
FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

MIXED SPATIAL AND NONSPATIAL PROBLEMS IN LOCATION BASED

SERVICES

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Jaime Ballesteros

2013

To: Dean Amir Mirmiran
College of Engineering and Computing

This dissertation, written by Jaime Ballesteros, and entitled Mixed Spatial and
NonSpatial Problems in Location Based Services, having been approved in respect
to style and intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Masoud Sadjadi

Christine Lisetti

Malek Adjouadi

Naphtali Rishe, Major Professor

Date of Defense: June 17, 2013

The dissertation of Jaime Ballesteros is approved.

Dean Amir Mirmiran

College of Engineering and Computing

Dean Lakshmi N. Reddi

University Graduate School

Florida International University, 2013

ii

c© Copyright 2013 by Jaime Ballesteros

All rights reserved.

iii

DEDICATION

Esta Disertacion va dedicada muy especialmente a mi familia. Primero mis padres,

Elssy y Jaime, que me dieron todas las herramientas necesarias para poder cumplir

mis metas. El amor, el sacrificio y dedicacion con que nos formaron a mis

hermanos y a mi seran siempre motivo de inspiracion para continuar adelante. A

mis hermanos Lili, Meli, Randy e Isabella, por apoyarme y darme muchas alegrias

y motivos de orgullo.

Por supuesto, no podria faltar la dedicacion a mi hermosa esposa, Pily. Desde que

comenzamos juntos este viaje, siempre ha estado conmigo compartiendo todos los

momentos, lo mas felices y los mas dificiles y nunca ha desistido. Para ella, que es

mi fuerza inspiradora y mi amor, va dedicada esta disertacion. Finalmente,

quisiera dedicar este logro a mi Maestro. El sin duda me ha dado todo lo que

tengo y esto es simplemente parte de su obra. Gracias por todo.

iv

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Naphtali Rishe for his great support and

advise during all these years. Thank you for teaching me that only by working

hard, great achievements and goals can be reached.

I also want to thank the other members of my Ph.D Committee, Dr. Christine

Lisetti, Dr. Masoud Sadjadi and Dr. Malek adjouadi for their time taken in reading

this dissertation and for their support and valuable feedback.

Special thanks goes to Dr. Bogdan Carbunar, who has been a great collaborator

and teacher, and to Mr. Mahmudur Rahman. We all created such an exceptional

team and we were able to contribute in several aspects in our research. Their

valuable insights and feedback were the key to publish our work.

Finally, I want to thank all members of the High Performance Database Reseach

Center. This lab was like my home during all these years and I made great friends

along the way.

The material in this dissertation is based in part upon work supported by the

National Science Foundation under Grant Nos. CNS-0821345, CNS-1126619, HRD-

0833093, IIP-0829576, CNS-1057661, IIS-1052625, CNS-0959985, OISE-1157372,

IIP-1237818, IIP-1215201, IIP-1230661, IIP-1026265, IIP-1058606, IIS-1213026, OISE-

0730065, CCF-0938045, CNS-0747038, CNS-1018262, CCF-0937964.

v

ABSTRACT OF THE DISSERTATION

MIXED SPATIAL AND NONSPATIAL PROBLEMS IN LOCATION BASED

SERVICES

by

Jaime Ballesteros

Florida International University, 2013

Miami, Florida

Professor Naphtali Rishe, Major Professor

With hundreds of millions of users reporting locations and embracing mobile

technologies, Location Based Services (LBSs) are raising new challenges. In this

dissertation, we address three emerging problems in location services, where ge-

olocation data plays a central role. First, to handle the unprecedented growth of

generated geolocation data, existing location services rely on geospatial database

systems. However, their inability to leverage combined geographical and textual

information in analytical queries (e.g. spatial similarity joins) remains an open

problem. To address this, we introduce SpsJoin, a framework for computing spatial

set-similarity joins. SpsJoin handles combined similarity queries that involve tex-

tual and spatial constraints simultaneously. LBSs use this system to tackle different

types of problems, such as deduplication, geolocation enhancement and record link-

age. We define the spatial set-similarity join problem in a general case and propose

an algorithm for its efficient computation. Our solution utilizes parallel computing

with MapReduce to handle scalability issues in large geospatial databases.

Second, applications that use geolocation data are seldom concerned with en-

suring the privacy of participating users. To motivate participation and address

privacy concerns, we propose iSafe, a privacy preserving algorithm for computing

safety snapshots of co-located mobile devices as well as geosocial network users.

vi

iSafe combines geolocation data extracted from crime datasets and geosocial net-

works such as Yelp. In order to enhance iSafe’s ability to compute safety recommen-

dations, even when crime information is incomplete or sparse, we need to identify

relationships between Yelp venues and crime indices at their locations. To achieve

this, we use SpsJoin on two datasets (Yelp venues and geolocated businesses) to

find venues that have not been reviewed and to further compute the crime indices

of their locations. Our results show a statistically significant dependence between

location crime indices and Yelp features.

Third, review centered LBSs (e.g., Yelp) are increasingly becoming targets of

malicious campaigns that aim to bias the public image of represented businesses.

Although Yelp actively attempts to detect and filter fraudulent reviews, our ex-

periments showed that Yelp is still vulnerable. Fraudulent LBS information also

impacts the ability of iSafe to provide correct safety values. We take steps toward

addressing this problem by proposing SpiDeR, an algorithm that takes advantage of

the richness of information available in Yelp to detect abnormal review patterns. We

propose a fake venue detection solution that applies SpsJoin on Yelp and U.S. hous-

ing datasets. We validate the proposed solutions using ground truth data extracted

by our experiments and reviews filtered by Yelp.

vii

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION . 1
1.1 Motivation . 1
1.2 Research Approach . 4
1.3 Main Contributions . 5
1.4 Outline of the Dissertation . 8

2. LITERATURE REVIEW . 10
2.1 Spatial Set-Similarity Joins . 10
2.1.1 Assumptions . 10
2.1.2 Spatial Joins . 11
2.1.3 Set Similarity Joins . 14
2.1.4 Spatio-Textual Queries . 15
2.2 Location Based Services Applications: Safe Cities Approach 16
2.2.1 Safe Cities . 16
2.2.2 Participatory Sensing . 17
2.2.3 Crime Prediction . 18
2.3 Fake Review Detection and Opinion Spam in Location Based Services . . 19
2.3.1 Sybil detection . 21
2.3.2 Web Crawling and Data Collection Process 22

3. SUPPORTING SPATIAL SET-SIMILARITY JOINS IN LOCATION BASED
SERVICES . 23

3.1 Introduction . 23
3.2 System Architecture . 25
3.2.1 Data Repository . 26
3.3 Spatial Similarity Join . 26
3.3.1 Tools . 28
3.3.2 Processing Spatial Set Similarity Joins 29
3.3.3 Query Processing . 33
3.3.4 Data Visualization . 34
3.3.5 Framework Demonstration . 35
3.4 Extending SpsJoin . 36
3.4.1 Returning Relevant Pairs . 36
3.4.2 Selecting the Best Match . 37
3.4.3 Geographic Inverse Record Frequency 39
3.4.4 Incorporating Girf Values Into the Content Similarity 41
3.4.5 Definitions . 42
3.4.6 Incorporating Uncertainty Regions . 42
3.4.7 Putting it All Together . 44
3.4.8 Incorporating Uncertainty: Entropy . 45

viii

3.5 Improving SpsJoins . 46
3.5.1 Spatial Partitioning Phase . 46
3.5.2 Local Join Implementation . 48
3.5.3 On Radius and Distance Computations 51
3.6 Experimental Evaluation . 52
3.6.1 Performance . 53
3.6.2 Join Precision . 54
3.6.3 Experiment Definition . 55
3.7 Appendix . 58
3.7.1 SpsJoin Implementation . 58
3.7.2 Creating A Configuration File . 60
3.7.3 Running SpsJoin . 62
3.7.4 Appendix Conclusions . 66

4. TOWARDS PRIVACY PRESERVING LOCATION BASED SERVICE AP-
PLICATIONS. THE SAFE CITIES CASE. 67

4.1 Introduction . 67
4.2 Model and Background . 70
4.2.1 Geosocial Networks . 71
4.2.2 Crime Data . 73
4.2.3 Forecasting Tools . 75
4.2.4 Attacker Model . 77
4.3 Location Based Safety . 77
4.4 Predicting Safety . 81
4.5 Personalized, Context-Aware Safety . 82
4.5.1 Personalized User Safety . 83
4.5.2 iSafe . 86
4.5.3 Analysis . 89
4.5.4 Attacks and Defenses . 90
4.6 Geosocial Network Extensions . 91
4.6.1 Crime vs. Geosocial Activity Dependencies 93
4.6.2 Geosocial iSafe . 96
4.7 iSafe Implementation . 96
4.7.1 Browser Plugin . 97
4.7.2 Mobile iSafe. 99
4.8 Experimental Evaluation . 100
4.8.1 Browser Plugin Performance . 100
4.8.2 Forecasting Accuracy . 101
4.8.3 Yelp Safety Profiles . 103
4.8.4 Android iSafe Evaluation . 105

ix

5. FILTERING FAKE INFORMATION IN LOCATION BASED SERVICES 108
5.1 Introduction . 108
5.2 System Model . 110
5.2.1 Yelp Data . 111
5.2.2 Yelp Events . 114
5.2.3 Yelp Event Collection . 114
5.2.4 Ground Truth Data Collection . 115
5.3 User and Venue Analysis . 116
5.4 Detecting Review Campaigns . 121
5.4.1 Review Spikes . 122
5.4.2 SpiDeR . 123
5.4.3 Yelp Events = Review Campaigns? . 126
5.5 Experimental Evaluation . 128
5.5.1 Spike Detection Evaluation . 130
5.5.2 An Analysis of Yelp Events . 132
5.5.3 SpiDeR Evaluation . 138
5.5.4 Conclusions and Limitations . 141

6. CONCLUSIONS . 142
6.1 Summary . 142
6.1.1 Future Directions . 143

BIBLIOGRAPHY . 147

VITA . 159

x

LIST OF FIGURES

FIGURE PAGE

2.1 Minimum Bounding Rectangle approximation. 12

2.2 R-Tree example. 13

3.1 Applications of an spsjoin operation . 24

3.2 SpSJoin System Architecture . 26

3.3 Example of a Spatial Similarity Join. Table PHY-YP contains the join
result. 26

3.4 Data flow of a MapReduce job. 29

3.5 Dataset clustering. Clusters Ci are formed after Spatial Filtering phase. 31

3.6 Example workflow for SpSJoin. 32

3.7 Data visualization of joined records. 34

3.8 Candidates for record r1 “John C”. Best match is s3 39

3.9 Girft values for the top ten terms found in Miami 41

3.10 MapReduce: Spatial Partitioner algorithm data flow 47

3.11 MapReduce: Local Join algorithm data flow. 49

3.12 Running time and Relative speedup for SpsJBoxSort and SpsJRTree . . 54

3.13 ROC Curves: True positive - False positive rates 56

3.14 ROC Curves: True negative - False negative rates 56

4.1 Miami venue stats: Distribution of number of reviews per venue. 71

4.2 Miami venue stats: Distribution of venue ratings. 72

4.3 Distribution of number of crime events per type of crime. Outcome of
DT classifier. 74

4.4 Miami-Dade county: geographical distribution of population. Polygons
represent Census Block Groups. 75

4.5 Three day evolution of the number of crimes reported within one Miami-
Dade block. 77

4.6 Safety index illustration for the Miami-Dade county: SI(B,∆T) values
are mapped into color-coded “safety levels”. 80

xi

4.7 Relation between venue ratings and the crime index (CI) levels of their
location. 92

4.8 Relation between the number of reviews received by a venue and the
crime index (CI) level of its block. 92

4.9 Number of rapes per number of venue’s reviews. Locals and visitors. . . 95

4.10 Number of larcenies/thefts per number of venue’s reviews. 95

4.11 Snapshot of iSafe’s plugin functionality for a Yelp venue. 97

4.12 Snapshots of iSafe on Android. 98

4.13 iSafe browser plugin overhead: Collecting reviews from venues, as a
function of the number of reviews. 100

4.14 Crime Forecasting Experiments in Miami-Dade 101

4.15 Crime Forecasting Experiments in Miami-Dade 102

4.16 Distribution of block crime index values in the Miami-Dade county. . . 103

4.17 Distribution of safety index values of Yelp users. 104

4.18 SI value of a Miami-Dade block and the average of SP values of Yelp
users that visited the block w.r.t time. 105

4.19 Android iSafe overhead. 106

5.1 Crawler architecture. 111

5.2 Yelp user stats. 113

5.3 Yelp filtered reviews stats. 115

5.4 Statistics of User Reviews . 117

5.5 Geographic distribution of venues with more than 4 Yelp reviews, in
Miami-Dade county, FL. 118

5.6 Visualization of the timelines of a sample set of users plotted against
the review rating they assigned, since they became yelpers. 120

5.7 Venues timeline . 122

5.8 The timeline of “Pink Taco 2” (Los Angeles) and of the Yelp event for
this venue. Note the correlation between the two. 125

5.9 Snapshot of WatchYT ’s plugin functionality for the venue “Ike’s Place”. 129

xii

5.10 WatchYT overheads . 130

5.11 Performance of Outlier Detection Techiniques 131

5.12 Yelp events: Spike count as a function of ∆T 132

5.13 Yelp events: Distribution of the immediate impact of Yelp events on the
venues’ ratings. 133

5.14 Yelp events. Distribution of the improvement due to events. 134

5.15 Yelp events. Distribution of the improvement with a random date. . . . 134

5.16 Dependency between the short term rating change of venues due to
events and their number of reviews. Importance given by standard-
ized residuals. 135

5.17 Yelp events: Distribution of the improvement due to events 136

5.18 Dependency between the long term rating change of venues due to events
and their number of reviews. 137

5.19 SpiDeR output. Zoom-in of Figure 5.11a. 138

5.20 Distribution of the number of campaigns in which users participated,
including Yelp events. 139

5.21 Distribution of the number of campaigns in which the fake users partic-
ipated. 139

5.22 Distribution of the amplitude of spikes detected by SpiDeR when con-
sidering only Yelp non-filtered reviews and when considering also
filtered reviews. 140

xiii

CHAPTER 1

INTRODUCTION

1.1 Motivation

The popularity of Location Based Services (LBSs), in particular Geosocial Networks

(GSNs), has grown at unprecendented levels as they embrace mobile technology

for user interaction and geolocation capabilities. According to [Zic12], the overall

proportion of American adults that use location based services has almost doubled

from 2011 to 2012 and billions of geographic locations have been generated through

GSNs [ASE13]. By hosting millions of users and generating overwhelming amounts

of geographic data, LBSs have raised new challenges at different levels. In this

dissertation, we identify three problems found in LBSs that deal with spatial and

nonspatial data. First, we address the problem of ensuring accuracy in geolocation

data. Second, we tackle privacy issues in LBSs in a safety-awareness application.

Third, we address correctness of data in review based LBSs. Given that geolocation

data contain spatial and nonspatial attributes, we argue that combining both types

of attributes into mixed techniques provides robust and effective solutions for these

three aforementioned problems.

In order to understand our motivation, we describe the problems below and we

briefly explain why current solutions do not work.

• Ensuring Data Accuracy. In order to ensure effective service, an LBS

provider needs to supply accurate location data. To this end, the LBS provider

relies on spatial database systems that offer different types of queries (e.g. find

the nearest hotel to a given location). However, since geolocation data come

from different sources, the accuracy might be very low and it may affect trust

and confidence of users e.g. an inaccurate query, when the a user tries to

1

find a home, might result in a high crime area. One way to improve the

accuracy of the location data in a given geographic dataset is to leverage

another, more accurate, geographic dataset, and find the corresponding real

world entities in the more accurate one. This requires a database join operation

that finds similar pairs from one or more geographic datasets. Given that

geographic datasets in LBSs contain both location and textual data, one may

use either similarity joins or spatial joins. In a similarity join [AGK, XWLY,

BMS07, VCL10], records are matched based on their textual component only

if they satisfy a similarity threshold. This join operation is commonly used

for duplication detection, knowledge discovery and record linkage. In a spatial

join [JS], records are matched based on their spatial component e.g. geographic

coordinates, polygons, etc. The join constraint may be polygon overlap or

closeness between points using a distance function.

However, direct application of any these joins are likely to fail. For instance,

finding a pair of similar records in two geographic datasets requires the textual

attributes to be similar and the location of records to be close: a match for

“John Doe” in Miami cannot be “John Doe” in New York. In this case, a simi-

larity join would match both “John Doe”s, ignoring completely the geographic

information. On the other hand, a spatial join using a distance function con-

straint, would match “John Doe” in Miami with its nearest records in Miami,

but not necessarily another “John Doe” since it ignores the textual attribute

of the data.

Therefore, a join operation that leverages both types of attributes seems more

appropiate for finding real world entities in geographic datasets. Furthermore,

since this operation requires the combination of large geographic datasets, an

efficient and scalable solution that leverages parallel computing is essential,

2

specially with the ever increasing costs of Infrastructure As A Service (IAAS)

environments [AWS].

• Ensuring Privacy In Safety Awareness Applications. LBSs, in particu-

lar GSNs, have attractive features and support mobile capabilities that allow

users to share locations and interact [New12]. Specifically, a system where

users are seamlessly made aware of their safety in a personalized and private

manner can be used to address an important issue that impacts people’s lives:

their safety.

In order to achieve this, we need to properly understand and define safety.

While safety is naturally location dependent, it is also inherently volatile. It

not only exhibits temporal patterns (e.g., function of the season, day of week

or time of day) but also depends on the current context (e.g., people present,

their profile and behavior). Furthermore, since safety computations require

the use of personal and location data, careless use of the information exposes

users to significant risks, as they may be traced or spotted in places that they

do not wish to reveal.

Attempts to make people safety-aware include the use of social media as a

means to distribute information about unreported crimes [FAdO+10], or web

based applications for visualizing unsafe areas [Cri, Gua]. However, these

solutions do not model safety and they are unable to integrate its use in the

everyday life of people. Furthermore, these solutions do not handle impor-

tant problems found in LBSs: dealing with inaccurate location data and fake

information that greatly impact the ultimate goal of the applications.

• Ensuring Data Correctness. Review centered LBSs such as Yelp [Yel] and

to some extent TripAdvisor [Tri], host tens of millions of reviews and attract

3

tens of millions of monthly visitors [Lyn11, Coc11]. Even though the review

writing process is not rewarded financially, there exists a direct relationship

between reviews and financial gain: Anderson and Magruber [AM12] show that

in Yelp, an extra half-star rating causes restaurants to sell out 19 percentage

points (49%) more frequently. Thus, the popularity and impact of these LBSs

makes malicious behavior, in the form of fraudulent reviews, a threat not only

to their credibility but also to the quality of life of their users.

Although previous work on TripAdvisor [YG09, OCCH11] and fake review

detection in Amazon [JL08, JLL10, LNJ+10, MLG12] have shown promising

results, they cannot be applied directly to Yelp as both, TripAdvisor and Ama-

zon lack geographic location and social networking information. Furthermore,

from the Online Social Networks (OSN) perspective, “sybil” and “spam” de-

tection have been studied, but again these solutions cannot be directly used in

GSNs since their initial conditions may not hold e.g. dealing with geolocation

data. Therefore, ensuring data correctness in review centered LBSs implies

detecting and filtering fake review information, as they have direct impact not

only in the LBS business but also in other dependent applications that rely

on the data, e.g. safety awareness applications.

1.2 Research Approach

With this motivation in mind, and given that geographic data is the central part of

LBSs and GSNs, this dissertation addresses the aforementioned problems at three

different levels.

First, to ensure data accuracy, we argue that the heterogeneity of the attributes

(spatial and nonspatial) of the data used in LBSs (GSNs) has properties that can be

leveraged to improve data preprocessing. We explore techniques that use the com-

4

bination of spatial and nonspatial data in order to solve a very important problem

that has received much less attention: the spatial set-similarity join. We develop

similarity measurements that model the degree of similarity between objects in a

geospatial database. Our techniques involve hybrid textual and spatial data struc-

tures that allow our algorithms to prune unnecessary search paths. Furthermore,

we use parallel algorithms to tackle the scalability problems when handling large

databases of geospatial data.

Second, to address privacy concerns found in LBSs, We introduce iSafe, a plat-

form that enables participating users to gauge their safety in real time. We believe

that there exist relations between the crime level at a location and the quality and

quantity of GSN information at that location. We explore this hypothesis using

statistical tests, e.g., the χ2 test. In order to address privacy concerns, iSafe em-

ploys a distributed algorithm to compute safety values in a private manner without

compromising safety user data. Our techniques use secret sharing in a participatory

sensing platform.

Finally, to ensure data correcness, we propose to detect fraudulent information

in review based GSNs. We explore a combination of statistical tools (e.g., outlier

detection) to identify abnormal review behaviors. We focus our work in fake review

campaigns that seem to affect the immediate impact on venues registered in LBSs

such as Yelp. By using Yelp data, we observed interesting behavior specific of Yelp

(e.g. Yelp Events) and we studied the long and short term impact on venues as well.

1.3 Main Contributions

In this section, we state our main contributions for each of the problems that we

tackle in this dissertation. We outline each problem and propose methods for vali-

dating our results.

5

1. Supporting Spatial Set-Similarity Joins in Location Base Services

[BCR11]

This contribution presents SpsJoin (Spatial Set-Similarity Join), a framework

that allows users to perform spatial set-similarity joins efficiently on large

geospatial datasets.

• We propose a combined similarity-based approach to solve the Spatial

Similarity Join problem.

• We developed an algorithm that leverages the MapReduce parallel pro-

gramming model to handle large amounts of geographical data, tackling

the scalability problem.

• We implemented the SpsJoin system, a platform for performing and ana-

lyzing results of spatial set-similarity joins on large geographical datasets.

• We validate our results from two different perspectives: efficiency and

precision of the matches found.

2. Towards Privacy Preserving Location Based Service Applications,

the Safe Cities Case [BRCR12, BCR+13]

This contribution presents iSafe, a privacy preserving algorithm for computing

safety snapshots of co-located mobile device as well as geosocial network users.

We developed iSafe in the context of Safe Cities.

• We propose novel approaches to defining location and user based safety

metrics.

• We propose metrics to make users of LBSs safety aware of their surround-

ings and provide a platform to motivate our approach.

6

• We investigate the relationships between crime indices at different lo-

cations and the different features in GSNs e.g. rating and number of

reviews.

• We evaluate iSafe using crime and census data from the Miami-Dade

(FL) county as well as data we collected from Yelp, a popular geosocial

network.

3. Filtering Fake Information in Location Based Services [BCRR13,

BRC+13]

This contribution presents mechanisms that detect review campaigns in LBSs

by identifying spikes generated by low rated reviewers. Our approach takes

into account different features in the data, using outlier detection methods.

We also study the impact of Yelp Events in the rating of the venues, either

immediate or over long periods of time.

• We introduce SpiDeR, an algorithm that detects review campaigns by

identifying spikes generated by low rated reviewers. We implemented

SpiDeR as a framework that can be extended to use other machine learn-

ing approaches.

• We collected over a million reviews from Yelp using our own crawler

mechanism. SpiDeR shows that spikes generated by low rated reviewers

are frequent: we have identified hundreds of venues likely to have been

the target of review campaigns.

• We have discovered an unexpected type of review campaign: Yelp events,

organized by Yelp. Yelp events are hosted by a venue and are attended

only by Elite yelpers, whose reviews have a higher impact on the image

of the venue.

7

• We implemented WatchYT, a system that extends Yelp with the SpiDeR

functionality. WatchYT alerts users when browsing the Yelp pages of

venues targeted by review campaigns. WatchYT consists of a browser

plugin that collects reviews of venues browsed by users and reports them

to a web server for further processing.

1.4 Outline of the Dissertation

Chapter 2 describes the background and related work in all of our contributions.

Section 2.1 explores related work in spatial set-similarity joins. This section is di-

vided into two subsections devoted specifically to show our investigation in each

of the different types of joins: spatial joins and similarity joins. Section 2.2 shows

related work in Safe Cities. We survey different topics in crime LBS applications,

Smart Cities and participatory sensing techniques. We finish this section with crime

forecasting methods. Section 2.3 shows related work in opinion detection methods

and spam campaign detection. We conclude this section with sybil detection tech-

niques applied in the context of Online Social Networks (OSN).

Chapter 3 describes our first set of contributions in spatial set-similarity joins.

Section 3.2 shows the architecture of our solution. Section 3.3 defines the problem

formally. Section 3.4 extends our initial definition. Section 3.5 shows our improve-

ment over our initial version and present novel metrics to score pairs of relevant

matches.Finally Section 3.6 shows the experimental evaluation of our approach in

terms of performance and precision of our join.

