A Supervised Classification Approach to Predicting Knee Pain Improvement in Osteoarthritis Patients

Deya M. Banisakher, Naphtali Rishe, Mark A. Finlayson
(Florida International University, USA)
{dbani001, markaf, rishe}@fiu.edu

Introduction

• Knee osteoarthritis (OA) is the most widely recognized joint illness of adults around the world.
• Early analysis and treatment of OA could counteract disturbance of symptoms3.
• OA-related pain outcome projection is key for opportunite and proper treatment

Problem

• Pain progression is not being projected automatically for doctors.
• Pain levels are self-reported by patients using the Knee Osteoarthritis Outcome Score (KOOS) and the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC)2.
• Current outcome projection methods are statistically heavy – time consuming, complex, and difficult to generalize3.
• Physical doctor visits are time consuming4.

Objective & Solution

Develop and evaluate the efficacy and feasibility of the application of machine learning for long-term OA-related pain outcome projection.

Methods

• Dataset: Osteoarthritis Initiative (OAI) – 10 year study of OA patients.
• Total patients after data cleaning: 2538 patients
• Four types of multi-label classifiers:
 - Support Vector Machine,
 - Random Forest,
 - Multi-layer Backpropagation Neural Network, and
 - Recurrent Neural Network).
• Twelve individual supervised ML classifiers (three for each classifier type) that can classify OAI patients based on pain level at each of the 9 years past the baseline has: improved, unchanged, or worsened
• Labels: KOOS score changes (Figure 3).
• Features include
demographics,
related injuries,
therapies (excluding medications),
overall measures of pain, and
physical activity and associated rest.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Algorithm</th>
<th>Algorithm</th>
<th>Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support Vector Machine</td>
<td>unchanged 0.631</td>
<td>improved 0.653</td>
<td>unchanged 0.567</td>
</tr>
<tr>
<td>Random Forest</td>
<td>unchanged 0.698</td>
<td>improved 0.733</td>
<td>unchanged 0.627</td>
</tr>
<tr>
<td>Backpropagation Neural Network</td>
<td>unchanged 0.725</td>
<td>improved 0.729</td>
<td>unchanged 0.678</td>
</tr>
<tr>
<td>Recurrent Neural Network</td>
<td>unchanged 0.812</td>
<td>improved 0.812</td>
<td>worsened 0.819</td>
</tr>
</tbody>
</table>

Figure 1: Accuracy cross validation results during the training phase

Results

• Cross validation was performed for hyperparameter optimization and overfitting prevention (Figure 1).
• All classifiers performed at better-than-baseline rates (baseline most-frequent-class gives 0.4 F1), with the recurrent neural network performing the best with over 0.8 F1 (Figure 2)

References

Acknowledgments

I would like to thank the CREST CACHÉ leadership: Dr. Todd Crowl, Dr. Rita Totonico, as well as my colleagues: Joshua Eisenberg, Victor Yarbiot, Mohammed Al-Dowsary, Labiba Jahan, and Gregory Murad Reis.