095 0.00183
LBSNRank [4] 0.08496 0.00063 0.00125

Wang et. al [11] 0.01818 0.00052 0.00101
CLM 0.00428 0.00024 0.00045
SLM 0.09085 0.00799 0.01468
MAPS 0.29769 0.01039 0.02008∗

Gowalla Dataset
Ye et. al [15] 0.03000 0.00120 0.00230

LBSNRank [4] 0.40900 0.00300 0.00600
Wang et. al [11] 0.10600 0.00200 0.00392

CLM 0.00633 0.00154 0.00247
SLM 0.25350 0.00973 0.01874
MAPS 0.35400 0.03100 0.05700∗

Table 2: Average Performance of MAPS in Weeplaces and
Gowalla dataset

Office (1,750,707), (ii) Coffee Shop (1,063,961), (iii) Mall
(958,285), (iv) Grocery (884,557), and (iv) Gas & Automo-
tive (863,199) for the Gowalla dataset. The work or home-
related category (Home/Work/ Other:Corporate/Office) was
popular from 6 am to 6 pm, with the highest check-ins
(42,019) made at 1 pm. Similarly, the bars had highest of
21,806 check-ins at 2 am and the lowest check-ins (15,209)
at 5 am. Most of the check-ins were at 12 pm - 6 pm and
were either in Home or Work related categories. The Fig-

Figure 1: Impact of distance to check-in trend in Weeplaces
dataset (similar trend of Gowalla dataset is not shown due to space constraint)

ure -1 illustrates the inverse relation of the distance to the
check-in frequency. It was obtained by plotting the distance
between the chronologically sorted consecutive check-ins of
each user and the likelihood of the users’ check-in in that
distance (for ease, the distance was rounded to four deci-
mals). The check-ins centralized within some distance (the
dense patches within 0.5 km) illustrate the willingness to
near places.

4.2 Results
A 5 -fold cross validation with top N (5, 10, 15 and 20)

recommendation scores was used for the precision (P), the
recall (R) and the F-score (2*P*R/(P+R)) metrics.
We used α = 0.85 and the convergence was detected when
the rank scores of the nodes were not changing anymore.
For each model, the tuning parameters were selected from
the random trials conducted with three set of parameters
((0.25:0.75), (0.5:0.5), and (0.75:0.25)). The categoric model
performed best when τ1 = 0.75 and τ2 = 0.25, and for dis-
tance model it was when γ1 = 0.75 and γ2 = 0.25. Similarly,

283



Models Precision@N Recall@N

Ye et. al [15]
@5= 0.0303
@10= 0.0230
@15= 0.0191

@5= 0.0008
@10= 0.0009
@15= 0.0011

LBSNRank [4]
@5= 0.0853
@10= 0.0848
@15= 0.4090

@5= 0.0006
@10= 0.0006
@15= 0.0030

Wang et. al [11]
@5= 0.0449
@10= 0.0414
@15= 0.1060

@5= 0.0014
@10= 0.0020
@15= 0.0022

MAPS
@5= 0.2440
@10= 0.3050
@15= 0.3360

@5= 0.0045
@10= 0.0092
@15= 0.0310

Table 3: Precision@N, Recall@N of MAPS against other
studies

among the three set of parameters the unified model per-
formed best with the categorical aspect weight of 0.25. The
comparative performance of different models is illustrated
in Table -2. The observed difference was statistically signif-
icant at 95% confidence level. The Table -3 lists the average
metrics across the top 5, 10, and 15 recommendation scores.

5. CONCLUSION AND FUTURE WORK
We analyzed the check-in data based on (a) the categori-

cal, (b) the social, (c) the spatial, and (d) the temporal as-
pects. This multi-aspect recommendation model with rea-
sonable performance was a significant contribution to the
relevant area. Our next task is to analyze the same model
against several other contexts, datasets and problem do-
mains.
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