Chapter 4 is organized as follows. Section 4.2 presents the model considered and

motivates the problem of Safe Cities as an LBS application to compute safety on co-

located users. It also describes the datasets and tools used in this work. Section 4.3

proposes a static, location centric safety labeling technique and Section 4.4 compares

8

the ability of existing forecasting tools to predict future crime and safety values.

Section 4.5 introduces the concepts of personalized and context aware safety as well

as the iSafe solution. Section 4.6 investigates relationships between social networks

and crime levels. Section 4.7 describes the iSafe implementation and Section 4.8

presents the evaluation of our results.

Chapter 5 describes our last set of contributions by studying several features of

Yelp. The section is organized as follows. Section 5.2 presents the system model

as well as statistics of the data we collected from Yelp. Section 5.4.3 shows our

analysis on Yelp Events. Section 5.4 describes our review campaign experiments.

Section 5.3 introduces the notion of user timelines and proposes a user rating def-

inition. Section 5.4 defines venue timelines and presents the SpiDeR algorithm.

Finally, Section 5.5 evaluates the performance of the solutions that we propose.

Chapter 6 concludes the dissertation and summarizes the future work.

9

CHAPTER 2

LITERATURE REVIEW

In this chapter we describe the most relevant literature. We first show existing

approaches on similarity joins and spatial joins that will ultimately serve as our

baseline for spatial set similarity joins. Then, we survey existing work in spatio-

textual query problems and their applications in LBSs. We explore current and

seminal work in LBS applications related to location aware safety which motivates

privacy and participation using GSN providers. Finally, we describe current and

related problems in filtering fake information in GSNs.

2.1 Spatial Set-Similarity Joins

2.1.1 Assumptions

This sections present some assumptions and definitions that we make to better

understand the related work that we present. A geographic database is a database

of objects represented logically by records. Each object contains attributes that

describe its characteristics and they can be numerical, textual and geographic. We

assume that all objects have at least a geographic attribute. A geographic attribute

represents a characteristic that describes the object in the space. For instance,

latitude and longitude coordinates represent the position of the object on Earth.

Another example of geographic characteristic is a polygon. It may represent the

boundaries of the geographic object such as parcels, water bodies, landmarks, etc.

To handle spatial queries efficiently, geographic databases index the data using the

spatial component i.e. the geographic attribute.

10

2.1.2 Spatial Joins

Many algorithms have been proposed to tackle the problem of spatial join queries.

In particular, Jacox et.al. [JS] provides an extensive survey on this topic, along with

efficient methods to compute spatial joins in parallel. The main idea of a spatial

join is to combine geographic objects from one dataset with another dataset so

that a spatial constraint is satified. The most common spatial constraint used in

spatial joins is the intersection. For instance, let R be a geographic database of

water bodies and S a geographic database of bridges. The spatial join of R and S

returns the bridges that pass through the water bodies. There are several methods

for computing spatial joins. The most common approach to tackle a spatial join is

to first preprocess the data by approximating the geographic extent of the objects

using Minimum Bounding Rectangles(MBR) [JS]. Figure 2.1 shows examples of

approximations to MBRs. Figure 2.1a shows how to approximate the object with

an MBR in R2. Figure 2.1b shows how such an approximation may waste a lot of

space since the object is significantly smaller than its MBR. Figure 2.1c shows that

in an intersection even though the MBRs intersect, the actual objects might not.

Once the objects are approximated, their MBRs are intersected in a filtering stage.

Then, the set of candidate intersections undergo a refinement stage where the actual

dimensions of the geographical extents of the objects are obtained, and the result

set is built, removing false positives.

There are variations in the way these two stages work. When the objects are not

indexed, algorithms use a nested loop approach [ME92]. These methods work well

when the size of the datasets to be joined is small and they can work in memory.

However, when the datasets are large, a nested loop approach is not recomended,

as it implies a quadratic running time for processing. There are other methods that

11

x

y

(a) Approximation in R2 (b) Waste of space in ap-
proximation.

(c) No intersection.

Figure 2.1: Minimum Bounding Rectangle approximation.

also work well in memory. The plane sweep approach [APR+98] works similar to a

plane sweep technique in computational geometry in database objects.

As we noted above, objects can be indexed using their spatial component. Samet

et.al. [Sam90] provides a survey of the most important data structures for processing

spatial data using hierarchical structures (e.g. trees). The “flagship” spatial data

structure used in databases is the r-tree [Gut84]. R-trees are balanced multiway

trees that organize spatial objects using their MBRs. The hierarchy is stablished

by MBR overlaping at each of the levels and r-trees are specially suitable to handle

nearest neighbor queries and rectangle overlap. Figure 2.2 shows an example of this

data structure. As we can see, in Figure 2.2a the space is partitioned based on

the rectangles. Note that there may be overlap. Figure 2.2b shows how the data

structure is organized in memory.

R-tree’s maintenance and query processing work similar to B-trees [Com79] as

they keep balance by using node splitting when node overflows occur. Also, r-trees

are suitable for database management since they can keep actual spatial objects in

disk while a node manager is in charge of the memory management using a hash

table in memory to map memory-disk allocations.

R-trees have been used extensively for spatial joins. Huang et.al. [HJR97] pro-

pose a method for computing spatial joins using r-trees with global optimizations.

12

Their approach requires both datasets to be indexed in the database management

system. However, there are other methods that do not need the datasets to be

indexed. When one dataset is indexed, efficient techniques exist to bulk-load the

unindexed dataset and perform a regular spatial join using r-trees. The main ad-

vantage is that the index of previously unindexed dataset is now a by-product of

the process and can be used for further query processing. However, when there is

no need for keeping an index, Lo et.al [LR94] propose spatial joins using seed trees.

R1
R2

 R3

 R5

 R6
 R7

 R8

 R9

 R10

 R11

 R12

 R13

 R14

(a) Spatial partitioning.

R1

R9

R2 R5

R10

R8R7R6R3

R13

R11 R12

R14

(b) Actual structure.

Figure 2.2: R-Tree example.

We emphasize that these methods only take into account the spatial components

of the data. Therefore, they are unlikely to be used for computing Spsjoin queries.

However, we adapted spatial parallel processing techniques [PD96], to scale our so-

lution in a MapReduce model. Processing large geographical datasets in parallel

using MapReduce have been studied previously in [CSHR09] and [ZHLW09]. Cary

et.al [CSHR09] use a z-order space filing curve approach for partitioning the dataset

into groups based on the spatial attribute. Their solution achieves scalability by

relying on random sampling of a set of points that are sorted based on z-order.

These points define unidimensional intervals(partitions) where points in the dataset

13

are mapped. However, if the data is skewed, the claim that z-order generates almost

uniformly-sized partitions is no longer true. Even though in practice, minimal vari-

ations in sizes of the partitions are acceptable, for certain datasets this may cause

scalability issues.

2.1.3 Set Similarity Joins

Set similarity join queries have been widely studied in [AGK], [XWLY], [BMS07]

and [KS98]. Arasu et. al. [AGK] propose efficient methods for computing similarity

joins using filtering techniques based on threshold. This work derived interesting re-

sults that were later leveraged in [BMS07] and [XWLY] to describe new applications

for near duplicate detection of web pages and documents in the web. A similarity

join requires a similarity metric that measures the relatedness of the objects being

considered. The general constraint that defines a similarity metric is given in Equa-

tion 2.1. This constraint stablishes that all pairs of objects (r, s) whose similarity

measurement is greater than or equal to τ should be part of the join.

sim(r, s) ≥ τ (2.1)

Tan et.al [TSK05b] present popular similarity metrics used in data mining, spe-

cially when working in clustering algorithms. Jaccard coefficient, cosine similarity

and overlap similarity are used mostly in set-similarity joins. The idea is to take the

attribute or set of attributes that the user deems as descriptors of the objects and

create sets for further comparison. For instance, let r be an object that consists of

a textual attribute such as its name “John Doe”. This name may be transformed

into a set in two different ways: by tokenizing the string using words or q-grams.

Therefore, in the words case, “John Doe” is the set {“John′′, “Doe′′}, where as in

the 3-grams case, the set is {“Joh′′, “ohn′′, “hn′′, “nD′′, “Do′′, “Doe′′}.

14

While current techniques on similarity joins are extremely powerful to prune

candidate pairs with low similarity, they work well only for large values of thresholds,

e.g. 0.9 or 0.8. For medium threshold values, the running time degenerates to

quadratic computation and other techniques that rely on Locality Sensitive Hashing

(LSH) are employed [AI08], under probabilistic guarantees. LSH techniques are also

used when the dimensionality of the data is too large. This is true specially when

objects are transformed into large sets of elements that need similarity computations

very fast.

All of these methods work well in main memory, being ppjoin the fastest algo-

rithm, using a suite of filtering strategies to prune candidates that may not satisfy

the similarity threshold. However, with the explosion of the data, in-memory sim-

ilarity joins are not suitable as they may experience scalability problems. Vernica

et. al. [VCL10] propose scalable techniques for joining datasets using MapReduce.

Their work rely on mapping of records using the prefix of the textual attributes

under a global ordering. Then, in the reducers the algorithm perform local joins

using either nested loop approach or ppjoin, proposed in xiao:www.

2.1.4 Spatio-Textual Queries

LBSs have adapted spatial and textual techniques to answer specialized queries

that involve both, spatial and textual information. The main advantage here is

that, when the spatial component has been already used to prune unnecessary data,

the textual component helps further to prune data and a much more efficient hybrid

algorithm results. However, this approach has a cost: it requeries storing of addi-

tional data by augmenting the data structures. It also poses additional scalability

problems when the size of the data is extremely large.

15

The work of Hariharan et.al [HHLM07] shows how to build hybrid r-trees with

augmented textual data at node level. However, their solution suffers from a phe-

nomenon called the “keyword spread” problem. They propose handling the issue

by collapsing pages of nodes with the same keyword at the same level, but it is not

clear from the paper how this actually works. Alsubaiee et. al. [ABL10] provide

a detailed description of a hybrid index for answering approximate spatio-textual

queries. Their solution use inverted indexes at different levels of an r-tree, depending

on cost functions that yield effective pruning depending on the spatial distribution

of the data e.g. for sparse areas, spatial pruning is more effective than keyword

prunning at high levels of the tree. However, even though this work claims that this

type of index is space efficient, pathological cases may lead to the keyword spread

problem as well. Also, they do not seem to apply space efficient filtering techniques

as proposed by [XWLY].

2.2 Location Based Services Applications: Safe Cities Approach

LBS applications rely on geolocation data to provide services. This dissertation

studies Safe Cities as a platform to motivate and to address privacy concerns found

in LBSs. To this end, in this Section we studied related work in Smart Cities

which are technological platforms in cities to reduce expenditures. We explore all

related work that we use in our research, from machine learning techniques and

crime prediction methods, to participatory sensing.

2.2.1 Safe Cities

Smart cities have been the focus of recent efforts at IBM [IBM] and several academic

research groups at MIT [Lab] and UCLA [UCL]. Caragliu et. al. [CDBN09] present

16

a study on the factors that determine the performance of a “smart city”. They

focus specifically on European cities by analyzing urban environments, levels of

education and different accessibility modalities that are positively correlated with

urban wealth. Since one important aspect of smart cities is safety, Patton [Pat10]

emphasizes the use of audio sensors and cameras that allow authorities to quickly

respond in an emergency event without receiving a 911 call. We note that we

consider a different angle: making users aware of their surroundings.

Furtado et. al. [FAdO+10] propose the use of social media in a collaborative

effort to inform people about crime events that are not reported to police. Their wiki

website spots areas on the map where participant users have reported crime events.

Police departments also release tools to make citizens aware of their safety, e.g., the

Miami-Dade police department, deployed an web application [Dep] that identifies

crime areas based on current crime reports. We note however that our solution

seamlessly integrates context and time sensitive safety metrics into the everyday

user experience.

2.2.2 Participatory Sensing

Participatory sensing is receiving increasing attention due to the popularity of mo-

bile devices. The multimodal sensing capabilities of devices enable a broad range

of applications that leverage collected data from participants, sensed from their

surroundings. Estrin [Est10] discuss advantages of participatory sensing in health

and transportation and provide insights on the architecture of participatory sensing

applications. Thiagarajan et. al. [TBGE10] propose cooperative transit tracking

using mobile phones. Privacy becomes a serious concern when the user personal

information may be compromised. Christin et. al. [CRKH11] present a survey on

the efforts made to preserve privacy in participatory sensing systems. In contrast,

17

our work does not collect user information, but instead allows devices to aggregate

information collected from co-located users without learning personal information.

Dynamic safety practices leveraging social networks and GPS mobile phones have

been introduced in [YBL+08] to create a system for personalized safety awareness.

The system exploits sensors available in mobile phones to enhance the personal safety

of users by aggregating community. Our work is different in that we predict future

crime levels, define a safety index that includes the impact of crimes on locations and

on the profiles of users and propose a distributed algorithm that privately aggregates

safety indexes of co-located users.

2.2.3 Crime Prediction

The problem of crime prediction has been explored in several contexts. Hotspot

mapping [CTU08] is a popular analytical technique used by law enforcement agen-

cies to identify future patterns in concentrated crime areas. Different methods and

techniques have been analyzed to review the utility of hotspot mapping in [ECC+05],

[CR05], [Jef99], [CRS02]. Hot spot analysis however, often lacks a systematic ap-

proach, as it depends on human intuition and visual inspection.

A variety of univariate and multivariate methods have been used to predict crime.

Univariate methods range from simple random walk [BSV98] to more sophisticated

models like exponential smoothing. While exponential smoothing offers greater ac-

curacy to forecast ”small to medium-level” changes in crime [GO01], we have shown

that ARIMA and ANN models outperformed it on our data. In [EA07], Ediger et al.

show the effectiveness and reliability of ARIMA and SARIMA models in predicting

the total primary energy demand of Turkey from 2005 to 2020. Olligschlaeger [Oll97]

showed that ANNs were able to predict drug markets. We note that the goal of our

work is not intrinsically crime forecasting. Instead, we incorporate crime forecasting

18

techniques into our safety metrics, in an attempt to provide to participating users

a dynamic framework for safety awareness.

2.3 Fake Review Detection and Opinion Spam in Location Based Ser-

vices

Data in LBSs should be correct and consistent since it forms the central part of

the operations in this type of systems. In review-centered LBSs the data come in

the form of reviews with different characteristics, venue or product information and

user profiles if the LBS has GSN capabilities. The correctness of the data implies

that fake information may have a significant impact in LBSs as this may hurt the

credibility and confidence in the use of the system.

In this section, we explore current literature available that tackles opinion and

fake review detection systems. These works rely on different techniques, such as

machine learning and statistical analysis, but also in natural language processing

mechanisms to process text data. We also review some of the web crawling tech-

niques and data collection processes that we use heavily in our research.

Jindal and Liu [JL08] introduced the problem of detecting opinion spam in the

context of product reviews. The techniques proposed in the context of Amazon

reviews, include detecting spam, duplicate or plagiarized reviews and outlier reviews.

Jindal et al. [JLL10] extend this work to identify unusual review patterns which

can represent suspicious behaviors of reviewers. They formulate the problem as

finding unexpected domain independent rules and also test their solution on Amazon

reviews. In the context of review spam, Lim et al. [LNJ+10] propose techniques

that determine a user’s deviation from the behavior of other users reviewing similar

products. Our work complements this research. We focus on reviews written in

geosocial networks, where we further rely on the location of reviewers and reviewed

19

venues as well as social dimensions. This allows us to discover new relations and

exploit them to detect not only fake reviews and reviewers but also venues that are

frequent targets of such attacks.

Of notable importance is the work of Ott et al. [OCCH11] who created a database

of fake hotel reviews in TripAdvisor, then integrated work from psychology and

computational linguistics to develop and compare three approaches to detecting

deceptive opinion spam. Unlike this work, which focuses on the text of reviews,

our research relies on social and geographic dimensions to address the same issue in

Yelp: Unlike TripAdvisor, Yelp provides us with access to the location and friends

of reviewers.

Li et al. [LHYZ11] and Ntoulas et al. [NNMF06] rely on the review content to

detect review spam. Li et al. [LHYZ11] exploit machine learning methods in their

product review mining system. Ntoulas et al. [NNMF06] propose several heuristic

methods for detecting content based spam and combine the most effective ones to

improve results. Our work differs through its emphasis on relationship among re-

viewers, friends and ratings in the context of Yelp’s spatial and temporal dimensions.

Mukherjee et al. [MLG12] focus on fake reviewer groups, reviewers who work

collaboratively to write fake reviews. They propose the use of a frequent itemset

mining method to find a set of candidate groups, then used several behavioral models

derived from the collusion phenomenon among fake reviewers and relation models

based on the relationships among groups, individual reviewers, and products they

reviewed to detect fake reviewer groups. We consider a different adversarial model,

where the membership of reviewer groups inherently changes due to the nature of

the recruitment process (i.e., Amazon Mechanical Turks).

Gao et al. [GHW+10] target asynchronous wall messages to detect and charac-

terize spam campaigns. They model each wall post as a pair of text description and

20

URL and apply semantic similarity metrics to identify large subgraphs representing

potential social spam campaigns and later incorporate threshold based techniques

for spam detection. Instead, we focus on temporal and geosocial review context, the

where reviewer activity and behavioral pattern are of significant importance. Feng

et al. [FXGC12] relies on the J-shaped distributions of review ratings received by

most venues to identify venues that receive too many 5 star reviews from single-time

users.

Wang et al. [WXLY11] introduce the concept of heterogeneous review graphs

and iterative methods exploring relationship among reviewers, reviews and stores to

detect spammers. While we also consider social relations among reviewers we differ

on our focus on temporal and spatial dimensions.

2.3.1 Sybil detection

Detecting review campaigns can benefit from existing sybil detection techniques.

Of particular relevance is DSybil, the work of Yu et al. [YSK+09] that applies in

the context of the news voting social network Digg. The semantics of reviews for

venues of Yelp however differ fundamentally from news. Venues change in time, and

reviews are always welcomed in expressing the time fluctuations of a venue’s quality.

In a sense, the performance of a venue each day can be viewed as a “news item”.

Tran et al. [TMLS09] proposed SumUp, a trust based sybil defense mechanism that

uses “adaptive vote flow aggregation” to limit the number of fake feedback provided

by an adversary to the number of attack edges in the trust network - that is, the

number of bi-directional trust edges the attacker is able to establish to other users.

WatchYT can benefit from the techniques of SumUp, or even be used in conjunction

with it. However, we note that previous work [BSBK09, BMBR11] has shown that

Facebook users frequently accept friend invitations from complete strangers.

21

2.3.2 Web Crawling and Data Collection Process

In this section we survey the most important research in web crawling techniques.

A web crawler is a system whose main purpose is to bulk-downloading large

amounts of web pages. An interesting survey can be found in [ON10]. This survey

handles efficient techniques, either static or dynamic, to download web pages with

different objectives. The main goal of a web crawler is to produce the collection of

web pages that are indexed by a search engine and therefore, it relies heavily on link

discovery within the web pages crawled. The work of Aggarwal et.al. [AAGY01]

proposes the concept of intelligent crawling which learns characteristics of the link

structure found in web pages. The idea is to use the inlink attributes to determine

the probability that a candidate is useful for crawling. This has tremendous impact

in the performance of the crawler, since repeated web pages cause the crawler to

slow down its execution.

From the theoretical point of view, Baeza-Yates et.al.[BYC07] studied several

probabilistic models that predict how deep users of the internet go while exploring

Web sites. They propose the back one level at a time, back to the first level and back

to any previous level models and compare their results. We note that our crawling

techniques use the one level at a time type of model, since we do not explore explore

more than two hops deep in the Yelp data. In Section 5 we show our web crawler

architecture used to get crawl the data that we leverage in this dissertation.

22

CHAPTER 3

SUPPORTING SPATIAL SET-SIMILARITY JOINS IN LOCATION

BASED SERVICES

In this chapter, we present SpsJoin, a framework for computing spatial set-similarity

joins. We first show our motivation through specific applications in LBSs. This

framework is used primarily in our flagship platform Terrafly [FIU] for geolocation

enhancement and knowledge discovery by leveraging the richness of our data reposi-

tory. Then, we define the problem formally as general case where the user is agnostic

of the similarity parameters. Finally, we extend our solution by using a novel con-

tent similarity function that ranks pairs of best matches. We conclude with a set of

experiments that validate our approach using real world datasets.

3.1 Introduction

In modern geographical databases, records contain textual and spatial attributes to

describe characteristics and location of real-world entities. When the location of the

records has low accuracy, e.g. geolocated at the center of the city, their location

may be enhanced by finding their most similar records in another database, known

to have high location precision. For instance, Figure 3.1b shows sample records

of Physicians database, geolocated at city center level precision and Yellow Pages

database with high geolocation precision. Intuitively, the most similar object of

physician “John F. Smith MD” is “John Smith MD” in Yellow Pages, since both

names are very similar and geographically closer. The same is true for a Flickr [FLI]

dataset that might be enhanced by finding similar records in a dataset of Hotels,

as shown in Figure 3.1a. Therefore, finding the most similar pairs between two

23

Tags: Delano Hotel Miami

Beach

Delano Hotel, South

Beach

(a) Flickr spsjoin Hotels

New York, NY

Miami, FL

John F. Kennedy

Loc: (41.3,-74.3)

John Smith MD

Loc: (25.3,-82.4) John F. Smith MD

Loc: Miami,FL

Yellow Pages

Physicians

Best Match?

(b) Best match for physician “John F. Smith”

Figure 3.1: Applications of an spsjoin operation

geographical databases requires a composite join operation that considers both types

of attributes, textual and spatial.

Such type of join, namely Spatial Set Similarity join, has received much less

attention in the research community than individual joins on either textual or spatial

attributes. In the textual case, the degree of resemblance in a similarity join [AGK,

XWLY] is measured by a similarity function, e.g. Jaccard coefficient or Levenshtein

distance, and pairs that satisfy a user-defined similarity threshold are included in

the output. Recently, parallel processing with MapReduce, a parallel programming

model proposed by Google [DG], has been explored to tackle the scalability problem

of this type of joins [VCL10]. In the spatial case, a spatial join [JS] between two

geographical datasets matches records based on their spatial attributes. The spatial

relation may be expressed in several ways, e.g. distance threshold or polygon overlap.

Direct application of either spatial join or similarity join techniques to solve the

spatial similarity join problem has the disadvantage of potentially generating lots of

pairs that do not satisfy the composite constraint; for example, in Figure 3.1b several

similar physician names and yellow page contact persons may be located far away

from each other, e.g. “John F. Kennedy” in New York, but we are interested only

24

in the geographically nearest pair. Also, when a threshold is predefined for either

similarity or spatial joins, some records may not find their most similar pair when

they do not satisfy the threshold. It is then up to the user to define an appropriate

distance or similarity threshold even when there is no knowledge of the precision

and quality of the data. In addition, as geolocation data is rapidly increasing in

databases, scalability in processing spatial similarity joins is a top concern.

Spatial set-similarity joins have generally the same applications as similarity

joins, including data cleansing and record linkage. In addition to geolocation en-

hancement, this join might be used in disaster management applications, e.g. joining

911 call records with Nationwide cadastre and White Pages databases to pinpoint

massive emergency events. Geolocation enhancement has several implications in

LBS. As we will show in subsequent chapters, the accuracy of the data is of vital

importance for LBS that provide safety of co-located users, as crime index and safety

metrics depend on geolocation data.

3.2 System Architecture

The SpSJoin system is divided into four components. Figu-re 3.2 shows the pro-

posed architecture for our system. The Data Repository stores the geographical

databases used by the system and supports data persistency required by the inter-

acting modules. The Spatial Similarity Join module performs the join and returns

the result set that is indexed by the Query Processing module. Finally, the Data

Visualization module presents an interface to the user for displaying and analyzing

the join results.

25

R

Data Repository

S

R,S

Attribute

Tokenizer

Spatial

Partitioner

MapReduce

Local

Joiner

Spatial Similarity

Join

Query

Interface

Data

Visualizer

Data Visualization

Data

Indexer

Spatial

Indexer

Inverted File

Indexer

Query

Processor

Query Processing

Terrafly

API

Figure 3.2: SpSJoin System Architecture

3.2.1 Data Repository

The data repository contains several geographic datasets used in different GIS appli-

cations. Data comes from di-fferent sources, including the Internet and public and

private sources, that may or may not need additional geographic location process-

ing. Examples of datasets found in the repository include Hotels, Crime Data,Places

and Landmarks, etc., all of them containing different attributes and geographic lo-

cation. Figure 3.3 shows the Physicians and Yellow Pages datasets with some of

their attributes and spatial location.

Name Suffix Licence Zip Code Location

John F. Smith MD L123 333 (0,1)

J. F. Rose MD M456 444 (-1,0)

R: Physicians - PHY

S: Yellow Pages - YP

Bussiness Title Contact Person Address Location

Jackson Memorial John Smith 231 Park Ave (0,0)

Health Care Corp. Judith F. Rose 9218 Tree Pl (-1,0)

Name Contact Person Jaccard C. distance sim(r,s)

John F. Smith John Smith 0.67 1.0 0.33

John F. Smith Judith F. Rose 0.3 1.0 0.15

J. F. Rose Judith F. Rose 0.67 0.0 0.67

J. F. Rose John Smith 0.0 2.0 0.0

R x S

PHY-YP (Spatial Similarity Join)

Name … Contact Person … sim(r,s)

John F. Smith … John Smith … 0.33

J. F. Rose … Judith F. Rose … 0.67

Best Matched

Pairsa) Geographic datasets with textual

and spatial attributes

b) Product R x S and similarity calculations

c) Output of the spatial similarity join

Figure 3.3: Example of a Spatial Similarity Join. Table PHY-YP contains the join
result.

3.3 Spatial Similarity Join

Intuitively, a Spatial Similarity Join finds pairs of objects from two spatial datasets,

a target and a source, in which every pair represents a match of an object in the

26

target with the most related object in the source. Relatedness between objects is

modeled with a composite similarity function that combines spatial and textual

attributes. For instance, in Figure 3.3b, the similarity of a pair is calculated by

combining the distance of the objects with their textual similarity on Name attribute

in Physicians and Contact Person in Yellow Pages. The most related pairs from

the Cartesian product are the ones with the highest value given by the similarity,

sim(r, s), function, e.g. 〈“John F. Smith”, “John Smith”〉 and 〈“J.F. Rose”, “Judith

F. Rose”〉. Next, we present the problem statement and describe our approach for

processing spatial similarity joins efficiently.

Notation. We denote our input datasets as R (target) and S (source). Without

loss of generality, records in these datasets are tuples of the form o = 〈a, p〉, where a

denotes a textual attribute and p is a point in the space that denotes the location of

the object o. In practice, objects may contain additional textual attributes, which we

omit to simplify the explanation. MBR refers to the Minimum Bounding Rectangle

that encloses a set of objects. Given two objects r and s, we refer to the function

simt(ar, as) as the textual similarity between attributes ar and as, and dist(pr, ps)

as the distance between points pr and ps. We denote sim(r, s) as the composite

similarity function in the problem statement.

Problem Statement

Given two datasets R and S and a composite similarity function sim(r, s) ∈ [0, 1],

that combines spatial and textual similarity, the problem of Spatial Similarity Join

finds the set of pairs (r, s) ∈ R×S , such that sim(r, s) = max
s′∈S
{sim(r, s′)}. We say

that s is the most related object of r found in S and the pair (r, s) is a best matched

pair.

27

Choosing an adequate sim(r, s) function is challenging since each type of at-

tribute has its own semantics and independent similarity values. Therefore, careful

analysis of the datasets is required. For example, if R and S are known to have very

precise spatial attributes, then sim(r, s) may give less importance to the textual

attributes.

3.3.1 Tools

MapReduce

In this work, we use MapReduce [DG] to describe our algorithms. MapReduce is a

popular programming paradigm that leverage distributed computing in commodity

clusters. It is used primarily for data-intensive parallel applications that share no

communication between nodes in the cluster. The data is partitioned and stored in

a distributed file system (DFS). Each partition, called split, is processed in parallel

through map tasks. Figure 3.4 shows how the data flows in a MapReduce job.

The map tasks process and generate lists of key-value pairs (<K,V>) that are later

sorted, merged and grouped by key. These groups of lists become the input of reduce

tasks, i.e. each reducer process a single list of key-value pairs that share the key,

and generate a list of new key-value pairs. This is the final stage of a MapReduce

job.

A popular implementation of the MapReduce model is Hadoop [Apa12], an open

source framework that allows for the distributed processing of large datasets. The

model also defines special functions called combiners. Combiners may help in re-

ducing the amount of data sent through the network by processing the output of

the map tasks in memory before merging and shuffling. Similar to reduce tasks,

combiners receive lists of key-value pairs grouped by key and return an aggregation

28

of the key-value lists. These aggregations are then merged and grouped by key, so

that reduce tasks can process them. Combiners are useful only when the data can

be aggregated and have the same signatures as reduce tasks and there is no always

a guarantee that they will be executed.

split 1

split 3

split 2

MAP

MAP

MAP

<K1,V1>
<K2,V2>

<K1,V1>

<K3,V3>

<K2,V2>

<K3,V3>

REDUCE

REDUCE

REDUCE

<K1,L1>

<K2,L2>

<K3,L3>

DFS DFS

Figure 3.4: Data flow of a MapReduce job.

3.3.2 Processing Spatial Set Similarity Joins

In our approach, sim(r, s) meets the criterion that similarity of pairs of proximal

objects must be higher than objects located far away from each other. We defined

the following similarity function

sim(r, s) =
simt(ar, as)

1 + dist(pr, ps)
(3.1)

Where simt(ar, as) is a textual similarity function (we used the Jaccard coefficient

in our experiments, simt(ar, as) = |ar∩as|
|ar∪as|) and dist(pr, ps) is a distance function (we

used Great Circle distance since geographical objects are located with latitude and

longitude). In general, if an object r has two possible matching objects s and s′ with

equal similarity value (i.e. sim(r, s) = sim(r, s′)), the pair with minimum distance

is considered the better pair. In Section 3.4.2 we will define other types of similarity

functions tailored for specific problems in LBS.

When processing spatial similarity joins in large datasets, scalability is a key

challenge. Our algorithm leverages pa-rallel computing with MapReduce, which has

proven its effec-tiveness in large-scale data intensive problems [DG].

29

The join process is divided into two main phases: a Spatial Filtering phase and

an Expansion phase. In the Spatial Filtering phase, the entire set of records is par-

titioned w.r.t. their spatial attribute. The rationale is that geographically proximal

object pairs are more likely to generate higher si-milarity values, using Equation 3.1.

In this way, potential best matches are co-located in the same partition, filtering

out pairs with low similarity value whose evaluation is not nece-ssary, e.g. far away

objects do not represent the same real world entity.

Theorem 3.3.1 Let s be a match candidate of record r. The best match sb of record

r can be found within the region limited by er(r, s) = 1
sim(r,s)

− 1

Proof. From Eq. 3.1, the similarity of r and s is sim(r, s). Let sb the best match of

r. Then, the textual similarity of r and sb is given by simt(r, s), which is maximum

when simt(ar, asb) = 1, hence sim(r, s) ≤ 1
1+dist(pr,psb)

. It follows that dist(pr, psb) ≤
1

sim(r,s)
− 1 = er(r, s).

Since each partition may contain some local best pairs that may have globally

best matches, i.e. with increased similarity value, the Expansion phase gradually

expands the search space of each partition using an upper bound Expansion Region.

Object pairs are reprocessed itera-tively on adjacent geographical regions until their

similarity value cannot be improved anymore, i.e. the best pairs are found, or the

expansion region covers all universe of objects. We illustrate the join execution with

an example, shown in Figure 3.6, that describes the workflow of the process. We

denote clusters of records as Ci, i = {1, 2, 3}, and sets Lj
i as local output in cluster

Ci at iteration j. Final join output is denoted as L.

Spatial Filtering phase. Figure 3.6 part (I). The Spatial Partitioner compo-

nent is used for partitioning the entire set of records. It is expressed as a MapReduce

job that clusters R ∪ S in parallel using a clustering algorithm; in our experiments,

30

iii SRC

2
C

1
C

3
C

3
'S

2
'S

1
'S

1
'S

Expansion

Region

Internal

Region for

(r,s)

pr

1
),(

1
),(

srsim
srer

ps

Figure 3.5: Dataset clustering. Clusters Ci are formed after Spatial Filtering phase.

we used the X-means clustering technique [PM]. Figure 3.5 shows the spatial layout

of the three clusters in this example: C1, C2 and C3. Note that each Ci is expressed

in Figure 3.6 as Ri ∪ Si.

Expansion phase. Figure 3.6 part (II). Each cluster Ci is processed locally

in parallel using several expansion itera-tions. Each iteration of our example is

described next.

Iteration 1. For each cluster Ci, the Local Joiner component joins Ri and Si

using a nested-loop approach; we implemented the Local Joiner using a modified

version of the fuzzy join proposed in [VCL10], leveraging the MapReduce frame-

work. Mappers tokenize textual attributes from records in Ri ∪ Si and generate

record projections for each token, tagged with the relation name. Reducers receive

records that share the same token, sorted by relation (Si first), and records in Ri are

combined with records in Si. To accelerate the process, records in Si are indexed

using their spatial attibute. For every record in Ri, the spatial index filters records

in Si that will not improve in the combined similarity. The combined similarity is

computed for candidate pairs and the pair with the highest sim(r, s) is kept. The

output of the Local Joiner L1
i is the set of local best matched pairs found in cluster

Ci.

31

In order to prepare for the next iteration, the input Pi∪ S ′
i needs to be calculated.

We observed that each pair (r, s) in L1
i defines an internal region, as shown in Figure

3.5, with center pr of r and

The union of all internal regions defines the upper bound Expansion Region for

the cluster, in which objects from Ri may find better matches. Since the Expansion

Region may overlap adjacent clusters, objects in pairs with internal regions that lie

within the cluster’s MBR will not find a better match and the corresponding pairs

are stored in the Bi database as part of the final output. This reduces the size of the

input in the next iteration. With the remaining pairs, objects in Ri are extracted

and stored in Pi, which need further iterations. Finally, the system identifies the

nearest cluster Ck, that overlaps the Expansion region, and stores the overlapping

objects from Sk in S ′
i. In Figure 3.5 for example, the nearest cluster of C1 is C3, so

S ′
1 is the set of records from S3 in the shaded region of C3.

Spatial

Partitioner

11
SR

22
SR

33
SR

1

1
L

1

2
L

1

3
L

11
'SP

2

1
L

11
'SP

3

1
L

1'S

 '
2
S

3
'S

2

2
L

2

3
L

22
'SP 33

'SP

1

2

3

2
B

SR

(II)

(I)

Local JoinerLocal Joiner Local Joiner

11 'SP and Compute 22 'SP and Compute 33 'SP and Compute

1'S Compute

1
B

3
B

Local Joiner Local Joiner Local Joiner

2

3

2

2

3

1

3

1

LLLBL
i

i

SpSJoin Result SetLocal Joiner

Figure 3.6: Example workflow for SpSJoin.

32

Iteration 2. Each Local Joiner receive Ci = Pi∪ S ′
i as input and joins Pi and

S ′
i as in the previous iteration. Ouput pairs in L2

i that improved their similarity

are updated as the new best pair matches. If further clusters need to be explored,

the next nearest cluster that overlaps the Expansion region is identified and S ′
i is

computed as above. Else, the local process finishes its execution. In Figure 3.5,

Expansion regions for clusters C2 and C3 do not expand anymore so L2
2 and L2

3 are

part of the final output. On the other hand, Expansion region of C1 overlaps C2 so

P1 requires further processing. S ′
1 is now the set of records from S2 in the shaded

region of C2

Iteration 3. Local Joiner is called again with the new input Ci = Pi∪ S ′
i and

the output L3
i is generated. In our example, the Expansion region for cluster C1 has

no more overlapping clusters to cover, hence set L3
1 is part of the final output. Since

no clusters need further expansion, the process terminates and the join result set L

is complete. Shaded blocks in Figure 3.6 form the final output of the join.

3.3.3 Query Processing

The Query Processing module , Figure 3.2, is used primarily by the Data Visualizer

component to retrieve records of joined databases (generated by the Spatial Similar-

ity Join module). This module executes spatial queries with non-spatial constraints

posted by users for join quality inspection. Attributes in the join result are first in-

dexed using a hybrid data structure that leverages R-trees and inverted files [CWR]

by the Data Indexer. Second, the Query Processor parses a user query to identify

the query window (geographi-cal region) and (optionally) non-spatial constraints,

and it uses the hybrid index structure to efficiently retrieve records. For instance, in

the join example of Figure 3.3, joined records of physicians with last name “Smith”

and located in “Miami, FL” are displayed in Figure 3.7.

33

Details for pair Id: 3048

PHY database

YP database

Ranking score:
Attribute sim.:

Distance:

PHY record:
YP record:

0.33
0.67
1.0

<"John F. Smith", (0,1)>
<"Smith, John", (0,0)>

Figure 3.7: Data visualization of joined records.

3.3.4 Data Visualization

The Data Visualization module displays the results of spatial similarity joins on a

map. Figure 3.7 shows the general user interface of the system. Aerial and satellite

imagery as well as user interface widgets are provided by the TerraFly system1 via

its public API.

When the user selects a location to visualize, the currently displayed map por-

tion determines the query window that will be submitted to the Query Processing

module. Then, users pick a previously joined database from a database drop-down

list to visualize its records. Optionally, users can include keywords in the query

to locate specific objects for inspection. Records that match the query criteria are

displayed as pairs, visually distinguished by circles and diamonds, united by lines

and enclosed in rectangles. Users can click on individual object icons to display

detailed information about the pair the object participates on.

1http://terrafly.fiu.edu

34

Table 3.1: Geographical databases of Physicians (PHY) and Yellow Pages (YP)
used in experiments.

Joining Attributes
Database Records Textual Spatial

PHY 2 millions name zip
YP 20 millions contact person location

3.3.5 Framework Demonstration

We demonstrate our system as follows. First, two real geographical databases, Physi-

cians (target) and Ye-llow Pages (source), were joined with the SpSJoin operator.

The database sizes and joining attributes are shown in Table 3.1. Objects in the

databases represent real-world entities located in the United States. For example,

YP entries include medical professionals of various specialities, which are expected

to match with records in PHY. Jaccard coefficient and Great Circle distance were

used to compute the similarity of textual and spatial attributes, res-pectively. The

data was provided by the HPDRC laboratory2. Second, joined records were stored

in a third database PHY-YP inside our Data Repository, and its attributes were

indexed by the Data Indexer component. The use case demonstrates the improve-

ment of geolocation precision in the Physicians database with matching objects in

the Yellow Pages database; initially, records in PHY were geolocated to the center

of their ZIP codes.

During the demonstration, users will have the opportunity to interact with the

system by visualizing the joined data in the PHY-YP database as shown in Fig-

ure 3.7.

2http://hpdrc.fiu.edu

35

3.4 Extending SpsJoin

In the previous sections we have shown our framework implementation of SpsJoin

and the interaction of its components in the architecture. Our definition relies on

a similarity function that combines textual and spatial attributes and measures the

degree of relatedness. Although the algorithm guarantees that the whole universe

of records is not searched when looking for a good match, a large number of pairs

may be of no use.

Following the approach of a set-similarity join, we define a set of parameters

that allow our new SpsJoin to be fine-tune for tailored LBS applications. We take

advantage of the frequency of tokens in geographic locations and rank pairs based

on a novel score function. We also involve accuracy radius in the similarity compu-

tation, since it will help in finding correct matches. We evaluate our solution using

a ground truth built with a pre-computed join that allow us to experiment with

different parameters. We also experimented with large real world datasets to show

the viability and accuracy of our solution.

3.4.1 Returning Relevant Pairs

By definition, the result set of a spatial set-similarity join is a set of pairs. However,

pairs returned by a spatial similarity join might not be appropiate matches. How

certain are we that the pair of objects we are matching are correct? State of the art

suggests the use of set similarity functions that match records naively, as long as a

similarity threshold is satisfied. Our work tries to improve this definition by merging

textual simlarities with geographic distances. However, we have not fully exploited

even more characteristics of the geographical data that may help in identifying truly

36

matches, or at least to give a more precise definition of the quality of the pairs being

matched.

In this sense, if one tries to find the match of record a r in dataset S, there are

some interesting observations. We measure the uncertainty of location of any object

by defining a accuracy radius. This radius may be large when the measurement of

location of the object was done with imprecise tools, or when the location of the

object was recorded with noise. For instance, in the Physicians (PHY) database, the

location of the objects contains information only of the zip code where they belong.

In this case, the accuracy radii of the physicians are enclosed in their respective zip

codes. On the other hand, photos from Flickr may have a small accuracy radius, if

a GPS device was used to geo-tag them. The following sections elaborate more on

these ideas.

3.4.2 Selecting the Best Match

In Section 3.3.2 we define a combined similarity function that satisfies our initial

requirement: objects that are closer in distance and whose textual similarity is

larger, will, overall, have a larger composite similarity value. However, the problem

statement in Section 3.3 specifies that matched records will be sorted based on the

value of the similarity function and only the top one will be part of the join result

set. Although from the user’s point of view this approach is very convinient, since

user does not have to specify a similarity threshold, it is very likely to find a large set

of pairs that are false positives. This is true especially for datasets whose relatedness

is very low. For instance, let r be a record in a white pages dataset (WP) and let

s be a record in hotels dataset (H). Clearly, a SpsJoin result set between WP and

H will likely have a lot of false positives since r and s may share one single token

and yet be close enough that the similarity function will be maximum.

37

A similarity threshold may be used in this case, but now it is up to the user

to have clear understanding on how to define it. A fine tune process is required.

However, other issues are raised when a similarity threshold is used. Let us consider

selecting an independent threshold per type of attribute and let John Smith Lex in

R dataset and John Smith and John Lex in S dataset, all in Miami. First of all, a

set-similarity threshold of 0.9 will miss both of them in S. A much smaller threshold

will get too many false positives, many of them with a closer similarity value. Let us

consider now the case of the spatial attributes. A distance threshold indeed works

but one might be missing important matches if the distance threshold is not large

enough. This is the case of a physician geolocated at a certain zip code. If the user

specifies a short search radius, it might not find the true match.

For certain problems, such as deduplication or recommendation systems, finding

the best match is not of paramount importance. As noted in [BGM12], finding

pairs that satisfy a threshold may be enough for these tasks. However, in this

work we are interested in extracting knowledge from the best match. Geolocation

enhancement is one of those applications, as we are interested in extracting the

geographic coordinates of the best match. Our overaching goal is to be able to

rank matches so that our search returns useful candidates. Our approach, on the

other hand, returns matches that we are almost certain. This notion of certainty is

measured using a similarity function.

Figure 3.8 shows an example of a geolocation enhancement of records in R. Each

record has an uncertainty radius, which is the circular region surrounding each point

displayed in the figure. We are interested in finding the best match for record r1,

“John C” and we set our textual similarity threshold to 0.3. The set of candidates

is composed of the records s1, s2 and s3.

38

Threshold=0.3

r1: John C

s2: John C

s1:John D

s3: John C

R

S

Best Match

Figure 3.8: Candidates for record r1 “John C”. Best match is s3

Notice that all three records satisfy the textual threshold of 0.3. If we further set

another threshold for the distance, meaning that records that are outside a certain

radius will be pruned, we have a clear winner: record s2. However, s3 is actually a

bad choice for the best match. The reason is that its uncertainty radius is too large.

This means that it can be located at any place within that range. Record s3, on

the other hand has a smaller uncertanty radius, it is more accurate and it is more

likely that this record is the best match. Therefore, the uncertainty radius has to

be taken into account in the similarity computation.

3.4.3 Geographic Inverse Record Frequency

When matched pairs have been computed, a similarity function measures the degree

of relatedness between the matched objects. Similarity functions (e.g. Jaccard

coefficient, cosine similarity) do not exploit the richness in content that low frequency

terms provide to the overall similarity measurement. In geographical datasets, the

frequency of the terms is dominated by the geography where they belong. For

instance, demographic areas provide a clear distinction when it comes to names

found in the population. In hispanic/latino areas in the U.S., “Maria” is a very

popular name. However, it is not the case in places where population is mostly

english speaking. Therefore, in mostly english speaking areas, “Maria” provides

39

more information about the certainty of relatedness of the match than in mostly

spanish speaking areas.

To leverage this intuition, we incorporate a term content weight into the simi-

larity funtion. Inspired in the inverse document frequency (idf) measurement from

information retrieval theory [MRS08], we define the Geographic inverse record fre-

quency, Girft, of a term t within geography G as shown in Equation 3.2. We denote

n the number of records within G and m the number of records that contain the

term t in their textual attributes. If t is not within G, Girft is undefined.

Girft(G) = logn(
n

m
) (3.2)

Thus, the Girf of a rare term is high, whereas the Girf of a frequent term is

likely to be low, depending on the geography where they have been measured. To

see this effect, we extracted and tokenized the names in the contact person field in

the Yellow Pages (YP) dataset from two different geographies: Miami, Florida and

Anchorage, Alaska. The number of extracted records in Miami is 92071 and the

number of extracted records in Anchorage is 10854. Figure 3.9a shows Girf of the

top 10 more frequent terms in Miami whereas Figure 3.9b shows the Girf of the

same terms in Anchorage. For instance, term jose in Miami is very popular, so a

set of candidates that contains the term jose may be large and therefore, it does

not carry a distinguishable feature for any of the candidates in order to stand out

as a good match. However, in Anchorage, jose is quite infrequent and therefore a

candidate match that contains the term is likely to be more relevant than any other

candidate with a similar set of matching terms.

Another important observation is that the Girft value of t in a given geography G

is maximum w.r.t geographies contained in G. Thus, for a given geography Gi ⊂ G,

Girft(G) ≥ Girft(Gi).

40

Terms

G
irf

 v
al

ue

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

jos
e

ca
rlo

s

ro
be

rt
joh

n
m

ar
ia

ro
dr

igu
ez jua

n
da

vid

m
ich

ae
l

ga
rc

ia

0.34
0.37 0.38 0.39 0.39 0.4 0.4 0.4 0.4 0.41

(a) Miami, 92071 records.

Terms

G
irf

 v
al

ue

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

jos
e

ca
rlo

s

ro
be

rt
joh

n
m

ar
ia

ro
dr

igu
ez jua

n
da

vid

m
ich

ae
l

ga
rc

ia

0.79
0.85

0.42
0.36

0.79
0.83

0.93

0.43
0.46

0.79

(b) Anchorage, 10854 records.

Figure 3.9: Girft values for the top ten terms found in Miami

3.4.4 Incorporating Girf Values Into the Content Similarity

As shown in the Section 3.4.3, Girf values can be used to score a term in a textual

attribute. The question of how to incorporate this into the textual similarity function

(from now on called content similarity function) has the folowing rationale. We need

to keep the content similarity bounded. Therefore, we quantify the contribution of

each term in a weighting function that decreases the content similarity if the average

of the Girf values is small. When this average is large, the true similarity remains

intact so attaining maximum value of 1 is desirable. To achieve this, we use the

following weighting function.

CW (ar, as) =
1

(2−Gft(G))
(3.3)

Where Gft(G) is the average of all Girft(G) within geography G provided that

t ∈ ar ∪ as.

41

3.4.5 Definitions

This section presents important definitions and parameters that SpsJoin receives to

perform fuzzy joins.

• Candidate. A record s is a matching candidate for record r if the accuracy

radius of s overlaps the accuracy radius of r and they share at least one

token(term) in the textual attribute.

• Radius. It is constant that defines a circle around the point coordinates of

the record such that there is a high confidence that the object lies entirely

within this circle. It is also called the accuracy radius.

• Default Radius. It is a dataset dependent radius that expresses the default

accuracy radius of the objects in the dataset. In other words, it is the smallest

accuracy radius that an object can achieve in the current dataset. For instance,

if we know that Yellow pages has many objects with rooftop level accuracy,

we may assign a 30 meters default radius for matching.

• Geography. It is a geographical extent that encompases an area that may or

may not contain records of a predefined dataset.

• Padded Radius of record r It is the radius of the record plus a constant δ

specific to a particular join run.

3.4.6 Incorporating Uncertainty Regions

When working with geographic datasets, it is important to understand the differ-

ence between the concepts of accuracy and precision of geographic attributes, e.g.

geographic coordinates. Indeed, the location of the objects in the dataset have been

42

measured using either GPS devices, geocoder engines, or any other device that pro-

duces geographic coordinates e.g. cellphone triangulation, Wi-Fi based positioning

systems, etc. In particular, GPS devices rely on satellites to compute the location of

users by comparing distances from the subject and the time the signal takes to reach

the GPS receiver. This computation is affected by several factors, e.g. atmospheric,

noise, etc. that affects the accuracy of the measurement. Therefore, they can only

guarantee an accuracy within a certain radius on average. Similarly, geocoder en-

gines translate strings (home addresses) into geographic coordinates. The geocoder

strives to geolocate the given string using a database of streets. When the address

matches exactly, the geocoder simply returns the corresponding coordinates. Since

perfect match is not always the case, as the string may contain typos, or the streets

database does not have all information, the geocoder interpolates the given address

using approximate locations that are partially extracted from the address, e.g. city,

street, state, etc. and returns the geographic coordinates along with an accuracy

level (accuracy radius). We define the accuracy as the tendency of the measurements

to agree with the true values. It is measured using an uncertainty region, that is a

closed region where there is a guarantee that the true location of the object may

lie. On the other hand, precision is the degree to which the measurement pin down

an actual value. In general, there is no need for much more precision in the mea-

surement than there is accuracy built into it. In fact, using too much precision may

mislead users of a system into believing that the accuracy is greater than it really is.

In our model, we encode the uncertainty region using the radius of the circunference

that encloses the uncertainty region. Given an object r in a geographic dataset, we

denote rrad as the lenght of the radius that defines uncertainty region. We will refer

rrad as the accuracy radius. Equation 3.4 defines a piecewise function that penalizes

43

the degree of the quality of a pair, based on the uncertainty region of each object

and their dataset dependent default radius.

RW (r, s) =

dist(r,s)+rad(r)+rad(s)

def(R)+def(S)
if not fully contained

rad(r)+rad(s)
def(R)+def(S)

otherwise.

(3.4)

Hence, when one of the objects is fully contained within the uncertainty region

of the other, the distance between both is zero. Therefore, the first part of RW

is used as region weight. When uncertainty regions overlap, the distance between

objects is considered important, since the best pair is likely to be the closest one. In

order to know when two regions overlap, the inequality dist(r, s) ≤ rad(r) + rad(s)

has to be satisfied.

3.4.7 Putting it All Together

We incorporate CW from Equation 3.3 and RW from Equation 3.4 weights into our

combined similarity measurement. Equation 3.5 shows the transformed similarity

function simw after we plug in the weights.

simw(r, s) =
tsim(ar, as) ∗ CW (ar, as)

1 +RW (r, s)
(3.5)

Note that simw is still bounded but it does not reach 1 when both, r and s, are

the same. The reason is that there are no precise objects in the real world. There

is always an uncertainty region and the weights of the Equation are intended for

reflecting this.

44

3.4.8 Incorporating Uncertainty: Entropy

It is a measure of unpredictability in a random variable [CT91, TSK05b]. The best

example used to explain it is to consider the toss of a coin. When one toss a fair

coin, the probability of obtaining heads or tails is equal to 0.5. Therefore, it is hard

to predict what would be the result of the next coin toss. However, if the coin has

two heads and no tails, we are “certain” on what the next outcome will be. In this

case, the entropy tells us that the unfair coin gave us more information than the

fair coin, in order to predict the outcome.

Let X be a random variable. The entropy H is defined as shown in Equation 3.6:

H =
∑
i

p(xi) log p(xi) (3.6)

We leverage this concept to measure the uncertainty of selecting a best matching

pair. Given a set of possible candidates, we group them into buckets of similarities.

For our purposes, we use only 5 buckets (clusters). We cluster the data using a

one-dimensional k-means algorithm which partitions the data optimally. The mean

of each bucket is the representative similarity value of the bucket. Then, we measure

the entropy of the cluster. If the entropy is large (close to one when normalized) we

know that we cannot make a decision, since we are uncertain on which candidate

pair to pick. On the other hand, if the entropy is low (close to zero), then we

are more certain that we can pick a candidate pair. We will see later how to pick

the uncertainty threshold to reject or to accept a candidate pair by combining this

measure with the similarity value.

45

3.5 Improving SpsJoins

Maintaining scalability is an issue of paramount importance when working with large

datasets in parallel. We express our algorithms using the MapReduce programming

model for two main reasons. First, the framework provides all the functionality of a

distributed system such as fault tolerance and job scheduling, all of this transparent

to the programmer. Second, the possibility to scale out when more nodes are added

to the computational cluster without changing the main program guarantees the

portability of the proposed solution to different cluster configurations. We modified

the our implementation shown in Section 3.3.2 by incorporating all the features that

we have found so far.

3.5.1 Spatial Partitioning Phase

Scalability In this work, we propose a small modification in the k-means algo-

rithm to handle data skewness. Although far from perfect, our heuristic tests for

large variations in the sizes of the partitions, using Interquartile Ranges (IQR), and

recomputes k-means on those outstanding partitions. Our experiments show that

this heuristic works well when centroids are biased toward outliers or small sized

partitions. However, there is still a change of large partitions after the heuristic,

that is a consequence of poor selection of centroids.

Our k-means implementation is efficient in the sense that we do not emit all the

records through the network. We rely on a Combiner function that aggregates points

in local centroids and emits weighted aggregated points to reducers. Reducers obtain

streams of weighted points and compute a weighted average, emiting the resulting

centroid.

46

RID x y RID x yCID

1 1 2 …

2 3 5 …

3 2 2 …

… … … …

11 1 3 …

12 7 8 …

… … … …

22 3 6 …

23 9 8 …

… … … …

1 1 1 2

2 2 3 5

1 3 2 2

… … … …

1 11 1 3

3 12 7 8

… … … …

2 22 3 6

3 23 9 8

… … … …

1 2 1.5 2

2 1 3 5

… … … …

1 1 1 3

3 1 7 8

… … … …

2 1 3 6

3 1 9 8

… … … …

1 2 1.5 2

1 1 1 3

… … … …

2 1 3 5

2 1 3 6

… … … …

3 1 7 8

3 1 9 8

… … … …

1 3 1.3 2.3

2 2 1.5 5.5

3 2 8 8

M
a

p
M

a
p

M
a

p

C
o

m
b

in
e

C
o

m
b

in
e

C
o

m
b

in
e

G
ro

u
p

 b
y
 k

e
y

R
e

d
u

c
e

R
e

d
u

c
e

R
e

d
u

c
e

|r|CID x y
|r|CID x y

|r|CID x y

1 …

2 …

3 …

Figure 3.10: MapReduce: Spatial Partitioner algorithm data flow

We partition the datasets based on geographical component. Data skewness

may harm the load balancing of the overall join algorithm. The reason is that a

clustering technique may favor closeness to centroids rather than number of records

in each cluster. We note that our previous Xmeans implementation tries to guess the

best number of clusters. A partitioning technique can be derived with this method.

However, Xmeans relies on Bayesian Information Criterion or Akaike Information

Criterion [PM]. Although the technique is effective in determining a good number

of clusters, it does not solve the balance problem i.e. if a cluster of a low number

of records seem to be far away, the number of records are unlikely to merge to

satisfy the minimum number of records require for the each cluster. The work of

Ng et.al [NH94] seems to be promising but it has a major drawback for very large

datasets: it requires high level of computations for solving the nonlinear optimization

problem of k-means. We proposed a much simpler but powerful heuristic that seem

to work very good in large datasets.

We note that we are not interested in finding the best possible solution for load

balancing and the same time satisfying the constraint of the best partition. Solving

that kind of problem seems to require a lot of computation and those two constraints

are unlikely to be satisfied efficiently with a simple heuristic. We believe that the

bulk of operations are centered in the local computation of the join. Therefore,

a load balancing strategy that performs reasonable well is likely to produce good

47

results. The main problem with any type of load balancing technique in this join is

that the accuracy radii of the considered objects may overlap several clusters. If the

partition forces the object to be repeated in several clusters, then we cannot just

simply reassign the object to another cluster. The object is to be kept within the

cluster. Also, even if the cluster does not have the required minimum number of

objects, it would be useless to assign objects that would not match between them,

just because we need to satisfy a quota of minimum objects.

Our solution works as follows: Let k be the number of clusters used. Each

cluster is supossed to have the maximum number of records allowed to compute a

join. We then compute the IQR (interquantile range) of the number of records per

cluster [TD00]. For all clusters that have more than the upper fence value (UFV)

e.i. more than Q3 + 1.5 ∗ IQR, we split them based on the median value mv of the

clusters. Then, we compute kx = N/mv that we use to further compute a kx-means

algorithm.

Here, we briefly explain the modification for the spatial partitioning procedure,

in order to load-balance the clusters.

• Each mapper simply maps the records that need further parititioning.

• On each reducer: first, we set M = n/k. For each centroid c (in the reducer),

if centroid c has more than 2M counts, let it be |c|. If set m = |c|/M then run

an m-means with the centroids in the reducer. Then we eliminate previous

centroid and we add the new m centroids.

3.5.2 Local Join Implementation

We briefly explain our approach for computing local joins using two different data

structures. As we shown before, local joins run on each reducer. In order to decrease

48

ID D t CID

M
a

p
M

a
p

M
a

p

G
ro

u
p

 b
y
 k

e
y

R
e

d
u

c
e

R
e

d
u

c
e

R
e

d
u

c
e

1 …

2 …

3 …

1 R A,B,C …

2 R A,F,G …

1 S A,E,F …

… … … …

6 S A,B,D …

9 R B,C …

… … … …

10 S A,F,H …

15 S B,H …

… … … …

sp

1 1 R A,B,C …

2 2 R A,F,G …

1 1 S A,E,F …

… … … … …

1 6 S A,B,D …

2 6 S A,B,D …

3 9 R B,C …

… … … … …

2 10 S A,F,H …

2 15 S B,H …

3 15 S B,H …

… … … …

ID D t sp

1 1 R A,B,C …

1 1 S A,E,C …

1 6 S A,B,D …

… … … … …

2 2 R A,F,G …

2 6 S A,B,D …

2 10 S A,F,H …

2 15 S B,H …

… … … … …

3 9 R B,C …

3 15 S B,H …

… … … … …

1 1 0.5 0.45

1 6 0.5 0.49

2 6 0.2 0.3

2 10 0.5 0.25

9 15 0.3 0.2

CID ID D t sp

RID SID sim_t Sim

CLUSTERS:

Figure 3.11: MapReduce: Local Join algorithm data flow.

the running time, we implemented two spatial data structures that we describe

below.

SpsJRTree. This algorithm uses a lightweight R-tree [Gut84] implementation. We

augment the original algorithm with a textual data structure similar to inverted

files for text processing, that we call token file (TF). TF is simply an extension of

the inverted file. It maps tokens to lists of nodes that contain the token. It was

implemented as a hash table with double indirection for fast retrieval of nodes. To

fill out the TF, once the R-tree has been built, the algorithm extracts the tokens

from the records at the leaves. For each token at the leaf, it checks if the current leaf

has not been added in the list of nodes of the token in TF. If not, then the algorithm

inserts it and continues recursively using its parent. The base case occurs when the

current node has been inserted in the TF list of the probed token. For this algorithm

to be memory efficient, several optimizations can be done. First, the nodes of the

TF data structure may leverage the frequency of the token. For frequent tokens,

the size of the buckets is bounded by the number of nodes. However, for infrequent

tokens e.g. tokens that appear just one time, the size is bounded by the height of

the R-tree. Another optimization can be done by observing the distribution of the

tokens in the nodes. Infrequent tokens may map the same nodes if they belong to

the same leaf, so we can collapse the inverted lists of both tokens. However, this

requires additional work in the algorithm and , for efficiency, we need to keep it

49

simple. SpsJBoxSort. This implementation uses a space efficient data structure

called Box Sort tree [Hou87]. The Box Sort tree is similar to a k − dtree but for

polygons. One advantage it has w.r.t the R-tree is the small amount of data used

to maintain it. The space complexity is O(n), where n is the size of the input data

and search queries are guaranteed log(n). This data structure is suitable for this

problem not only because of the space complexity, but also because we do not need

to perform deletions or insertions in the local joins.

We also included text information in the nodes that allow us to prune unnecessary

branches when we do not find tokens that are deeper in the leaves. In Section 3.6.1

we compare SpsJBoxSort and SpsJRtree for performance.

As a caveat, we noted that the radius picked for our algorithms can have a

significant impact in the performance. The reason is that objects have accuracy

radii. This accuracy radius may be very large, so in that case, our R-tree or Box Sort

will have too much overlaping which implies that spatial search is not as effective as

token pruning. On the other hand, if the precision radius is small, spatial prunning

is quite effective and token prunning becomes important only at high levels of the

R-tree. That is the main reason that we use text augmentation in both of our

algorithms for spatial set-similarity joins.

50

Algorithm 1 Spatial Set-Similarity Join algorithm

1: procedure SpsJoin(R,S, k, type)
Spatial Partitioner Phase:

2: if type = LEFT then
3: C ← spatialPartitioner(R) . This works for Left outer join only
4: end if

Local Join Phase:
5: Candidates← ∅ . List of candidate pairs < r, list[s] >, s ∈ S
6: Map each o ∈ R ∪ S to pairs < ci, o > such that o.MBR overlaps ci ∈ C
7: for all ci ∈ C do . In parallel
8: Reduce localJoiner(ci,list[oi])
9: Append < r, list[s] > pairs to Candidates

10: end for
Filtering Phase:

11: for all candi ∈ Candidates do . In parallel
12: < r, l >← candi
13: Gi ←

⋃
s∈l s.MBR

14: Create vocabulary V from terms in l and r
15: Compute Girft(Gi) for each t ∈ V
16: fl← ∅ . Priority queue of size k
17: for all s ∈ l do
18: Push < sim(r, s), (r, s) > to lf
19: end for
20: while fl 6= ∅ do
21: Pop fl . Returns pairs < sim(r, s), (r, s) >
22: end while
23: end for
24: end procedure

3.5.3 On Radius and Distance Computations

The precision radius is inherent in the object and depends on the resolution that the

location of the object was measured. Every SpsJoin operation may have different

purposes. For instance, it may be used to improve location of one dataset using

another dataset. In this case, the imprecise location is rather large and intersection

of radii play an important role to find the right candidate. On the other hand,

if the join is composed with objects with precise location, the precision radii are

51

small. In this case, radius overlap may not match any object. An example of this

is a join between Flickr dataset and Yellow Pages. Precision radii are small on

both. To handle this issue we define what we use the default radius we defined in

Section 3.6.1. For instance, if we know that Flickr has geolocated objects at certain

radii, we increase the default radius to 200 meters to account for people who have

taken pictures far away from the target.

3.6 Experimental Evaluation

In this section we describe the performance evaluation of our techniques and pro-

posed algorithms. We evaluate the precision of our join using a ground truth dataset

that we built for this purpose. In order to understand the performance of the parallel

algorithms we measure absolute running time, relative speedup and scaleup [DG92].

Our testbed is a two processor AMD machine with 24 cores 16MB cache machine

with 256GB RAM operating at 1066MHz with 12 x 500GB disk drives at 7200

RPM SATA. For our experiments we used Hadoop v1.0. in a pseudo-distributed

configuration. The machine was configured with a SELinux Carbon Release 6.2

operating system, running Java 1.6 JVMs. In order to maximize performance, we

set up the replication factor to 1 and disable the speculative task execution feature.

In order to exercise our join algorithm, and to test precision of the join, we used

the following real world datasets:

• WPMIA. It has over 1.3M records of white pages in the city of Miami.

Each record contains first name, last name, phone, title, address, city, state

and geographic coordinates. The attributes that we used for joining are the

address and the geographic locations. Note that the accuracy of this dataset

52

may vary, as it underwent a geocoding process. The total size of this dataset

is 145Mb.

• PRMIA It has over 360K records of parcels in the city of Miami. Each record

contains a parcel ID, Folio number, registered owner, address and geographic

coordinates. It is worth noting that this dataset has very accurate geographic

coordinates. The accuracy radius is approximately 15 meters, as these are

GPS coordinates. The attributes used for computing the join are

We evaluate and discuss our techniques in two different layers: performance and

precision of the join. We tested SpsJRTree and SpsJBoxSort approach. We used

WPMIA and PRMIA to test performance and Section 3.6.2 describes a ground truth

data set to test precision.

3.6.1 Performance

We observed that a nested loop approach of an SpsJoin to handle such large amounts

of data is simply a waste of computation and time, specially if users rent cloud

computing solutions. Therefore, we do not compare our algorithms with the naive

case. Instead, we assume that our baseline partitions the data using the spatial

attributes. We test our two approaches, SpsJBoxSort and SpsJRTree and evaluate

their performance.

For each approach, we tested its running time but we also show its ideal speedup

curve. Figure 3.12a shown the running time of both approaches and also its speedup.

For instance, if the cluster has twice as many reducers and the data size does not

change, the approach should be twice as fast. Figure 3.12b we show the same

numbers, but plotted on a relative scale. That is, for each number of reducers, we

plot the ratio between the running time for the smallest cluster size and the running

53

time of the current cluster size. For example, for the 10-reducers run, we plot the

ratio between the running time on the 2-reducer cluster and the running time on

the 10-reducer cluster. We can see that all two combinations have similar speedup

curves, but none of them speed up linearly.

●

●

●
●

● ● ●

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0

Number of reducers

T
im

e
(s

ec
on

ds
)

1 2 4 6 8 10 12

● SpsJBoxSort
SpsJRTree
Ideal

(a) Running time.

●
●

●

●

● ● ●

5
10

15
20

Number of reducers

S
pe

ed
up

=
O

ne
 R

ed
uc

er
/C

ur
re

nt
 R

ed
uc

er

1 2 4 6 8 10 12

● SpsJBoxSort
SpsJRTree
Ideal

(b) Relative Speedup.

Figure 3.12: Running time and Relative speedup for SpsJBoxSort and SpsJRTree

3.6.2 Join Precision

In this section we test the precision of our join. To that end, we created a ground

truth that allow us to measure and fine-tune the parameters needed to get as much

true positives as possible.

Ground Truth

SpsJoin combines records from two datasets and returns the most similar pairs based

on the similarity function we described in 3.3. However, the best match s ∈ S of

an object r ∈ R may not be necessarily an actual match. For instance, it may be

the case that John S. Smith has a best match Alice Smith in a given dataset S.

Defining a threshold is good way to address this problem but the question of how

large it should be remains unanswered.

In this section, we define a ground truth or a golden dataset, so that we can have

an idea of the value of the thresholds and parameters that we should set our system.

54

It is important to note that this threshold depends on the type of the set-similarity

and distance functions. For example, when computing a SpsJoin on Flickr dataset

and Yellow Pages, we may use overlap similarity to match pairs and we might be

interested in high overlap of infrequent keywords. This overlap may be small but

the keywords involved can be so rare they may boost the overall similarity measure.

If the datasets has nothing in common textually and geographically, then a

spsjoin is not the correct approach. There are efficient techniques to determine a

similarity join selectivity. In particular [LNS11] use stratified sampling methods to

sample both datasets, defining mutually exclusive strata that will be joined using

LSH techniques. Unfortunately, this approach does not seem to work for spsjoins,

since LSH techniques require metrics in a metric space that satisfy the triangle

inequality.

Measuring the precision performance of an spsjoin is difficult without a ground

truth. Therefore, for our ground truth we used an already known join of two datasets

on a given, basically an already computed relational join.

3.6.3 Experiment Definition

In order to measure the precision of our join, we used an already computed join

called CALLREAL. This file contains MLS Real Estate listings in Miami-Dade county

that are updated daily. It consists of several characteristics of the parcels such as

number of beds, number of bathrooms, number of rooms and other geographic and

non geographic information. This dataset is the result set of a join between the

ALLREAL and FLPROPERTIES on the folio number, which is a unique identifier of the

parcels.

We can test the precision of an SpsJoin by splitting this join into its original

datasets and rejoin them again, but this time using an SpsJoin.

55

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0
0.

11
0.

23
0.

34
0.

45
0.

57

(a) Only similarity values.

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0
0.

1
0.

2
0.

3
0.

4
0.

5

(b) Combined score.

Figure 3.13: ROC Curves: True positive - False positive rates

False negative rate

Tr
ue

 n
eg

at
iv

e
ra

te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0
0.

11
0.

23
0.

34
0.

45
0.

57

(a) Only similarity values.

False negative rate

Tr
ue

 n
eg

at
iv

e
ra

te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0
0.

1
0.

2
0.

3
0.

4
0.

5

(b) Combined score.

Figure 3.14: ROC Curves: True negative - False negative rates

Then, in the experimention we will compute a SpsJoin on ALLREAL and the

dataset of florida parcels FLPROPERTIES on their address and it geographic coor-

dinates. Note that the addresses of a matching pair may not be exact. This also

implies that the location is approximate, since each dataset might have been treated

with different geocoders. Therefore, the matching is fuzzy.

We run our experiments following an incremental approach until we obtained

good performance. This performance can be shown through ROC curves [SSBL05].

ROC curves are graphical plots that illustrate the performance of binary classifiers

as their discrimination thresholds are varied. We harness their power to show our

56

incremental approach. They can show the percentage of false positives versus the

percentage of true positives as the threshold is varied during the experiment.

For instance, Figure 3.13a shows an ROC curve using the similarity value. In the

x axis, the ROC curve is showing the percentage of false positives. The y axis shows

the percentage of true positives. Parallel to the y axis there is an odometer that

shows the different similarity values. This odometer is useful to pick a threshold

value that maximizes the number of true positives.

We can see from the figure that selecting a threshold ≥ 0.45, we will get about

40% of true positives. However, with a threshold ≥ 0.34 we get 45% of true positives,

but we need to tolerate 10% of false positives.

In order to improve the performance of our metrics, we propose the similar-

ity/entropy score. The rationale for defining such a score is that, as the similarity

increases, our uncertainty in selecting a best match decreases. Therefore, large val-

ues of this score are likely to capture more true positives. Figure 3.13b shows this

improvement. From the plot, we can see that tolerating 10% of false positives, we

get up to 70% of true positives. This means a 25% improvement over the similarity

approach.

We also experimented with the rate of false negatives. Figure 3.14 shows a

similar analysis using both, the similarity metric and the entropy score. In this case

we do not see a huge improvement when we tolerate a 10% false negatives. The rate

of true negatives is very similar (65%) in both, Figure 3.14a and Figure 3.14b.

In conclusion, this ground truth allowed us to measure the precision of our join.

It was shown that a threshold of 1.8 in the entropy score gives the best performance,

capturing a good number of true positives. The main drawback is that we will not

be able to get 100% of true positives. The main reason is that matching two records

may depend on other attributes that are not being considered in the similarity

57

function. However, this system gives an initial step in matching pairs of records

from two different datasets using similarity functions.

3.7 Appendix

In this section, we describe how to setup the experiments using the system im-

plemententation described in this chapter. We also document each module of the

system for further reference.

3.7.1 SpsJoin Implementation

As described in Section 3.6, SpsJoin was implemented in Java 1.6. We used Apache

Hadoop V.1.0 and it is available open source in [Apa12].

The source code was created using NetBeans IDE 7.2, available in [Net].. Net-

Beans is an Integrated Development Environment (IDE) that provides the user with

comprehensive facilities for software development. The default configuration of Net-

Beans includes a Java compiler and other plugins e.g. Tomcat, but other languages

can be used.

The different modules of the system were developed in separate projects each.

This means that each module is part of a java package that was shipped in jar files.

However, when it is deployed to the cluster, the source code was recompiled and

shipped in a single jar for execution. More details are described below.

Cluster Configuration

In Section 3.6, we mentioned that the cluster was configured using the pseudo-

distributed mode. The status of the job tracker of the cluster can be queried using

the URL http://131.94.128.150:50030/jobtracker.jsp.

58

In order to configure the cluster, a user was created. The nickname of the user

is hadoopuser. This user is the one that owns the source code and can perform

the executions. To get access to the code, log in with hadoopuser. From the

home folder, go to the /hadoop folder. This folder contains the instalation of the

cluster. The user can also modify the configuration by modifying the hadoop files

core-site.xml, mapred-site.xml and hdfs-site.xml. For instance, to modify

core-site.xml, run the following commands

% cd /hadoop/conf

% nano core-site.xml

The above commands will open a text editor so that the XML file can be modified

for a new configuration. Check [Apa12] for documentation about Hadoop cluster

configuration.

We may check the status of the HDFS’s Namenodes by querying the URL

http://131.94.128.150:50070/dfshealth.jsp. As we can see, the cluster is con-

figured with a single Namenode with no replication. The reason for this is that the

machine has been set with a RAID 6 controller.

SpsJoin Source Code

SpsJoin source code is available in the folder /spsjoinSoftware. It contains all

unpacked modules of the system. However, when the program is executed, all source

is compiled and packed in a jar file called alllibs.jar. The breakdown of the

modules, with their respective folders and descriptions is shown in Table 3.2.

Note that folder parallelspsjoin contains only .class files that forms the

main program. The actual source code can be found in the allsrc folder, under file

59

Table 3.2: List of modules in SpsJoin

Folder Description
boxsort Implements of the Box Sort data structure
com Implements the Bloom Filter data structure
genericextractor Contains the XML parser and other utilities
geometry Implements Rectangle and other geometry classes
onedimensionalpartition A unidimensional k-means implementation
parallelkmeans Implements spatial partitioner in Java
parallelsampler Implements a random sampler for the input data
parallelspsjoin Contains the .class files of the main SpsJoin program
rtreeimpl Implements a lightweight R-Tree (experiments)
mrUtil Utilities for parallelsampler
utils Package with utilities e.g. Similarity functions

names SpsJoinRTree.java and ClusterPartitioner.java. The process to com-

pile and generate a full jar package for execution is as follows

% cd /home/hadoopuser/spsjoinSoftware/

% javac -classpath /hadoop/hadoop-core-1.0.1.jar:allsrc

-d allsrc allsrc/*.java

% jar -cvf alllibs.jar -C allsrc/ .

Once the file alllibs.jar is created, we can run it in Hadoop.

3.7.2 Creating A Configuration File

SpsJoin requires an XML file that provides the main parameters of the system

execution. This XML file can be created using any text file editor. This file has to

be stored in the /spsjoin folder. In this section we provide the description of the

parameters along with an example XML. The folder /spsjoinSoftware contains

60

a template that can be used to modify the join execution. Here we provide some

definitions of concepts used throughtout this Section.

Primary textual field. It is the main textual attribute that the join operation

uses for content similarity matching.

Secondary textual field. It is the optional textual attribute that the join opera-

tion uses in case the primary textual attribute has no match with any of the terms

in the content similarity. In case where match is on primary and secondary, the join

operation keeps the content similarity that achieves the largest one.

Radius. it is constant that defines a circle around the point coordinates of the

record such that there is a high confidence that the object lies entirely within this

circle.

Default Radius. It is a dataset dependent radius that expresses the default preci-

sion radius of the objects in the dataset. In other words, it is the smallest precision

radius that an object can achieve in the current dataset. For instance, if we know

that Yellow pages has many objects with rooftop level precision, we may assign a

30 meters default radius for matching.

Padded Radius. It is the sum of the radius of an object and a positive constant.

Note that the confidence of the object lying within its padded radius increases.

Distance Threshold. It is the maximum distance radius that the system will use

to search for objects. By default it is set to 3 miles.

Similarity Threshold. It is the threshold used to filter best candidates. It depends

on the experiments that we defined in the previous Section.

Now we show an example of the XML file that we used to configure the system.

The file starts with a main tag called “parameter” and its subfields are defined

within.

61

<parameters>

<joinType>LEFT</joinType>

<simtype>0</simtype>

<relation>

<id>R.asc</id>

<primary>name</primary>

<secondary></secondary>

<latitude>latitude</latitude>

<longitude>longitude</longitude>

<defaultRadius>200</defaultRadius>

</relation>

<relation>

<id>S.asc</id>

<primary>title</primary>

<secondary></secondary>

<latitude>latitude</latitude>

<longitude>longitude</longitude>

<defaultRadius>200</defaultRadius>

</relation>

</parameters>

3.7.3 Running SpsJoin

SpsJoin can be run using the alllibs.jar. This section provides an step-by-step

process along with an example that shows the execution process. We begin by se-

lecting the datasets that we are going to use for the operation. We assume that

these datasets are stored in a local disk. In our case, they are stored in TFoverlays

62

folder. Also, we have to create the XML configuration file that SpsJoin uses for

execution, as we showed in Section 3.7.2.

SpsJoin Directory Structure

Spsjoin operates in the Hadoop Distributed File System (HDFS). The root of the

directory structure is the folder /spsjoin. Table 3.3 shows a breakdown of the

folders in /spsjoin folder along with their description. The /input folder feeds

SpsJoin with input datasets along with their header files. The user has to make

sure that both, the name of the file and the header have the same name. The only

difference is that the header file contains the extension “.header” appended in the

name. The /kmeans folder records the execution of the spatial partitioner. This is

a k-means algorithm that runs several times depending on the number of iterations

set by the user and the activation of the load balancer. The output (the list of

centroids) is kept in a subdirectory called /finalcentroids in the mergedFile file.

The /modinput folder contains the modified input of the SpsJoin program. It was

created to add an additional surogate key. This is done because we have identified

that several datasets do not include a unique key in their fields. This is necessary

to join the original records after the SpsJoin execution. Note also that the new files

are renamed as “R.asc” and “S.asc”. This way, SpsJoin identifies the provenance

of the records when processing the files in Hadoop. Recall that Hadoop does not

differenciate between files in its input so we take advantage of the split names to

identify them. The /output folder stores the SpsJoin output after the execution of

the main algorithm. It only contains a set of files in SpsJoin format with the ids of

the matches and other information. Note that this is not the final output. The folder

/recordJoin contains the final result set. It has two subdirectories that records its

execution. The result set is stored in the folder /output2. Finally, the /sampler

63

Table 3.3: List of folders in spsJoin folder

Folder Description
input Stores input datasets
kmeans Records the execution of K-means
modinput Stores the input with surogate keys
output Stores the output of SpsJoin (no original records)
recordJoin Stores the result set with original records
sampler Records the execution of the sampler algorithms

folder is used basically to store the execution of the sampler algorithm. It is the

input of the kmeans algorithm so it is created along the way in the SpsJoin execution.

Running Example

Now that we know how the directory structure is built, we can show the step-by-step

process to run an SpsJoin. First, we copy the input files from a local directory to the

HDFS. Recall to always log in using the hadoopuser username to run the program.

Also, the user has to run ssh localhost before running the system. The following

commands show how the execution works.

% hadoop dfs -copyFromLocal /home/hadoopuser/data/* /spsjoin/input/

Then, copy the XML configuration file:

% hadoop dfs -copyFromLocal

/home/hadoopuser/spsjoinSoftware/spsjoin.config.xml /spsjoin/

These commands copy the input files and the configuration file from local disk to

the HDFS. After this, we can run the sampler. This module basically samples the

dataset in order to obtain a good initial seed of centroids needed in the spatial par-

titioner. We proceed by running the following command

64

% hadoop jar /spsjoinSoftware/alllibs.jar parallelsampler.Sampler

100 4 groundTruthR.asc groundTruthS.asc

The parallel sampler receives three parameters, the sampling rate (100), the number

of initial seed centroids (4) and two datasets. As mentioned before, the output of

the parallel sampler is the input of the spatial partitioner.

At this point, we have what we need to run the spatial partitioner. Our spatial

partitioner is a k-means algorithm that also runs a load balancer when the size of the

clusters are not evenly distributed. In order to run it, we have to use the following

command

% hadoop jar /spsjoinSoftware/alllibs.jar parallelkmeans.Kmeans 3 2 0

The spatial partitioner receives three parameters: the number of iterations (3), the

number of reducers used in the execution (2) and the mode (0). This mode is used

primarily to determine if this is a first time executing the partitioner or a subsequent

time, 0 for first time or 1 for the rest. It is useful only in experimentation.

Once we run the spatial partitioner, we are ready to execute the main join pro-

gram. The following command shows how.

% hadoop jar /spsjoinSoftware/alllibs.jar parallelspsjoin.SpsJoinRTree

The main program receives only one parameter, which is the number of reducers

that are going to be used in the execution. As mentioned before, this program leaves

the output in the /output folder. The resulting file is not a final file. This process

has to undergo another procedure to join the original records. To do this, we run

65

the following command

% hadoop jar /spsjoinSoftware/alllibs.jar recordsjoin.JoinRecords 1

The record join receives one parameter: the mode. Mode is an integer that can be

one or two. By default, it should be one. Two is only for debugging purposes.

3.7.4 Appendix Conclusions

We have shown how to run SpsJoin using simple Unix commands. The system has

been implemented using Java 1.6 and Hadoop V 1.0. It is important to note that we

used the last version of Hadoop by the time this document was written. This system

can also be extended to handle more interesting variants of joins, such as multi-way

joins. SpsJoin showed great precision and scalability and future improvements will

definitively benefit from this initial version.

66

CHAPTER 4

TOWARDS PRIVACY PRESERVING LOCATION BASED SERVICE

APPLICATIONS. THE SAFE CITIES CASE.

In this chapter, we address privacy concerns and motivate LBS applications in the

context of Safe Cities, using a mixed spatial and nonspatial approach. Overall, this

chapter aims to enable the vision of smart and safe cities, by exploiting mobile and

social networking technologies to securely and privately extract, model and embed

real-time public safety information into quotidian user experiences. We provide

novel approaches to define location and user based safety metrics. We devise iSafe,

a privacy preserving algorithm for computing safety snapshots of co-located mobile

devices as well as geosocial network users. In our analysis, we leverage SpsJoin to

find venues that have not been reviewed and to further compute the crime indices

of their locations.

Acknowledgements. I would like to acknowledge Mr. Mahmudur Rahman. He

contributed to specific parts shown in this chapter and gave valuable insights. In

Sections 4.7 and 4.8.4, he wrote Android source code for the iSafe algorithm and

for the web server-plugin. He performed crime forecasting experiments, as shown in

Section 4.8.2, and he currently mantains the website of the iSafe project.

4.1 Introduction

Modern technological advances and, in particular mobile devices and online social

networks, have paved the way toward a smarter management of resources in today’s

cities. As population density grows and natural disasters and man-made incidents

(e.g., hurricanes, earthquakes, riots [LAR12, Fra12, Eng12]) impact increasing num-

67

ber of people, maintaining the safety of citizens, an essential smart city component,

becomes a problem of paramount significance and difficulty.

We envision an LBS system where users are seamlessly made aware of their

safety in a personalized manner, through quotidian experiences such as navigation,

mobile authentication, choosing a restaurant or finding a place to live. This is a

clear definition of a LBS where location data is of paramount importance. The main

objective of this system is to motivate the use of a location service that addresses

privacy concerns but at the same time, tackles an interesting problem in smart, safe

cities. We propose to achieve this vision by introducing a framework for defining

public safety. Intuitively, public safety aims to answer the question “Will location

L present any danger for user A when she visits L at a future time T”?

An important challenge to achieving this vision is the need to properly under-

stand and define safety. While safety is naturally location dependent, it is also

inherently volatile. It not only exhibits temporal patterns (e.g., function of the

season, day of week or time of day) but also depends on the current context (e.g.,

people present, their profile and behavior). Furthermore, as suggested by the above

question, public safety has a personal dimension: users of different backgrounds are

likely to be impacted differently by the same location/time context.

Previous attempts of making people safety-aware include the use of social media

as a means to distribute information about unreported crimes [FAdO+10], or web

based applications for visualizing unsafe areas [Cri, Gua]. The main drawbacks of

these solutions stem from the difficulty of modeling safety and of integrating its

use in the everyday life of people. Instead, here we investigate the combination of

space and time indexed crime location datasets, with mobile technologies and online

social networks to provide personalized and context aware safety recommendations

for mobile and social network users.

68

Specifically, we first define location centric, static crime and safety labels, based

on recorded crime events. We take advantage of observed crime behavior period-

icities, to conjecture that location safety values are predictable. To verify this hy-

pothesis, we investigate the ability of timeseries forecasting tools to predict future

location crime and safety index values based on recorded crime events.

Moreover, we use mobile device and geosocial network technologies to record the

trajectory trace of a user: the set of (location, time) pairs where the user has been

present. When sufficient crime information exists to enable an accurate prediction

of location based crime levels, we introduce the concept of personalized safety rec-

ommendations: A user U is safe at a location L, if the average crime index of the

locations in U ’s trajectory trace equals or exceeds the crime index predicted for the

near future at L.

When insufficient crime information exists at a given location, we propose to

augment the “context” of the location with data collected from co-located mobile

devices and geosocial networks. We define the vicinity crime metric, to be the

chance of crime events being reported around a user or a group of users, based on

their past location trajectories. We introduce then the concept of context aware

safety recommendations: a user U is safe around users U1, .., Uk if U ’s vicinity crime

metric equals or exceeds the aggregate vicinity crime metric of users U1, .., Uk.

Furthermore, through the statistical χ2 test we show that dependencies exist be-

tween the quantity and quality of reviews venues receive in Yelp (a popular geosocial

network) and the crime indexes of the venues’s locations. We then propose to simi-

larly augment spatiotemporal context with trajectory traces collected from geosocial

network users. We leverage SpsJoin from Chapter 3 on Yelp venues and geolocated

businesses to find venues that have not been reviewed and to further compute the

crime indices of their locations.

69

The approach outlined above relies on the ability to aggregate user location

trajectories. Access to the trajectory traces of users, along with associated crime

and safety index values, either by other users or a centralized service provider,

raises significant privacy concerns: even social network providers have been shown

to leak [KW10] and sell [SF] user data to third parties.

To address this issue, we devise iSafe, a distributed algorithm that takes advan-

tage of the wireless capabilities of mobile devices to compute real-time snapshots of

the safety profiles of close-by users in a privacy preserving manner. iSafe uses secret

splitting and secure multi-party computation mechanisms to aggregate the trajec-

tories of co-located users without learning the private information of participants.

We have implemented iSafe as a browser plugin component and an Android

application. We provide extensive evaluations of our contributions using crime and

census data from the Miami-Dade county (FL) as well as data we have collected

from the accounts of users and businesses in Yelp [Yel], a popular geosocial network

centered on user feedback. Our experiments performed on a testbed consisting of

several smartphones show that the Android iSafe app is efficient: the computation

overhead is a few milliseconds while the communication overhead is a few hundred

milliseconds. The iSafe project can be found online [iSa], providing downloadable

Chrome plugin and Android app executables.

4.2 Model and Background

The framework consists of three participants, (i) a service provider, (ii) mobile

device users and (iii) geosocial networks. The service provider, denoted by S in the

following, centralizes crime and census information and provides it upon request to

clients.

70

0 100 200 300 400 500 600

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

Number of Reviews

N
u
m
b
e
r

o
f

V
e
n
u
e
s

Figure 4.1: Miami venue stats: Distribution of number of reviews per venue.

We assume the mobile devices are equipped with wireless interfaces, enabling

the formation of transient, ad hoc connections with neighboring devices. Devices

are also equipped with GPS interfaces, allowing them to retrieve their geographic

location. Devices have Internet connectivity, which, for the purpose of this work

may be intermittent. Users take advantage of Internet connectivity not only to

report to geosocial networks but also to retrieve crime information (both described

in the following). Each user needs to install an application on her mobile device,

which we henceforth denote as the client.

In the remainder of this section, we describe the geosocial network concept, the

crime and census datasets that we use in our work, detail several forecasting tools

we use and describe the attacker model we consider in this work.

4.2.1 Geosocial Networks

Geosocial networks (GSNs) such as Yelp and Foursquare extend classic social net-

works with the notions of (i) venues, or businesses and (ii) check-ins. Besides user

71

accounts, GSNs provide accounts also for businesses (e.g., restaurants, yoga classes,

towing companies, etc). Users “check-in” to report their location, in terms of their

presence at one of the venues supported by the GSN. Users can share check-in in-

formation with friends and also use it to achieve special status (badges, mayorships)

and receive frequent customer discounts from participating venues. In addition,

geosocial networks encourage and reward user feedback, in the form of ratings and

reviews, left for visited venues. Users rating range from 1 to 5 stars and are aggre-

gated to produce an overall venue rating.

Yelp Data. We have collected Yelp information from all the venues in the Miami-

Dade county, Florida, for a total of 7699 venues. For each venue, we have collected

the name, type and address, along with the list of reviews received. For each review,

we collected the home city and state of the reviewer.

1 1.5 2 2.5 3 3.5 4 4.5 5

Rating

#

o
f

V
e
n
u
e
s

5
0
0

1
0
0
0

1
5
0
0

Figure 4.2: Miami venue stats: Distribution of venue ratings.

72

Figure 4.1 shows the distribution of the per-venue number of reviews of Miami-

Dade venues, with a logarithmic y scale. It shows a long tail distribution, with

around 2000 venues having 1 review but only 1000 venues having 2 reviews. We

emphasize the low number of venues without reviews - only 177. Figure 4.2 shows

the distribution of the number of venues with an aggregated rating ranging between

1 and 5: Yelp reviews are mostly positive as most aggregate ratings are at or above

4 stars.

4.2.2 Crime Data

We use a historical database of more than 2.3 million crime incidents reported in the

Miami Dade county area since 2007 [Ter]. Each record is labeled with a crime type

(e.g., homicide, larceny, robbery, etc), the time and the geographic location where

it has occurred. We briefly document two problems we encountered when pre-

processing this data. First, since records come from different Police departments,

the crime type labels are non-uniform, (e.g., murder in Miami Beach vs. homicide

in North Miami). Second, crime reports include many minor incidents (e.g., fire

alarms issues), resulting in over 140 different crime types.

In order to standardize and eliminate ambiguities, we mapped crimes into 7

categories: Murder, Forcible Rape, Aggravated Assault, Robbery, Larceny/Theft,

Burglary/Arson, Motor Vehicle Theft. We removed minor crime reports that did

not fall into these categories. Due to the large number of records in the database,

manual mapping was infeasible. Instead, we have experimented with two machine

learning techniques for classifying each record: the Naive-Bayes (NB) classifier and

the Decision Trees (DT) classifier [TSK05a]. In order to build our training and test

sets, we manually annotated a random sample of 2000 records from different police

departments. Then, we split this subset of records into training and test datasets,

73

Larceny Burglary Veh. Theft Robbery Assault Rape Murder

Type of Crime

N
u
m
b
e
r

o
f

C
r
i
m
e

E
v
e
n
t
s

5
0
0
0
0

1
5
0
0
0
0

2
5
0
0
0
0

3
5
0
0
0
0

303167

90914

45784

26512

109193

3212 961

Figure 4.3: Distribution of number of crime events per type of crime. Outcome of
DT classifier.

each containing 1000 records. We built our classifiers using the NLTK library [NLT].

The accuracy was measured using a simple metric that measures the percentage of

inputs in the test set that the classifier correctly labeled. For instance, a crime type

classifier that predicts the correct crime type 60 times in a test dataset containing

100 crime types, would have an accuracy of 60%. On our crime dataset, the NB

classifier achieved an accuracy of 91% and the DT classifier an accuracy of 98%.

Thus, we have used the outcome of the DT classifier. Figure 4.3 shows the crime

set’s distribution of the crime categories following the DT classification.

Let c denote the number of crime types. In our case, c = 7. Let CT =

{CT1, .., CTc} denote the set of crime types.

We use Census data sets [Cen10], reporting population counts and demographic

information. The data is divided into geographical extents e.g. polygons, called

census block groups. Each block contains information about the population within

(e.g., population count, various statistics). According to the data, Miami Dade

74

Figure 4.4: Miami-Dade county: geographical distribution of population. Polygons
represent Census Block Groups.

county has a population of 2, 496, 435. Figure 4.4 shows the geographical distribution

of the population in the Miami Dade county.

4.2.3 Forecasting Tools

We describe here several time series forecasting tools that we use in our work.

ARIMA Model. ARIMA models incorporate autoregressive (p),integration(d)

and moving average terms(q) to provide higher fitting and forecasting accuracy.

ARIMA uses the input data to determine the appropriate model form. The ARIMA

forecasting procedure consists of four steps [TT02], (1) identifying the ARIMA(p,

d, q) structure, (2) estimating the unknown parameters, (3) fitting tests on the

estimated residuals and (4) forecasting future outcomes based on historical data.

Linear (Double) Exponential Smoothing (LES) Model. Brown’s linear (dou-

ble) exponential smoothing [Nau] includes trend variations of the time series without

75

a significant seasonal component. The process is controlled by a smoothing param-

eter α whose value ranges between 0 and 1. α decides the weight placed on the

most recent observations during the forecast process. We determine the value of α

by minimizing the root mean squared error (RMSE) [HA01] from one step-ahead

forecasts and repeating the process for all forecast values.

Artificial Neural Network (ANN). ANNs are data-driven self-adaptive methods

that learn and generalize from experience and capture subtle functional relationships

among the empirical data even if the inherent relationships are unknown or difficult

to describe. In this chapter, we focus on the multi-layer perceptrons (MLP) ANN

model, which is particularly suitable for forecasting, due to its ability for input-

output mapping. The ANN we consider consists of an input layer (of the same size

as the input vector), two layers of hidden nodes and an output layer providing the

forecast value. Before the training phase, we normalize the input data to a (−1, 1)

range; following the prediction step we map the output back to the initial range.

For the training phase we use a multilayer feedforward network trained using back

propagation and the Levenberg-Marquardt algorithm to perform function fitting

(nonlinear regression).

Error Measurement. We use the root mean squared error (RMSE) and mean

absolute percent error (MAPE) [HA01] as error measurements to evaluate the ac-

curacy of different models. MAPE can be easily affected by the magnitude of the

series but it does provide information about the relative magnitude of the forecast

error. On the other hand, RMSE is a more objective measure in absolute magni-

tude. Thus, in our evaluation, the RMSE is used as the primary and MAPE as the

secondary accuracy measure.

76

0
2

4
6

8
1
0

Hours

N
u
m

b
e
r

o
f
C

ri
m

e
s

0−
3

3−
6

6−
9

9−
12

12
−1

5

15
−1

8

18
−2

1

21
−2

4
0−

3
3−

6
6−

9

9−
12

12
−1

5

15
−1

8

18
−2

1

21
−2

4
0−

3
3−

6
6−

9

9−
12

12
−1

5

15
−1

8

18
−2

1

21
−2

4

Friday Saturday Sunday

Figure 4.5: Three day evolution of the number of crimes reported within one Miami-
Dade block.

4.2.4 Attacker Model

We assume a semi-honest, or honest-but-curious service provider. That is, the ser-

vice provider is assumed to follow the protocol correctly, but attempts to learn as

much user information as possible. We assume users can be malicious. However,

each participating user needs to install a provider-signed client application.

4.3 Location Based Safety

We exploit the crime dataset to define an initial, location-centric safety metric. We

divide space into census blocks. We divide time into fixed-length epochs, e.g., 1

hour long, 24 epochs per day. To understand the need for a time dependent safety

metric, we have studied the evolution in time of crimes reported within blocks of

the Miami-Dade county. Figure 4.5 shows the evolution over three consecutive days

(Friday-Sunday, July 15-17, 2011) of the number of crimes reported within one such

block, with a 3 hour time granularity. Most of the events are larcenies. The plot

shows a significant variance in the number of crimes reported throughout a day,

77

Crime Type Weight
Assault 0.176
Robbery 0.180

Rape 0.307
Homicide 0.336

Table 4.1: Crime weight assignment using the FCPC.
with a spike between noon and 6pm. Thus, a fixed aggregate of past crime events

is unlikely to accurately define the present.

Block crime and safety indexes. For a census block B and an epoch e denoted

by the time interval ∆T , let C(B,∆T) represent a c-dimensional vector, where the

i-th entry denotes the number of crimes of type CT [i] recorded in block B during

interval ∆T . Let W denote a c-dimensional vector of weights; each crime type of

CT (defined in Section 4.2.2) has a weight proportional to its seriousness (defined

shortly). Let BC(∆T) denote the population count recorded for block B. We then

define the crime index of block B during interval ∆T as

CI(B,∆T) = min{C(B,∆T)W

BC(∆T)
, 1} (4.1)

where C(B,∆T)W denotes the vectorial product between the number of crimes

per type and the weights of the crime types. That is, B’s crime index is the per-

capita weighted average of crimes recorded during interval ∆T . The safety index

SI of block B during interval ∆T is then defined as

SI(B,∆T) = 1− CI(B,∆T) (4.2)

Both the CI and SI metrics take values in the [0, 1] interval. Higher SI(B,∆T)

values denote safer blocks.

Crime weight assignment. We need to assign meaningful weights to the crime

types CT . An inappropriate assignment may make a large number of “lighter” of-

78

fenses overshadow more serious but less frequent crime events, (e.g., consider larce-

nies vs. homicides). Assigning weights to crime types is also a subjective matter:

certain people are more likely to be vulnerable to certain crime categories. In the

following, we restrict our definition of safety to crimes against persons e.g., assault,

robbery, homicide and rape and ignore crimes against property. Although our model

can be applied to both categories, the focus of this work is on personal safety.

We propose to assign each crime type a weight proportional to its seriousness,

defined according to the criminal punishment code, i.e., the Florida Criminal Pun-

ishment Code (FCPC) [oC]. The FCPC is divided into levels ranging 1-10, and each

level Lk contains different types of felonies. The higher the level, the more serious is

the felony. Each felony has a degree, (i.e., capital, life, first, second and third degree,

sorted in decreasing order of seriousness), with an associated punishment (years of

imprisonment) [Hor].

Let Lk denote the set of felonies within level k and let Pk denote the set of

corresponding punishments. Let lk = |Lk| denote the number of felonies within

level k. Then, we define the weight of crime type CT [i], wi, as

wi =
10∑
k=1

ρk
Pk[i]∑lk
j=1 Pk[j]

,

where ρk = k/
∑10

i=1 i is the weight assigned to level k (normalized to the sum of

the number of levels). The weight of crime type CT [i] is the weighted sum of the

per-level punishment value (Pk[i]) associated with the occurrence of CT [i] within

the felonies of level k, normalized to the total punishment of level k. Table 4.1 shows

the resulting weights.

Example. We exemplify the impact of level L8 on the weight of the “Robbery”

crime. Out of the felonies represented on level 8, two are related to “Robbery”:

“Robbery with a weapon” and “Home-invasion robbery”. Both are first degree

79

felonies, therefore punishable with up to 30 years of imprisonment. The other rep-

resented felonies are “Homicide”, with 6 different counts, for a total of 135 years

penalty and “Rape”, with 1 count of up to 15 years penalty. Thus, the contribution

of level 8 to the weight of “Robbery” is 8
55
× 60

60+135+15
= 0.0415.

Illustration. We use the Miami-Dade crime set to illustrate the geographic dis-

tribution of block-level safety index information, where the epoch, denoted by the

interval ∆T , is the year 2010. We use the census dataset to extract the population

count BC(∆T). Figure 4.6 shows the color-coded safety index for each block group

in the Miami-Dade county (FL) where crimes have been reported during 2010. The

safety index considers only crimes against persons. Blocks without color have a very

low reported crime level. Green blocks denote safer locations while darker yellow

and red blocks denote areas with more reported crimes.

Figure 4.6: Safety index illustration for the Miami-Dade county: SI(B,∆T) values
are mapped into color-coded “safety levels”.

80

4.4 Predicting Safety

The crime index computation of Equation 4.1 can only be performed for past epochs,

when all crime events have been reported. Safety information however is most

useful when provided for the present or near future. One way to compute the

predicted crime index of a block B for the next epoch denoted by the interval ∆T ,

PCI(B,∆T), is the average crime index of the block during the same epoch in the

day for the past d days, where d is a system parameter (e.g., d=7 for 1 week of

recorded per-block history). This solution however is unable to detect and factor in

all crime periodicities, including seasonal, weekly and daily fluctuations. As such,

it may include unnecessary errors – e.g., higher number of crimes in a past August

may introduce inaccuracies in the crime index considered in the current month of

April.

We propose to address this issue through the use of the time series forecasting

techniques discussed in Section 4.2.3. Specifically, we use time series forecasting

tools to compute long and short term predictions of the number of crimes to be

committed within an area (e.g., census block, zipcode, city, etc), based on the area’s

recorded history.

Predicting crime and safety indexes. At the beginning of each epoch (de-

noted by the time interval ∆T), we compute predictions for the number of crimes

of each crime type to be committed at each census block B during the epoch. Let

PC(B,∆T)[i] denote the predicted number of crimes of type CT [i]. Using a formula

similar to Equation 4.1 we compute the predicted crime index for B during inter-

val ∆T as PCI(B,∆T) = min{PC(B,∆T)W/BC(∆T), 1}. The predicted safety

index is then PSI(B,∆T) = 1− PCI(B,∆T).

81

4.5 Personalized, Context-Aware Safety

The ultimate goal of defining crime and safety indexes is to provide users with safety

advisory information. People are however not equally exposed and vulnerable to all

crime types. Age, gender and an array of personal features, preferences and choices

play a central role in the perception of an individual’s safety. Since such informa-

tion may not be readily accessible, we use instead the localization capabilities of

a user’s mobile device to periodically record and locally store her trajectory trace.

This enables us to define the crime index level with which a user is comfortable: the

average crime index of the locations in her trajectory. When enough crime infor-

mation exists to enable the prediction of the near-future crime index of a location,

we introduce the concept of personalized safety : the user is safe if her comfortable

crime index level equals or exceeds the predicted crime index of her current location.

However, crime information is not always available or detailed enough to allow

a confident prediction of location crime index values. For instance, as shown in

Figure 4.5, the number of recorded events can quickly switch between 0 and 1 in

successive intervals. Accurately predicting event counts within a short time interval

is difficult, as the difference between 0 and 1 crimes is significant.

We propose to address this issue, by exploiting the intuition that the safety of

a place depends not only on its history but also on its current context. One way

to define the context of a place at a given time is through the people located there

at that time (in Section 4.6 we show how geosocial network data can be used to

construct context). We use the trajectory trace of the user to define the chance

of a crime to occur around the user and generalize this approach to compute the

chance of a crime to occur around groups of users. We then introduce the concept

of context aware safety : a user is safe if the chance of a crime to occur around her

82

equals or exceeds the chance of a crime to occur around the other users currently

co-located with her.

We take advantage of the wireless communication capabilities of user mobile

devices to form short lived, ad hoc communities with co-located devices and use

them to aggregate the trajectory information of their users. Since user trajectories

are sensitive information, we introduce iSafe, a distributed algorithm that allows

the aggregation of trajectory traces of co-located users while preserving the privacy

of involved participants.

4.5.1 Personalized User Safety

We extend the crime and safety index definitions from locations to users. We assume

the user’s device can capture the user’s location, e.g., using GPS or a combination

of celltower and Wi-Fi access point localization techniques. We assume a block

level localization precision. Let TJU = {[Bi, Ti, CI(Bi,∆Ti)]|i = 1..h} denote the

trajectory trace of user U , consisting of recorded [block, epoch, crime index] tuples.

∆Ti denotes the epoch encompassing time Ti when U was present at block Bi,

Ti ∈ ∆Ti. For privacy reasons, we require each user to store her trajectory trace on

her device.

We define the vicinity crime metric for a user U , VU to be the percentage of

the user’s trajectory places where crimes have been reported around the time of her

visit:

VU =

∑h
i=1 sgn(CI(Bi,∆Ti))

h
(4.3)

sgn(x) denotes the sign function, that is 0 when x is 0 , and 1 when x is larger than

0. For instance, if a user has 100 locations in her trajectory and crimes have been

reported at 60 of those locations during the epoch of the user’s presence, the user’s

83

vicinity crime metric is 60%. We then define the crime index of a user U to be the

average crime index of locations in her trajectory:

CIU =

∑h
i=1CI(Bi,∆Ti)

h
(4.4)

Safety Decision With Accurate Crime Data

When user U is located at time Tc in a block B, where accurate past crime data exists,

allowing the proper prediction of the crime index, we compute the predicted crime

index PCI(B,∆T), as specified in Section 4.4, where ∆T denotes the current epoch,

Tc ∈ ∆T . We then introduce the notion of personalized safety recommendation:

Definition 4.5.1 (Personalized safety). A user U is safe at a block B within time

interval ∆T , if CIU ≥ PCI(B,∆T).

Intuition. A user is safe if the user’s crime index equals or exceeds the block’s

crime index predicted for the duration of the user’s presence. If the crime index

of the user’s current block, predicted for the epoch of the user’s presence, does not

exceed the user’s level of comfort, it means the user has spent at least half of her

time in locations with more crime than the current location. Thus, the user is likely

to be comfortable with the crime level of her current location.

Safety Decision Without Accurate Crime Data

Certain locations may have insufficient crime data to ensure an accurate prediction of

the location’s crime index. This is the case also during unexpected events (natural

and man made disasters) when the future does not reflect the past. To address

84

this issue, we propose to use existing context information, collected from co-located

users. To achieve this, we exploit ad hoc networks established by devices of co-

located users.

Our approach is the following. We define the safety index of a user U to be the

chance of no event being reported in her vicinity: SIU = 1 − VU . Let U1, .., Uk be

the users co-located with user U . We define a super user SUP1..k, as a fictitious

user whose trajectory trace encompasses the trajectories of users U1, .., Uk. That

is, TJU1..k
= TJU1 ∪ .. ∪ TJUk

. We note that both users and super users can be

located in multiple blocks during the same epoch. We then use Equation 4.3 to

compute the vicinity crime metric of SUP1..k, VSUP1..k
. We define the safety index,

SISUP1..k
= 1 − VSUP1..k

. These definitions enable us to introduce the notion of

personalized safety recommendation:

Definition 4.5.2 (Context-aware safety). A user U is safe in a context consisting

of neighboring users U1, .., Uk, if SIU ≤ SISUP1..k
, i.e., VU ≥ VSUP1..k

.

That is, the user is safe if it is surrounded by users whose aggregated safety index

is higher or equal to the user’s safety index.

Intuition. The safety index of a user encodes the chance of no event occurring

around the user. The safety index of a group of users (e.g., SUP1..k) is defined as

the chance of no event occurring around the group. Definition 4.5.2 states that a

user is safe if it is surrounded by a group of users whose aggregated chance of no

event occurring is higher or equal to the user’s chance of no event occurring. A low

safety index value does not imply the user is unsafe, but merely the fact that the

user spends time in places where events do occur. If the location sampling process is

done periodically, the formula naturally ensures that blocks where the user spends

85

more time have more impact on the user’s safety index. Being around a group of

users whose aggregated safety index is low suggests that the place is likely to have

a low safety level.

4.5.2 iSafe

One question that remains to be answered is how can the above decisions be made

without requiring participating users to provide sensitive location traces and safety

index values. To answer this question, we introduce iSafe, a protocol that imple-

ments the above solution, in a privacy preserving aware fashion. iSafe consists of a

main procedure, C.safetyDecision(B,∆T), executed periodically by C, at the C’s

user current block B.

Definition 4.5.3 (Location Privacy)

Let an adversary A control the service provider S and any number of clients, such

that the number of clients controlled by A at any location is at most NThr−c, where

NThr and c > 1 are integers. The challenger C controls a client C. A contacts C

at any time T . C invokes C.safetyDecision(B,∆T), where B denotes C’s current

block and T ∈ ∆T . A outputs B′, its guess of the block B where C is located.

We say a solution provides location privacy if the advantage of A in this game,

AdvA = |Pr[B′ = B]− 1/n| is negligible.

Algorithm 2 shows the pseudocode of iSafe. In a first step, the client C installed

on the wireless-enabled mobile device of a user contacts the service provider S,

storing the crime and Census datasets. C retrieves the predicted crime index of the

block B where the user is located (line 12). This operation is performed privately,

86

Algorithm 2 iSafe pseudocode.

1.Object implementation iSafe;
2. neighbor[] N; #set of neighbors

3. double CI, SI; #crime, safety indexes

4. double V; #vicinity crime prob

5. BigInteger R; #random value

6. BigInteger[] shares; #set of shares

7. BigInteger[] NShares; #shares of neighbors

8. int BWC; #blocks with crime

9. int TBlk; #total blocks visited

10. Operation int safetyDecision(Epoch ∆T)

11. B := getCurrentBlock();
12 PCIB := S.getPCI(B, ∆T);
13. if (PCIB! = −1) then return (CI ≥ PCIB);
14. else return cas(); fi
15. end

16. Operation int cas()
17. N := discoverNeighbors();
18. if (N.size < NThr) then return− 1;
19. BWCSUP := multiPartySum(0)− BWC;
20. TBlkSUP := multiPartySum(1)− TBlk;
21. return(V ≥ BWCSUP/TBlkSUP);
22. end

23. Operation BigInteger multiPartySum(int type)

24. R := getRandom();
25. shares := split(R, N.size);
26. for i := 1 to N.size do
27. send(N[i], shares[i]);
28. NShares[i] := recv(N[i]); od
29. int order := electLeaderOrder();
30. BigDecimal S := 0; int count := 0;
31. while (count < N.size) do
32. count := count + 1;
33. if (count = order) then
34. if (type = 0) then S := S + BWC + R;
35. else S := S + TBlk + R; fi
36. for i := 1 to |N| do S := S− NShares[i]; od
37. mcast(S);
38. else S := recv(); fi
39. od
40 return S;
41. end

87

without the client leaking its location trace, by using a private information retrieval

technique [Gas04].

If the crime index of the block can be accurately predicted (line 13), the operation

returns the decision of Definition 4.5.1. Otherwise, it invokes the cas operation

(line 14). cas first discovers all the ad hoc neighbors of the user (line 17). If the

number of neighbors is below a system-wide threshold value, NThr, it returns -

1: not enough information exists to perform an accurate decision. Otherwise, it

invokes the multiPartySum operation twice, with different input arguments (lines

19-20). When invoked with argument 0, multiPartySum calculates BWCSUP , the

sum of the blocks with crimes visited by all the user’s neighbors. When invoked with

argument 1, multiPartySum calculates TBlkSUP , the sum of the total blocks visited

by all the user’s neighbors. Thus, the ratio of BWCSUP and TBlkSUP generates the

vicinity crime metric of the super user representing the user’s neighbors. In line 21,

cas returns the safety decision of Definition 4.5.2.

ThemultiPartySum operation is a secure multi-party sum evaluation. It achieves

privacy through the use of (i) frequently changing, random MAC addresses for user

devices and (ii) secret splitting. Each client generates a random value (line 24) and

splits it into shares – one for each neighbor. That is, if the random value is R, the

shares sh1, .., shk are generated randomly such that
∑k

i=1 shi = R. The client sends

each share to one neighbor (lines 26-27) and receives a share from each neighbor

(line 28). The clients engage in a leader election and order selection distributed

algorithm (line 29), where each client is assigned a unique identifier, between 1 and

k.

When a client’s turn comes, according to the order established, it adds either the

user’s BWC value (number of census blocks with events visited by the user) or the

user’s TBlk value (total number of blocks visited), according to the input variable

88

type, and adds its random value R to the overall sum (S), (lines 34-35). It then

subtracts all the shares of secrets of its neighbors (line 36) and sends a multicast

of the result (line 37), reaching all its neighbors. If it’s not the user’s transmission

turn, the client blocks to receive the multicast values of its neighbors (line 38).

4.5.3 Analysis

We now prove the following results.

Theorem 4.5.4 An adversary A controlling k− c out of k participants in the iSafe

algorithm, can only find the sum of the input values (BWC or Tblk) of the remaining

c honest participants.

Proof. Secret splitting is information theoretical secure: Without knowing all the

shares of a secret, no information can be inferred about the secret. The adversary

A has access to all intermediate values multicast in Algorithm 2, as well as k − c

shares of the secret of each of the remaining c honest participants. Let Ri denotes

the random value of the i-th (honest) participant and let s1i, s2i, .., ski be the shares

received by that participant from all the other participants. Then, the sum Ri +

s1i + s2i + .. + ski is random and cannot be predicted by A: A only controls k − c

shares of Ri (out of k − 1 shares), but not Ri, thus the other c values in the sum

are random and not under the control of A. Thus, A cannot infer the value (BWC

or TBlk) of user i by comparing the value of S before and after user i’s multicast.

Theorem 4.5.5 iSafe provides location privacy.

89

Proof. (Summary) The adversary A can only access user location information from

(i) user trajectory traces, (ii) queries made by iSafe (Algorithm 2 line 12) and

(iii) during computations of the aggregate super user crime and safety indexes (the

multiPartySum operation).

For the first point, we observe that user trajectories are only stored on the

the user’s mobile devices and are never shared with other participants. For the

second point, the queries made by users in iSafe to A are private, e.g., use PIR (see

Section 4.5.2). Thus, A cannot learn the location of the user with a probability

non-negligible higher than 1/n, where n is the number of census blocks, without

breaking the security of the PIR solution employed. The third point’s implicit

requirement is that the provider colludes with users in order to learn information

about their neighbors. The use of random, frequently changing MAC (or physical

device) addresses by participating devices prevents however even such a powerful

adversary from linking a device identifier to a user, thus linking a user to a location.

Moreover, Theorem 4.5.4 shows that if A controls at most NThr − c clients at any

location where at least NThr + 1 clients are located, A can only learn the sum of

the secret values of the remaining (at least c+1, c > 1) honest clients.

4.5.4 Attacks and Defenses

Safety profiles of co-located users are aggregated to obtain a safety image of loca-

tions. Since that image impacts user decisions, it can become the target of malicious

attacks. For instance, malicious users may attempt to incorrectly (i) improve the

safety of desired locations, for instance to attract unsuspecting users to unsafe lo-

cations or to (ii) decrease the safety image of target locations. We now describe

several mechanisms that could be exploited to perform these attacks, and suggest

defenses.

90

Reporting incorrect locations. Malicious users may report incorrect locations,

corresponding to safe areas. Even with GPS verification mechanisms in place, com-

mitting location fraud has been largely simplified by the recent emergence of special-

ized applications for the most popular mobile eco-systems (LocationSpoofer [Bos11]

for iPhone and GPSCheat [GPS] for Android). To prevent this attack, location

verification mechanisms can be used [CP12, SW09, ZC11]. For instance, Carbunar

et.al. [CP12] has developed venue-centric location verification techniques, that rely

on devices installed by venue owners within their venues. In the scenario considered

in this chapter, the owners’ incentive for participation is to prevent the tampering

of the safety image of their neighborhood.

Turning off devices in unsafe areas. Users could turn off their iSafe application

when entering bad areas. While we cannot prevent this behavior, we propose to use

rewards and game mechanics to encourage people to report their location. For in-

stance, users gain points for each reported location, perhaps more for the occasional

unsafe location. Points are used to acquire badges, similar in principle to those used

by geosocial networks like Foursquare [fou] or Yelp [Yel].

4.6 Geosocial Network Extensions

Geosocial networks, with their emphasis on the location of both users and venues,

seem ideal candidates for augmenting spatiotemporal context. We first investigate

relations between crimes and geosocial networking activities. We then propose to

use geosocial network user location trajectories to improve the accuracy of iSafe.

91

S
ta

n
d
a
rd

iz
e
d

R
e
s
id

u
a
ls

:

<
−

4
−

4
:−

2
−

2
:0

0
:2

2
:4

>
4

Rating

C
ri

m
e
 I
n
d
e
x
 L

e
ve

ls

Rating 0.0 − 3.0 3.5 4.0 4.5 5.0

Level 1

Level 2
Level 3
Level 4
Level 5

Figure 4.7: Relation between venue ratings and the crime index (CI) levels of their
location.

S
ta

n
d
a
rd

iz
e
d

R
e
s
id

u
a
ls

:

<
−

4
−

4
:−

2
−

2
:0

0
:2

2
:4

>
4

Number of reviews

C
ri

m
e
 I
n
d
e
x
 L

e
ve

ls

0−7 8−20 21−39 40−631

Level 1

Level 2

Level 3
Level 4
Level 5

Figure 4.8: Relation between the number of reviews received by a venue and the
crime index (CI) level of its block.

92

4.6.1 Crime vs. Geosocial Activity Dependencies

We conjecture that the crime activity recorded at a location has a bearing on the

quality and quantity of reviews recorded at nearby venues. We investigate this

hypothesis through the combination of review data we collected from Yelp and the

Miami-Dade crime dataset.

One question we need to answer is whether there exists a relation between the

rating of a venue and the safety of its location. For this, we first mapped each

venue in the Miami-Dade county to its corresponding census block, then computed

Crime Index (CI) values for each block using the crime events of 2011. We need

to test for dependencies between two different mixed variables, (i) categorical user

ratings and (ii) continuous CI values. Since, linear regression or any other method

for continuous variables are not ideal, we discretized the CI variable into 5 levels,

using 1-dimensional k-means (k set to 5), that guarantees optimal partitioning for

one-dimensional data.

We have then built a contingency matrix, by grouping the venues according to

their ratings and assigning them to their corresponding CI level: each cell in the

contingency matrix contains the number of venues that have the corresponding user

rating and belong to a block having the corresponding CI level. We have used the

χ2 test to test the dependency between the two categorical variables [TD00]. We

used the R [R D11] package to compute the χ2 test and we obtained the p-value, or

the observed level of significance, and corresponding standard residuals. In short,

the standard residuals indicate the importance of the cell to the ultimate χ2 value;

by comparing standard residuals, one can easily identify the cells that contribute

the most to the χ2 test. Since the observed level of significance is extremely low

93

(very close to zero) we reject the null hypothesis and therefore we conclude that

there exists a dependence between CI values and user ratings.

Figure 4.7 shows the corresponding mosaic plot, displaying the relationship be-

tween ratings and CI values: the areas of the rectangles are proportional to the

probabilities of the user ratings and to the conditional probabilities of the CI levels.

It shows that the bulk of the Yelp venues (even low rated ones) are in places where

crime levels are low. This can be due to the fact that the distribution of the venues

per CI values is long tail, which may be further explained by the fact that (i) in the

Miami-Dade county there are few areas with high crime levels and (ii) Yelp is not

popular in those areas - people may not even report venues located there in Yelp.

Moreover, as shown in Figure 4.2, Yelp ratings are biased toward higher values.

A second question is whether there exists a relation between the number of

reviews a venue receives and the safety of the venue’s location. Once again, even

though the number of reviews is not a categorical variable, it is discrete. Therefore,

we tested their association with CI values using the χ2 test. We created review

count interval buckets and we assigned each venue to one bucket according to its

number of reviews. We computed the range of the intervals using the 1-dimensional

k-means algorithm with k set to 10. The χ2 test produced a corresponding p-value

very close to zero, thus answering our question in the affirmative. Figure 4.8 shows

the corresponding mosaic plot of this experiment. It confirms that most Yelp venues

are located in safe areas as well as the long tail distribution of the number of reviews

per venue in Yelp, shown in Figure 4.1.

In order to identify the sources of the dependencies, we studied a specialized view

of this data - the relationship between review counts and crime types (see Section

4.2.2). One finding is depicted in Figure 4.9, showing the relationship between

reported rapes and review counts: rapes occur more frequently in places with low

94

Number of reviews

A
v
g
.

r
a
p
e
s

r
e
p
o
r
t
e
d

0
1

2
3

4
5

6
7

0
−
1
9

2
0
−
3
9

4
0
−
5
9

6
0
−
7
9

8
0
−
9
9

1
0
0
−
1
1
9

1
4
0
−
1
5
9

2
0
0
−
2
1
9

2
2
0
−
2
3
9

3
2
0
−
3
3
9

Figure 4.9: Number of rapes per number of venue’s reviews. Locals and visitors.

0−49 50−99 100−149 150−199 200−249 250−299

Number of reviews

A
v
g
.

l
a
r
c
e
n
i
e
s

r
e
p
o
r
t
e
d

2
0
0

6
0
0

1
0
0
0

1
4
0
0

Figure 4.10: Number of larcenies/thefts per number of venue’s reviews.

95

number of reviews. Furthermore, we study the relation between crime types and

the number of reviews received from visitors vs. locals. This information is publicly

available, as Yelp users need to specify a home city/state. Figure 4.10 shows that

the number of larcenies is high around venues with many local reviews. A potential

explanation is that local yelpers (Yelp users) are more likely to choose venues in

good neighborhoods, and good neighborhoods are more likely to attract thieves.

4.6.2 Geosocial iSafe

We propose to extend iSafe with geosocial network information. For each geosocial

network user U , we define the trajectory trace TJU = {[Bi,∆T,CI(Bi,∆Ti)]|i =

1..h}. Each TJU record consists of (i) the block containing a venue where U has

written a review, (ii) the time epoch ∆T when the user wrote the review and (iii)

the crime index of the block during that epoch. In Yelp, the timestamps associated

with reviews have a 1-day granularity, thus, ∆T is 1-day long.

While geosocial network user trajectories are likely to be more sparse than those

collected from mobile devices, their similar definition enables us to use Equations 4.3

and 4.4 to compute the user’s vicinity crime metric and crime index values. Further-

more, we use the vicinity crime metric and crime index values of users who wrote

reviews for a Yelp venue to compute aggregate venue crime index and vicinity crime

values, using the mobile version of iSafe (see Algorithm 2). These definitions allow

us to extend the personalized context aware safety decisions of Section 4.5.1.

4.7 iSafe Implementation

We implemented iSafe as a (i) web server, (ii) a browser plugin running in the

user’s browser and (iii) a mobile application. We use Apache Tomcat 6.0.35 to

96

Figure 4.11: Snapshot of iSafe’s plugin functionality for a Yelp venue.

route requests (exposed to the client through a REST API interface) to our server-

side component. The server-side component relies on the latest servlet v3.0 which

offers additional features including asynchronous support, making the server-side

processing much more efficient.

4.7.1 Browser Plugin

We implemented the browser plugin for the Chrome browser using HTML, CSS and

Javascript. The plugin interacts with Yelp pages and the web server, using content

scripts (Chrome specific components that let us access the browser’s native API) and

cross-origin XMLHttpRequests. If our content script receives content from another

web site, it inspects it for cross-site scripting attacks before injecting the content

into the current page (e.g., to protect the user from a hijack attack). To store and

process review and user data for each venue, we use the SQLite 3.7.12.1 as the DB

server.

The idea behind the browser plugin is to extend the experience of geosocial

networks like Yelp [Yel] with safety information. Specifically, the browser plugin

97

(a) (b)

Figure 4.12: Snapshots of iSafe on Android.

becomes active when the user navigates to a Yelp page. For user and venue pages,

the plugin parses their HTML files and retrieves their reviews. We employ a stateful

approach, where the server’s DB stores all reviews of pages previously accessed by

users. This enables significant time savings, as the plugin needs to send to the web

server only reviews written after the date of the last user’s access to the page. The

initial access is likely to be slower, requiring the plugin to access multiple pages of

reviews.

Given the venue’s set of reviews, the server determines the corresponding review-

ers. Since we do not have access to the location trajectories of users, to compute a

user’s security label we rely on the venues reviewed by the user: The user safety is

computed as an average over the safety labels of the blocks containing the venues

reviewed by the user. Given the safety labels of reviewers, we determine the safety

level of the venue. The server sends back the safety level of the venue, which the

plugin displays in the browser. Figure 4.11 shows iSafe’s extension to the Yelp page

of the venue “Top Value Trading Inc.” in Hialeah, FL (central left yellow rectangle

containing iSafe’s safety recommendations).

98

4.7.2 Mobile iSafe.

We have implemented the location centric static safety labeling component of iSafe

for a mobile application using Android. We used the Android Maps API to facilitate

the location based service employed by our approach. We represent safety using five

color labels ranging from green (safe) to red (unsafe).

We used the SQLite version 3.4.0 database to store the trajectory trace of the

user, along with timestamps, on her smartphone. The database also caches the

Census block structure and associated safety indexes for the city where the user is

located. This ensures both (i) privacy – the user trajectory and her requests for

block safety indexes never leave her phone and (ii) performance – frequent block

safety index requests are performed locally, while infrequent census block safety

index updates are performed periodically to ensure an accurate copy of the device’s

cache.

Whenever a user starts the iSafe app, iSafe retrieves the user’s current geoloca-

tion, derives the current census block and also the corresponding crime index. iSafe

stores the user’s trajectory as one record [block, time, crime index] in the SQLite

database. The initial threshold values for creating a new record are 60 seconds. iSafe

uses an exponential backoff algorithm [KSM05] coupled with accelerometer data to

ensure that a static device does not consume battery power on GPS queries. iSafe

updates then the user’s current crime index and vicinity crime values.

iSafe uses Bluetooth [SIG01] to compute the vicinity crime metrics for the user’s

neighbors. We implemented a client-server Bluetooth communication protocol where

each device acts as a server and other connected devices act as clients per P2P

communication. Bluetooth is a packet-based protocol with a master-slave structure

in which one master may communicate with up to 7 slaves in a piconet [SIG01].

99

10 20 40 100 500 1000 4000

Number of reviews

W
a

c
h

Y
T

 E
x
te

n
ti
o

n
 e

xe
c
u

ti
o

n
m

e
(s

e
c
)

0
5

1
0

1
5

2
0

2
5

3
0

Figure 4.13: iSafe browser plugin overhead: Collecting reviews from venues, as a
function of the number of reviews.

iSafe has a separate background service that displays the status bar of the An-

droid device, the safety color label of the user’s current location. Figures 4.12a

and 4.12b show snapshots of iSafe’s functionality.

4.8 Experimental Evaluation

4.8.1 Browser Plugin Performance

Figure 4.13 shows the overhead of the iSafe plugin when collecting the reviews of a

venue browsed by the user, as a function of the number of reviews the venue has.

It includes the cost to request each review page, parse and process the data for

transfer. The experiments were performed on the Dell laptop. It exhibits a sub-

linear dependence on the number of reviews of the venue (under 1s for 10 reviews

but under 30s for 4000 reviews), showing that Yelp’s delay for successive requests

decreases. While even for 500 reviews the overhead is less than 5s, we note that

100

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1200

1600

2000

Months in 2011

A
s
s
a

u
lt
 e

ve
n

ts
 i
n

 M
ia

m
i−

D
a

d
e

Actual data

ARIMA

LES

ANN

(a) Prediction of assaults, 2011 monthly basis.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

200

300

400

500

Months in 2011

R
o

b
b

e
ry

 e
ve

n
ts

 i
n

 M
ia

m
i−

D
a

d
e

Actual data

ARIMA

LES

ANN

(b) Prediction of robberies, 2011 monthly ba-
sis.

Figure 4.14: Crime Forecasting Experiments in Miami-Dade

this cost is incurred only once per venue. Subsequent accesses to the same venue,

by any other user will no longer incur this overhead.

4.8.2 Forecasting Accuracy

We explore here the performance of the time series forecasting techniques discussed

in Section 4.2.3 in predicting the number of crimes to occur at a location during the

near future, based on the recorded history.

We used the R statistical software package [R D11] to generate the ARIMA

model and MATLAB toolboxes [MAT10] for LES and ANN models. In the fol-

lowing, we analyze separately three crime types, aggravated assault, robbery and

larceny/theft that make up for more than 75% of the total amount of crimes. As we

show later in this section, predicting categorized event counts enables the prediction

of future safety values.

In the first experiment we used crime data recorded between 2007 and 2010 to

predict per-month categorized event counts for the year 2011, for the entire Miami-

Dade county.

101

1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

Last 10 weeks in 2011

A
s
s
a

u
lt
 e

ve
n

ts
 i
n

 a
 s

a
m

p
le

 b
lo

c
k Actual data

ARIMA

LES

ANN

(a) Prediction of assaults in a given block for
the last 10 weeks of 2011.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

0

1

2

3

4

5

6

7

8

9

10

31 days in Dec,2011

L
a

rc
e

n
y
/T

h
e

ft
 e

ve
n

ts
 i
n

 a
 s

a
m

p
le

 b
lo

c
k Actual data

ARIMA

LES

ANN

(b) Prediction of larcenies in a given block for
the last 31 days of 2011.

Figure 4.15: Crime Forecasting Experiments in Miami-Dade

Figure 4.14a compares the predictions for the number of assaults made by

ARIMA, LES and ANN against the recorded values. Table 4.2 shows the RMSE

and MAPE values for the three methods. All three models correctly predict the

downward trend from May until December, with ANN achieving a slightly better

accuracy than LES and ARIMA.

Figure 4.14b compares the predictions for the number of robberies made by

ARIMA, LES and ANN against the recorded values. All models accurately predict

the initial increase followed by a slight decrease in the number of robberies. ARIMA

and ANN outperform the LES model, as confirmed by the RSME and MAPE values

(see Table 4.2). ARIMA slightly outperforms ANN.

We further focus on finer grained spatial and temporal predictions: per-block,

weekly events. For ANN, we partition the input data into 95 training vectors and

10 test vectors. Figure 4.15a compares the recorded data against the ARIMA,

LES and ANN predictions of assault events in the last ten weeks of 2011, for one

block in the Miami-Dade county. We emphasize the accuracy of the prediction

(see Table 4.2), which is similar for ANN and ARIMA. Finally, we focus on daily

102

Figure 4.14a Figure 4.14b Figure 4.15a Figure 4.15b
Model RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

ARIMA 158.80 6.42 38.77 7.08 1.27 43 1.57 34.52
LES 151.03 6.79 53.57 11.89 1.41 42.08 1.61 30.07
ANN 116.48 5.32 40.44 8.23 1.3 35.72 1.49 27.02

Table 4.2: Error measurement data for ARIMA, LES and ANN.

crime predictions. For the same block used in the previous experiment, using a time

window of events recorded between Jan 1, 2010 and Nov 30, 2011, we predict the 31

days of December 2011. Figure 4.15b shows the comparison between the recorded

data and the ARIMA, LES and ANN forecast, for the daily number of larceny/theft

events.

Experiment conclusions. ANN slightly outperforms ARIMA and LES, but all

models exhibit good accuracy - except for the unexpected zero crime incidents ob-

served during a couple of days. Intuitively, using predicted, future values for the

number of crimes to define the safety of a block leads to more accurate values than

using a static approach.

4.8.3 Yelp Safety Profiles

CI value

P
e
r
c
e
n
t
a
g
e

o
f

B
l
o
c
k
s

1
0
%

3
0
%

5
0
%

8
0
%

9
5
%

0.00012 0.01 0.02 0.04 0.06 0.08 0.1

Figure 4.16: Distribution of block crime index values in the Miami-Dade county.

103

We have collected public information from the accounts of 2025 Yelp users, all

residents of the Miami-Dade county. The information collected for each user includes

the number of reviews, the venues reviewed, existing check-ins at any venues, and

the date when each review and check-in was recorded. We build the crime index, CI,

value for each Census block from the Miami-Dade county in 2010. Figure 4.16 shows

the cumulative distribution function of the CI values (Figure 4.6 shows their spatial

distribution). It shows that for the Miami-Dade county, most blocks experience

relatively low levels of crime per-capita: 50% of blocks have a CI value smaller than

0.0015 and only 5% of blocks have CI values exceeding 0.01.

0−0.97 0.97−0.98 0.98−0.99 0.99−1.0

SP Value

N
u
m
b
e
r

o
f

Y
e
l
p

u
s
e
r
s

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

3 10

96

1068

Figure 4.17: Distribution of safety index values of Yelp users.

Given the CI values of the blocks containing the venues visited (reviewed or

subject of a check-in) by a yelper (Yelp user), we compute the user’s crime index

value, as defined by Equation 4.4, then the user’s safety index: SIU = 1 − CIU .

Out of the 2025 collected yelpers, 1194 had written reviews in 2010. Figure 4.17

shows the distribution of the safety index values of these 1194 yelpers. It shows that

104

0
.
9
9
8
0

0
.
9
9
8
5

0
.
9
9
9
0

0
.
9
9
9
5

1
.
0
0
0
0

Months

S
I
/
A
v
g

S
P

V
a
l
u
e

Jan Feb Mar Apr May Jul Aug Oct Nov Dec

SI of Block

Avg SP of users

Figure 4.18: SI value of a Miami-Dade block and the average of SP values of Yelp
users that visited the block w.r.t time.

most Miami-Dade county yelpers are safe: all have a safety index value larger than

0.96 (1 is the maximum value), with 90% of them exceeding 0.99.

We further compare the evolution in time of the safety index SIB of a block B

with the average safety index values over the Yelp users that visited B (and left

feedback). To this end, based on the crime database, for each month we calculate

the SI value of each block in the Miami-Dade county. We then compute the monthly

average of safety index values of yelpers that reviewed venues within B (during the

month). Figure 4.18 shows the monthly evolution of the SIB value of a Miami-Dade

block and the average safety index value of the Yelp users that visited the block

during 2010. For this block, the two metrics have similar values. This shows that

an average of the safety indexes of the block’s visitors can be used to replace a

crime-based safety index for the block.

4.8.4 Android iSafe Evaluation

We have created a testbed consisting of 4 Android smartphones: Samsung Admire

(OS: Gingerbread 2.3.4), HTC Aria (OS: Eclair 2.1), Sony E10i (OS: Eclair 2.1) and

105

64 128 256 512 1024

Modulus bit size

A
ve

ra
g
e
 e

xe
c
u
ti
o
n
 t
im

e
 (

m
s
)

0
5

1
0

1
5

Generation of secret shares
Construction of secret

(a) Secret share generation and secret recon-
struction time overhead.

64 128 256 512 1024

Modulus bit size

C
o

m
m

u
n

ic
a

ti
o

n
 t
im

e
 o

ve
rh

e
a

d
 (

m
s
)

0
2

0
0

4
0
0

6
0

0
8
0

0
1

0
0

0
1
2

0
0

1
4
0

0

Single device

N=4 connected devices

(b) iSafe communication overhead for single
device and for all 4 devices.

64 128 256 512 1024

Modulus bit size

C
o
m

m
u
n
ic

a
ti
o
n
 o

ve
rh

e
a
d
 (

K
B

)

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Single device

N=4 connected devices

(c) iSafe total communication size for single
device and for 4 connected devices.

Figure 4.19: Android iSafe overhead.

106

Samsung GALAXY S II (OS: Gingerbread 2.3.4). We used Shamir’s secret sharing

solution. For single device testing, we used the Samsung Admire smartphone with a

800MHz CPU. In the following, all reported values are averages taken over at least

10 independent protocol runs.

We have first measured the overhead of the secret share generation and recon-

struction operation. Figure 4.19a shows the overhead on the smartphone, when the

modulus size ranges from 64 to 1024 bits. Note that even a resource constrained

smartphone takes only 4.5 ms and 16 ms for secret splitting and reconstruction even

for 1024 bit long moduli.

Furthermore, we focus on the time and space communication overhead for a single

device as well as for the 4 connected devices in our testbed. Figure 4.19b shows the

dependence of the communication time on the modulus bit size. Even for modulus

size of 1024 bits, the average end-to-end communication overhead of a single device

is 342ms and 1.3s of our whole system. Figure 4.19c shows the dependency of the

communication overhead (in KB) on the modulus size ranging from 64 to 1024 bits,

for a single device and for the whole system of 4 connected devices. Even for 1024

bit moduli, the total communication overhead is around 3KB.

107

CHAPTER 5

FILTERING FAKE INFORMATION IN LOCATION BASED

SERVICES

In this chapter, we focus on detecting fraudulent information in review centered

GSNs, such as Yelp and its ability to provide correct data. Specifically, we focus on

malicious campaigns that aim to bias the public image of represented businesses in

LBSs through the use of fake reviews. This chapter presents SpiDeR, an algorithm

that takes advantage of the richness of information available in Yelp to detect re-

view campaigns as venues exhibiting abnormal review patterns. We also leverage

geolocation data and SpsJoin to detect fake venues that allow us to define a much

richer ground truth dataset and to evaluate our results.

Acknowledgements. I would like to acknowledge Mr. Mahmudur Rahman. He

contributed to specific parts shown in this chapter and gave valuable insights. In

Sections 5.2.3 and 5.2.4, he helped in collecting Yelp Event and ground truth data

respectively. In Section 5.4.1, he evaluated the Hampel identifier and wrote source

code for the browser plugin in the WatchYT application (Section 5.5). He currently

maintains the website of the WatchYT project.

5.1 Introduction

Geosocial networks (GSNs) such as Yelp [Yel] and Foursquare [fou] extend review-

centered sites (e.g., Amazon [Ama], TripAdvisor [Tri]) with social and geographic

dimensions. Subscribers own accounts where they store public profiles, use them to

befriend and maintain contact with other users and provide feedback, in the form

of reviews, for visited venues.

108

Since the impact of the occasional fraudulent review is likely to be minimized by

many honest reviews, we focus here on review campaigns : entities that hire groups

of people to write fake reviews and bias public opinion.

Previous work on TripAdvisor [YG09, OCCH11], focuses on identifying patterns

in the text of fake reviews. Instead, our main goal is to increase the difficulty and

thus the financial cost required to launch successful review campaigns. To achieve

our goal we rely on Yelp’s unique combination of geolocation and social components.

This chapter investigates techniques for detecting review campaigns. We col-

lected publicly available data from Yelp using our own data crawler mechanism.

Our experiments prove that detection techniques currently employed by Yelp can

be bypassed, as we were able to engineer tens of reviews that were not filtered.

We first exploit relations between a user’s location and those of the venues she

and her friends review, to define a user rating. We introduce SpiDeR , an algorithm

that detects review campaigns by identifying spikes generated by low rated reviewers.

We note that our contributions complement and are further motivated by the

work of Byers et al. [BMZ12]. Byers et al. [BMZ12] argue that Yelp reviews mention-

ing Groupon may be low, due to other reviews being artificially high from actions

taken by businesses. Our goal is precisely to identify such artificial reviews.

When tested on more than 16,000 venues with over a 1 million reviews we col-

lected from Yelp, SpiDeR shows that spikes generated by low rated reviewers are

frequent: we have identified hundreds of venues likely to have been the target of re-

view campaigns. Furthermore, We explore a special form of campaign: Yelp Events.

We collected data from different Yelp events and analyze the short and long term

impact they have in the rating of venues. Our experiments show that there is a

statistically significant dependency between number of reviews and the long and

short term impact.

109

We tested SpiDeR on ground truth data extracted both from our review cam-

paign experiments and from 27,622 reviews filtered by Yelp from 2,718 venues. This

enabled us to not only experimentally set SpiDeR parameters but also to establish

the novelty of our approach: Yelp does not detect review spikes generated by low

rated reviewers.

Finally, when tested on data collected from more than 10,000 Yelp users, we were

able to detect more than 150 users (1.5%) that took part in at least two campaigns

and even several users who participated in more than 10 campaigns. This shows

that while most Yelp users are honest, review campaigns are not isolated incidents.

5.2 System Model

Yelp [Yel] hosts the system, consisting of (i) information about venues, representing

businesses or events with an associated location, e.g., restaurants, shops, offices,

concerts, etc, and (ii) user accounts. Users can register and receive initial service

credentials, including a unique user id. Yelp also supports queries from users, reg-

istering more than 70 million unique visitors per month [Wik12].

Reviews provided by users for venues have a numerical component, a rating

ranging from 1 to 5, with 5 being the highest mark. Yelp associates an average rating

value for each venue, computed over all the ratings of reviews left by users. Users

can further leave pre-defined feedback for other reviews, by clicking on “useful”,

“funny” or “cool” buttons.

Yelp rewards “influential” reviewers with a special, yearly “Elite” badge. The

reviews of Elite yelpers are often given priority when shown on a venue’s page. Yelp

also organizes “events” for Elite yelpers. Such events are hosted by a venue (chosen

by Yelp) and a Yelp page is generated for this event.

110

Server Pool

(200 machines)

Proxy Pool

(230 proxies)
Proxy

Rotator

Server

Rotator

DISTRIBUTED CRAWLER

DB

Request Queue

Review Parser

RESOURCE POOL

Scheduler

Ban Detection Engine

Loop Detection Engine

INPUT

OUTPUT

http request

raw Yelp html page

+

User Parser

new user profiles

Figure 5.1: Crawler architecture.

5.2.1 Yelp Data

Data Collection

The crawler. We have developed a crawling engine to automatically collect data

from Yelp’s user and venue pages. The crawler uses a resource pool (see Figure 5.1)

consisting of a set of servers and a set of proxies. For every request, the crawler

randomly picks a server from the server pool and pairs it with a proxy from the

proxy pool. The request is then made from the server, through the proxy. For each

successful request, the crawler fetches the raw HTML page from Yelp and parses the

required information. If the request is not successful, a new request is made using a

different proxy. A centralized scheduler maintains a request queue to ensure there

are no loops in the crawling process, i.e., avoids crawling the same page multiple

times if referenced from several sources. When Yelp picks an anomalous proxy, any

request made from this IP will return a blank HTML page or a page with error.

Our crawler automatically detects this and changes the proxy. Furthermore, to

minimize the load on Yelp’s servers, and avoid detection, we introduce long inter-

request intervals.

Crawling Yelp. In order to collect a representative sample of Yelp data, we used

stratified sampling [TD00]. First, we selected a list of 10 major cities in the U.S.

and we collected an initial random list of 100 venues from each of these cities as

a seed dataset. It is important to understand that our strata (cities) are mutually

111

exclusive, i.e. venues do not belong to two or more different cities. This way we avoid

bias towards high degree nodes, which is a common problem when crawling social

networks [GKBM10]. We then randomly selected 10,031 Yelp users who reviewed

these venues, and collected their data, including their id, location, number of friends

and all their reviews, for a total of 646,017 reviews.

Given the list of 10,031 collected Yelp users, we merged the lists of the venues

reviewed by those users (to avoid duplicate venues) and we randomly selected 16,199

venues, including venues from cities outside the U.S. (e.g., London, U.K, Vancouver,

CA, etc). For each venue we have collected its name, location and type, along with

all the reviews received, for a total of 1,096,044 reviews. For each review we extracted

the reviewer id, the date the review was written, the number of check-ins performed

and the photos uploaded by the reviewer at the venue, as well as feedback received

by the review itself (number of users who thought the review was “useful”, “funny”

or “cool”).

Figure 5.2a shows the cumulative distribution function (CDF) of the number

of reviews per user. While only 20% of users have more than 100 reviews, the

record user has 4,000 reviews. Figure 5.2b shows the CDF of the number of friends

per user. Only 15% of users have no friends but 50% of users have more than

10 friends. Furthermore, Figure 5.2c shows the percentage of reviews that have

associated photos, check-ins and user feedback. While 15% of reviews have an

associated check-in, a respectable 46% of reviews have been labeled as “useful”.

This shows that Yelp is an active social network, whose users widely embrace its

rich features.

112

0.0

0.2

0.4

0.6

0.8

1.0

0 1000 2000 3000 4000 5000

Reviews

P
[X

<
x

]

(a) Distribution of the number of reviews

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150

Friends

P
[X

<
x

]

(b) Distribution of the number of friends.

photos check−ins useful funny cool

Yelp Review features

P
e
r
c
e
n
t
a
g
e

o
f

R
e
v
i
e
w
s

0
2
0

4
0

6
0

8
0

1
0
0

7%

15%

46%

26%

34%

(c) Percentage of reviews with feedback.

Figure 5.2: Yelp user stats.

113

5.2.2 Yelp Events

Yelp rewards users that write popular reviews with a special, Elite badge status.

The Elite badge is awarded to users who not only write many reviews and have

many friends, but whose reviews receive significant recognition (e.g., feedback) from

other users. The reviews of Elite yelpers are never filtered and are often shown at

the beginning of a venue’s Yelp page.

Yelp organizes special Elite events, at select venues, where only Elite badge

holders are invited. For each event, Yelp creates a separate Yelp page, containing

the name of the event and the name, address and information for the hosting venue.

Attendees are encouraged to review the event account, which then lists the reviews,

just like a regular venue.

5.2.3 Yelp Event Collection

We have collected Yelp events from 60 major cities covering 44 states of USA. The

remaining states had no significant Yelp events or activities (WY, VT, SD, NE,

WV, ND). After identifying an Elite event, we identified the hosting venue through

either its name or address. We used the crawler previously described to collect a

majority of the available Yelp events and hosting venues, for a total of 149 pairs.

For each Yelp event and corresponding venue, we have collected their name,

number of reviews, star rating and all their reviews. For each review, we have

collected the date when it was written, the rating given and the available information

about the reviewer, including the Elite status, number of friends and number of

reviews written. In total, we have collected 24,054 event/hosting venue reviews.

114

0−4 5−10 11−20 21−30 31−40 41−50 51−60 61−70 71−80 >80

Number of User Reviews

N
u

m
b

e
r

o
f

F
ilt

e
re

d
 R

e
v
ie

w
s

0
5
0
0
0

1
0
0
0
0

1
5
0
0
0

2
0
0
0
0

18627

4427

2135

797 382 280 180 90 85
619

(a) Distribution of the number of reviews
written by the writers of the filtered reviews

0−4 5−10 11−20 21−30 31−40 41−50 51−60 61−70 71−80 >80

Number of user friends

N
u

m
b

e
r

o
f

F
ilt

e
re

d
 R

e
v
ie

w
s

0
5
0
0
0

1
0
0
0
0

1
5
0
0
0

2
0
0
0
0

2
5
0
0
0

24232

988 739 364 247 132 97 75 68
680

(b) Distribution of the number of friends of
the writers of the filtered reviews.

Figure 5.3: Yelp filtered reviews stats.

5.2.4 Ground Truth Data Collection

As part of our procedure to build a ground truth to validate our results, we manually

collected fake data. Our collection process started by identify fake venues that were

flagged by Yelp users in the Yelp Talk service. We also picked yelpers that had fake

photos (collected from Google Images) or things that looked suspicious. While most

of the reviewers have no friends and a majority only wrote one review, we were able

to collect several users with more than 100 reviews and 20 friends.

Yelp filtered reviews. We have collected the reviews filtered by Yelp from 2,718

of our venue dataset, for a total of 27,622 filtered reviews. Since Yelp uses captchas

to protect the access of filtered reviews, we created a tool that queries Yelp in the

background, extracts the captcha and displays it to a captcha solver (a human)

through a GUI. The captcha solver attempts to solve the challenge and submits

the answer. If successful, the software leverages the current session to download

all reviews that were unlocked by the CAPTCHA solver. For each filtered review,

we have collected information about the review writer, such as number of friends

and number of reviews, the location of the writer and if the user is currently an

elite member of Yelp. Figure 5.3a shows the distribution of the number of reviews

115

written by the writers of filtered reviews and Figure 5.3b shows the distribution of

the number of friends of those users. They show that 87% of the writers of filtered

reviews have at most 4 friends and 67% have written at most 4 reviews. We will

use these findings to define the notion of user ratings (see Section 5.3).

5.3 User and Venue Analysis

In this section we investigate spatial and temporal dimensions of information con-

tained in user accounts and exploit our findings to introduce user ratings.

Spatial dimension. We focus first on the per-user clusters of locations of reviewed

venues: locations where a user tends to write more reviews. Figure 5.4a shows the

distribution of the number of cities where the collected users wrote reviews. 80%

of users wrote reviews in less than 20 cities. However, several users exceed 300

cities, reaching as far as 378 cities. Then, should we expect a user to write most

of her reviews in her home city? Figure 5.4b shows the CDF of the percentage of

reviews written by the collected users in their most frequented city. It shows that

as expected, 23% of users have almost all their reviews in the same city (the spike

at the end of the curve) and 60% of users have more than a quarter of their reviews

in the same city. Users that have a small percentage of their reviews in their most

frequented city are likely to have reviewed venues in many cities.

Then, Figure 5.4c shows the average (and corresponding 95% confidence inter-

vals) number of cities where a user writes reviews, as a function of the number of

reviews written by the user. Excluding the users with more than 425 reviews, the

plot shows a sublinear increase in the number of cities. Venues reviewed by users

with 400-425 reviews are in less than 70 cities, whereas those of users with more

than 425 reviews are in more than 110 cities.

116

0.0

0.2

0.4

0.6

0.8

1.0

100 200 300

Locations

P
[X

<
x
]

(a) Distribution of the number of cities per
user, where a user wrote reviews.

0.0

0.2

0.4

0.6

0.8

1.0

20 40 60 80 100

Percentage

P
[X

<
x
]

(b) Distribution of the percentage of reviews
written by users in their most frequented city.

Number of reviews

A
v
e
r
a
g
e

n
u
m
b
e
r

o
f

c
i
t
i
e
s

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

3.1

11.3

16.8

21.4

26.6
29.5

37.1 38

51.5

45.3

50.8 50.7

59.8

75.6

65.4

72.1
69.6

113.5

0
−
2
4

2
5
−
4
9

5
0
−
7
4

7
5
−
9
9

1
0
0
−
1
2
4

1
2
5
−
1
4
9

1
5
0
−
1
7
4

1
7
5
−
1
9
9

2
0
0
−
2
2
4

2
2
5
−
2
4
9

2
5
0
−
2
7
4

2
7
5
−
2
9
9

3
0
0
−
3
2
4

3
2
5
−
3
4
9

3
5
0
−
3
7
4

3
7
5
−
3
9
9

4
0
0
−
4
2
4

>
4
2
5

(c) Per-user expected number of cities of
venues reviewed given a range of written re-
views.

Figure 5.4: Statistics of User Reviews

117

Figure 5.5: Geographic distribution of venues with more than 4 Yelp reviews, in
Miami-Dade county, FL.

118

Our Yelp-Fakes experiment shows that no reviews were written by locals, i.e.,

users whose home city coincides with the reviewed venue’s city. Then, in a second

investigation, we have collected all the 7,699 venues registered in the Miami-Dade

(FL) county; Figure 5.5 shows the geographic distribution of these venues, shown

as small dots whose color represents the percentage of reviews from locals vs. the

total number of reviews received by the venues. Red dots represent venues with

many visitors (few locals) and green venues represent venues with few visitors. The

plot only shows data from the subset of 4418 venues that registered more than 4

reviews. While venues around Miami Beach and the airports justifiably experience

more visitors, we note that several venues in the western and southern parts of the

county stand out - reds surrounded by greens. We exploit this observation in the

definition of SpiDeR .

User timelines and ratings. We use the results of the above experiments to

define the notion of user ratings. First, however, we introduce the helper notion of

user timelines:

Definition 5.3.1 (User Timeline) Let HU = {(Vi, Ri, R̄i, Ti)|i = 1..h} denote the

timeline of a user U , a set of tuples, ordered by their timestamp Ti, where Vi is

a venue reviewed by U and Ri is the rating assigned at time Ti, when the venue’s

average rating is R̄i. Furthermore, let AHU = {(Vi, Ri, R̄i, Ti|Ri 6= 0 ∧ R̄i 6= 0, i =

1..ha} be the active timeline of user U , the subset of HU containing only non-neutral

reviews of U provided for non-neutral venues (whose average rating is not 3).

We consider three rating types: positive (Ri = 1, for a star rating of 4 or 5),

negative (Ri = −1, for a star rating of 1 or 2) and neutral (Ri = 0, 3 star rating

reviews). R̄i, the average rating of Vi at time Ti, can also take one of three values:

-1 if the average rating of venue Vi is below 3, 0 if equal to 3, and +1 if above

119

User 1

User 2

User 3

User 4

User 5

2007 2008 2009 2010 2011 2012

Date

R
a
ti

n
g

Figure 5.6: Visualization of the timelines of a sample set of users plotted against
the review rating they assigned, since they became yelpers.

3. Figure 5.6 shows several timelines, of users sampled from the Yelp datasets.

Diagonal lines denote periods of inactivity.

We rely on user timelines to introduce user ratings, a metric for differentiating

dishonest from honest users. A high rating denotes an active user, with expertise

in the areas reviewed and that has review active friends. We exploit the conclusion

of Figure 5.4c to define the expertise ExpV of a user U for a reviewed venue V , to

be ExpV = cV /ha, where cV is the number of reviews written by U in the vicinity

of V , not counting the review at V , and ha = |AHU |, is the number of active

reviews of U (see Definition 5.3.1). We define the vicinity of a venue to be the circle

centered at the location of the venue having a predefined radius (e.g., 50 miles in

our experiments).

Let f0 denote the number of friends of a user U that have at least Tr reviews.

We define the rating of user U , combining U ’s spatial and temporal dimensions, to

be:

RU =

 0, if (h < Tr ∧ f0 < Tf)∑ha
i=1 sgn(|Ri+R̄i|)Expi

ha
, otherwise

(5.1)

where Tr and Tf are threshold variables whose values we discuss later, sgn is the

sign function and Expi is U ’s expertise for the i-th reviewed venue. sgn(|Ri + R̄i|)

120

can only be 0 or 1. Thus, the rating of a user is defined to be 0 if the user has

written less than Tr reviews and has less than Tf friends with at least Tr reviews

each. This is suggested by the results of Figure 5.3a, Figure 5.3b.

Otherwise, the user’s rating is a weighted average (over the length of its active

history) of the user’s concordance with her reviewed venues’ average rating: if the

venue and the user review both have either a positive or negative rating, the user’s

rating is incremented. The weight associated with a review is higher if the user has

reviewed other close-by venues. We observe that RU ∈ [0, 1].

5.4 Detecting Review Campaigns

High user ratings seem to indicate honest users: well connected users, that write

many clustered reviews, with ratings not going against the grain, are less likely to

be malicious. However, by itself, this metric is not sufficient for detecting review

campaigns. First, it suffers from a cold-start problem, as honest new users will likely

have low ratings. Second, our Yelp-Fakes experiment shows that with additional

effort, ratings can be engineered. Instead, in this section we propose efficient review

campaign detection techniques that significantly raise the effort bar and thus the

financial cost required to launch successful campaigns.

We first introduce the notion of venue timelines:

Definition 5.4.1 (Venue Timeline) The timeline of a venue V is the set of tuples

HV = {(Ui, Ri, Ti)|i = 1..v}, the chronological succession of reviews Ri written for

V by users Ui at time Ti.

Figure 5.7 illustrates the venue timeline concept. Figure 5.7a shows the evolution

in time of the number of negative reviews (1 and 2 star) and Figure 5.7b shows the

121

0
1

2
3

4
5

6

Time

N
e
g
a
t
i
v
e

r
e
v
i
e
w
s

2008 2009 2010 2011 2012

(a) Venue timeline with negative (1 & 2 star)
reviews

0
2
0

4
0

6
0

8
0

Time

P
o
s
i
t
i
v
e

r
e
v
i
e
w
s

2008 2009 2010 2011 2012

(b) Venue timeline with positive (4 & 5 star)
reviews

Figure 5.7: Venues timeline

evolution in time of the number of positive reviews (4 and 5 star) for a venue called

“Ike’s Place” in San Francisco, CA [IKE], whose first review was registered in 2008.

The number of daily negative reviews ranges between 0 and 3, and, with a total

of 3,169 positive reviews in 1,220 active days, the number of daily positive reviews

averages 2.59. However, on Nov. 7, 2011 (a Monday), the venue records a spike of

78 positive reviews. We propose then to detect such abnormal reviewing activities

by analyzing venue timelines.

5.4.1 Review Spikes

We exploit the observation that in order for a review campaign to have an impact on

the aggregate rating of a subject, it needs to contain a sufficient numbers of reviews.

Such reviews, taken over an adequate time interval (days, weeks or months), will

then stand out. We investigate the use of several techniques for retrieving ranges of

abnormal reviewing activity, spikes or outliers in a venue’s timeline.

Box-and-Whisker plots We first propose the use of measures of dispersion of

Box-and-Whisker plots [TD00], consisting of, quartiles and interquartile ranges

122

(IQRs), to detect outliers. The idea is the following. Given a venue V , we first

compute the quartiles and the IQR of the positive reviews from V ’s timeline HV

(negative reviews are handled similarly). We then compute the upper outer fence

(UOF) value using the Box-Whiskers plot [TD00]. For each day d during V ’s active

period, let Pd denote the set of positive reviews from HV written during day d. If

|Pd| > UOF , we output Pd, i.e., a spike has been detected. For instance, the afore-

mentioned Ike’s Place has a UOF of 9 for positive reviews: any day with more than

9 positive reviews is considered to be a spike. The advantages of this approach are

that (i) it makes no distributional assumptions and it does not depend on a mean

or standard deviation and (ii) its use of quartiles makes it less sensitive to extreme

values.

Hampel Identifier The interquartile based approach however may not be ade-

quate for a small sample size [IH93], such as venues that only have reviews during a

small number of days. For such venues we propose an alternative approach. Given a

venue V , we first compute the median and the MAD (Median Absolute Deviation)

scale [Ham71] standard deviation S of the positive reviews for V (negative reviews

are handled similarly). Then, we detect the outlier reviews using Hampel’s identi-

fier [HRRS86]: Set the threshold point TP for V as t× S where t is the dispersion

value and typically 2 ≤ t ≤ 5 (set to 4 in our experiments). For each day d during

V ’s active period, let Pd denote the set of positive reviews from HV recorded during

d. If |Pd| > TP , output Pd.

5.4.2 SpiDeR

We now propose SpiDeR (Spike Detection Ranges), an algorithm that identifies

review campaigns by combining detected review spikes with user ratings. Instead

123

Algorithm 3 SpiDeR : Fake review
campaign detection.

1.campaign[]SpiDeR (V : venue, HV : history)
2. spikes[]; #list of spikes

3. RevS[] : Review; #reviews ∈ spike

4. US[] : User; #review writers

5. campaign[]; #review campaigns

6. Ts, wr, Tp : float; #threshold values

7. spikes := detectSpikes(HV);
8. for s := 1 to spikes.size do
9. RevS := getReviews(spikes[s]);
10. if (RevS.size < Ts) then continue; fi
11. US := getReviewers(RevS);
12. counter := 0;
13. for u := 1 to US.size do
14. U := US[u];
15. if (U.rating < wr & U.city 6= V.city) then
16. counter := counter + 1;
17. fi od
18. if (counter/US.size > Tp) then
19. campaign.add(spikes[s]); fi
20. od
21. return campaign[]
22.end

of flagging all review spikes as suspicious, SpiDeR carefully analyzes each review

that is part of a spike: it counts the number of reviews in each spike written by

users with low ratings and flags as suspicious only spikes made up by more than a

threshold of low quality reviews.

Algorithm 3 shows SpiDeR ’s steps, taking as arguments a venue and its timeline.

First, it uses the abnormal behavior detection techniques of Section 5.4 to identify

spikes in the number of either positive or negative reviews received by the venue

(Algorithm 3 line 7). Each spike is processed separately (lines 8-20). For each

spike, SpiDeR retrieves its component reviews and ignores the spike if the number

of reviews is below a threshold TS (lines 9-10). In our experiments we focus on

124

0
5

1
0

1
5

Time

P
o
s
i
t
i
v
e

r
e
v
i
e
w
s

May 6 June 1

Pink Taco

Yelp Event at Pink Taco

Figure 5.8: The timeline of “Pink Taco 2” (Los Angeles) and of the Yelp event for
this venue. Note the correlation between the two.

day-long spikes and set TS to twice the average number of daily reviews recorded

by the venue.

Otherwise, for each reviewer who created one of those reviews (lines 11-14),

SpiDeR marks her review as suspicious if (i) her rating (see Section 5.3) is below

a threshold wr and (ii) her city differs from the venue’s city (lines 15-16). If the

percentage of suspicious reviews in the spike exceeds another threshold Tp, Spi-

DeR marks the spike as a review campaign (lines 18-19). SpiDeR returns the list

of identified campaigns (line 21). We evaluate SpiDeR in Section 5.5.3 and propose

values for the parameters introduced here.

SpiDeR uses a range tree [Lue78] data structure to identify spikes in a time

range. The range trees allows SpiDeR to aggregate spikes that are deemed to be

suspicious in up to one week.

125

5.4.3 Yelp Events = Review Campaigns?

We introduce the hypothesis that Yelp events are a special type of review campaigns:

Yelp selects the hosting venue, notifies the venue owners sufficiently in advance so

they can ensure a good experience for their customers and allows only Elite yelpers

to attend. Yelp creates a separate Yelp page for the event, where the attendees are

encouraged to write the reviews of their experience of the event [Yel09]. While the

declared goal of the event venues is to prevent unfairness to venues that do not host

events, we study the impact of events on the venues hosting them. The question we

ask is whether Elite events help improve the short and long term venue ratings. If

such events have a positive effect, we believe they can be used as an alternative to

fake reviews.

Our approach relies on the notion of positive venue timelines : the evolution

in time of the number of daily positive reviews received by a venue. We use the

venue timeline to identify abnormally high numbers of positive reviews received by

the venue within a short time interval. This enables us to mark spikes that occur

within a short timeframe of an event hosted by the venue, by using SpiDeR . We

then compute the impact of the event on the venue, as the difference between the

average rating of the venue at a given time following the event and its rating before

the event.

Figure 5.8 shows a different type of correlation, for the venue “Pink Taco 2”

located in Los Angeles. It displays the venue’s timeline and the timeline of the

Yelp page associated with the Yelp event. We emphasize that the venue’s latest two

spikes coincide with the spikes of the event. We study the effects of Yelp Elite events,

organized for the benefit of Elite reviewers, on the image of the hosting venues. To

this end, we introduce WatchYT, a tool for identifying venues receiving abnormally

126

Algorithm 4 WatchYT: Yelp cam-
paign detection tool.

1.WatchYT(events[] : YelpEvent, ∆T : Time)
2. campaings[]; #campaigns detected

3. campaigns := newVenue[];
4. for i := 0 to events.size() do
5. YelpEvent e := events[i];
6. Date eDate := e.getDate();
7. Venue V := e.getVenue();
8. Timeline HV := V.getTimeline();
9. TimeRange[] spikes := SpiKeR(HV);
10. if (spikes.correlated(eDate, ∆T)) then
11. campaigns.add(V); fi
12. od
13 return campaings;

large numbers of reviews in a short time and use them to detect correlations between

events and hosting venues. We evaluate our results in Section 5.5.2.

WatchYT: event/spike correlations. We introduce WatchYT (Watch Yelp

Timelines), an algorithm that relies on SpiDeR to detect correlations between Yelp

events and increased review activity concerning the venues hosting the events. Al-

gorithm 4 shows the pseudocode of the approach. Specifically, given a set of Yelp

events (events) and a time interval ∆T (system parameter), WatchYT determines

the set of venues that benefit from an event within an interval ∆T of the event’s

date. WatchYT processes each Yelp event separately (lines 4-12). It first retrieves

the date of the event, as representing the date when the first review was written

for the event (line 6). It then retrieves the venue hosting the event (line 7), collects

its reviews and reconstructs its timeline (line 8). WatchYT runs SpiDeR to detect

abnormal review behavior over the timeline (line 9). If a spike occurs within an

interval ∆T from the date of the event (line 10), it adds the venue to the list of

detected campaigns (line 11).

127

5.5 Experimental Evaluation

WatchYT Implementation We have prototyped SpiDeR as part of a system

we call WatchYT (Watch Yelp Timelines), that we made publicly available [WAT].

WatchYT consists of two components, a web server and a browser extension running

in the user’s browser. We use Apache Tomcat 6.0.35 to route requests (exposed to

the client through a REST interface) to our server-side component. The server-

side component relies on the latest servlet v3.0 which offers additional features

including asynchronous support, making the server-side processing more efficient.

We implemented the browser extension for the Chrome browser using HTML, CSS

and Javascript. The plugin interacts with Yelp pages and the web server, using

content scripts (Chrome specific components that let us access the browser’s native

API) and cross-origin XMLHttpRequests. If our content script receives content from

another web site, it inspects it for cross-site scripting attacks before injecting the

content into the current page (e.g., to protect the user from a hijack attack). To

store and process review and user data for each venue, we use the SQLite 3.7.12.1

as the DB server.

The browser plugin becomes active when the user navigates to a Yelp page.

For venue pages, the plugin parses their HTML file and retrieves their reviews.

We employ a stateful approach, where the server’s DB stores all reviews of venues

previously accessed by users. This enables significant time savings, as the plugin

needs to send to the web server only reviews written after the date of the last user’s

access to the venue’s page. The initial access to a venue is likely to be slower,

requiring the plugin to access multiple pages of reviews. Given the venue’s timeline,

the web server runs SpiDeR to identify any fake review campaigns. The server sends

back details of any identified campaigns to the user’s browser plugin, which includes

128

Figure 5.9: Snapshot of WatchYT ’s plugin functionality for the venue “Ike’s Place”.

it in the browser. Figure 5.9 shows the output of WatchYT for the venue “Ike’s

Place”. We note also that this approach may cause the user to be blocked from

Yelp if several reviews are necessary to collect long history. This is specifically the

case of venues that have lots of reviews.

We have evaluated the overhead of WatchYT in real deployments. Figure 5.10a

shows the overhead of WatchYT when collecting the reviews of a venue browsed by

the user, as a function of the number of reviews the venue has. It includes the cost to

request each review page, parse and process the data for transfer. The experiments

were performed on a Dell laptop equipped with a 2.4GHz Intel Core i5 processor

and 4GB of RAM. It exhibits a sub-linear dependence on the number of reviews of

the venue (under 1s for 10 reviews but under 30s for 4000 reviews). This is because

Yelp’s delay for successive requests on the same venue page decreases. While even

for 500 reviews the overhead is less than 5s, we note that this cost is incurred only

once per venue. Subsequent accesses to the same venue, by any other user will no

longer incur this overhead.

129

10 20 40 100 500 1000 4000

Number of reviews

W
a
tc

h
Y

T
 E

x
te

n
s
io

n
 e

xe
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

0
5

1
0

1
5

2
0

2
5

3
0

(a) Collecting reviews from venues.

10 20 40 100 500 1000 4000

Number of reviews

H
a
m

p
e
l
id

e
n
ti
fi
e
r

S
p
ik

e
 d

e
te

c
ti
o
n
 t
im

e
 (

m
s
)

0
2

4
6

8
1
0

1
2

(b) Server-side SpiDeR processing of col-
lected reviews.

Figure 5.10: WatchYT overheads

Furthermore, we have implemented the server-side SpiDeR using Java. Fig-

ure 5.10b shows the overhead of SpiDeR running on the same Dell laptop, as a

function of the number of reviews. Even for 4000 reviews the overhead of detecting

review spikes is less than 11ms.

5.5.1 Spike Detection Evaluation

We now investigate the effectiveness of the review spike detection tools described in

Section 5.4.1. Figure 5.11a shows the output of the Box-and-Whisker plot detection

technique (see Section 5.4) when applied to the positive reviews of the 16,199 venues

collected across the U.S.: the distribution of the amplitude (the number of reviews)

of the spikes detected. It shows that the amplitude has a long-tail distribution. The

aforementioned Ike’s Place has the spike with the highest amplitude - 78 positive

reviews in one day. Several spikes correspond to Yelp events. Figure 5.11b shows

the output of the Hampel identifier technique when applied to the same venues.

While the Hampel identifier detects significantly fewer small spikes than the Box-

130

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 >23

Number of reviews

N
u
m
b
e
r

o
f

s
p
i
k
e
s

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

(a) Dist. of review spikes. (Box-and-Whisker
plots)

7 8 9 10 11 12 13 14 15 16 18 19 20 21 22 24 25 26 29 32 36 51 78

Number of reviews

N
u

m
b

e
r

o
f

o
u

tl
ie

rs

0
1

0
2

0
3

0
4

0

(b) Dist. of review spikes. (Hampel Identi-
fier)

6 7 8 9 10 11 15 37 56 140

Number of reviews

N
u
m
b
e
r

o
f

s
p
i
k
e
s

0
5

1
0

1
5

2
0

(c) Dist. of the number of reviews per nega-
tive spike. (Box-and-Whisker plot)

Figure 5.11: Performance of Outlier Detection Techiniques

131

7 14 21 28 35

Days after event

N
u
m
b
e
r

o
f

s
p
i
k
e
s

0
1
0

2
0

3
0

4
0

5
0

6
0

31

36
38

45
47

Figure 5.12: Yelp events: Spike count as a function of ∆T .

and-Whisker plot technique, it is able to detect a similar number of higher amplitude

spikes (e.g., consisting of more than 20 reviews).

We have also used Box-and-Whisker plots to identify negative review spikes.

Figure 5.11c shows the distribution of the number of reviews per negative spike.

While we identified fewer negative spikes, they are more consistent than the positive

ones, e.g., the “626 Asian Night Market” with 140 negative reviews.

5.5.2 An Analysis of Yelp Events

To validate our hypothesis that Yelp events are a special type of review campaigns,

we have used the Box-and-Whisker approach to identify the impact of Yelp events on

the hosting venue. Specifically, for each Yelp event we collected (see Section 5.2.1),

we mark the corresponding hosting venue that has a spike occurring within a pre-

defined interval ∆T after the date of the event.

132

<−2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 >2.5

Magnitude of improvement

N
u
m
b
e
r

o
f

v
e
n
u
e
s

0
1
0

2
0

3
0

4
0

5
0

6
0

0

4
2

5

21

55

35

18

4
2 1

Figure 5.13: Yelp events: Distribution of the immediate impact of Yelp events on
the venues’ ratings.

Figure 5.12 shows the dependence between the spikes detected by the Box-and-

Whiskers approach and the size of ∆T , ranging from 1 to 5 weeks. For instance,

when ∆T is 14 days, we were able to detect 36 spikes on the 149 venues – in the

2 weeks following the event. Some venues had more than one spike within those

14 days. The total number of venues with at least one spike is 24, accounting for

around 17% of the venues. Furthermore, Figure 5.13 shows the short term impact of

a Yelp event on the hosting venue. We define the impact as the difference between

the average rating of a venue 2 weeks after the event and its rating before the event.

Almost twice as many venues benefit from Yelp events, when compared to those

negatively impacted by it.

Furthermore, to understand the long term impact of Yelp events, we compared

the current ratings of the 149 venues with their ratings before the events. Figure 5.17

shows the distribution (over the 149 venues) of the difference between the current

rating and the rating before the events. While we see a balance between the number

of venues showing an improvement versus a negative impact (16 positive vs. 14

negative) we note that the negative impact is only half a star. The positive impact

reaches up to 3.5 stars!

133

<−1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 >3.5

Magnitude of improvement

N
u
m
b
e
r

o
f

v
e
n
u
e
s

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

0

14

117

9

0 0 0 1 1 2 3

Figure 5.14: Yelp events. Distribution of the improvement due to events.

<=−1.5 −1.0 −0.5 0.0 0.5 1.0 >=1.5

Magnitude of improvement

N
u
m
b
e
r

o
f

v
e
n
u
e
s

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

0 8

947

4271

464

1 0

Figure 5.15: Yelp events. Distribution of the improvement with a random date.

134

S
ta

n
d
a
rd

iz
e
d

R
e
s
id

u
a
ls

:

<
−

4
−

4
:−

2
−

2
:0

0
:2

2
:4

>
4

Number of reviews

M
a
g
n
it
u
d
e
 o

f
Im

p
ro

ve
m

e
n
t

0−4 4−10 10−20 20−40 >40

>2.5

2.0

1.5

1.0

0.5

0.0

−0.5
−1.0
−1.5

−2.0

Figure 5.16: Dependency between the short term rating change of venues due to
events and their number of reviews. Importance given by standardized residuals.

To validate these results, we have used the data of the 16,199 venues we have

collected (see Section 5.2.1). We have filtered out venues exhibiting less than 30

reviews, leaving us with 5,691 venues. For each venue, we simulated an event as

taking place at the median of the (149) Yelp events above. Then, we computed the

average rating of the venue at the simulated event and subtracted it from the current

rating of the venue. The distribution of the difference is shown in Figure 5.15. We

note that twice as many venues show a negative impact vs. an improvement. Thus,

these results suggest that Yelp events may pay off: venues that host events are more

likely to experience a rating boost than a rating cut.

We then study the possibility of a relation between the number of reviews of a

venue and the short term impact an event has on the venue. We observe that the

impact of an event is quantified with fractions of rating, which means that we are

dealing with a categorical variable. Therefore, we cannot use methods for linear or

135

<−1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 >3.5

Magnitude of improvement

N
u
m
b
e
r

o
f

v
e
n
u
e
s

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

0

14

117

9

0 0 0 1 1 2 3

Figure 5.17: Yelp events: Distribution of the improvement due to events

non-linear association, e.g. correlation coefficient. Instead, we tested the hypothesis

of independence, using a χ2 test [TD00], between the rating impact and the number

of reviews, a discrete variable. The test gave us a χ2 = 58.6837 with 36 degrees of

freedom, which is highly significant with a p-value of 0.009854. Thus, we reject the

hypothesis of independence.

Figure 5.16 shows the mosaic plot depicting this relation. Each rectangle cor-

responds to a set of venues, that have a certain review count range (the x axis)

and having been impacted by a certain measure within two weeks of an event (the

y axis). The shape and size of each rectangle depict the contribution of the cor-

responding variables, so a large rectangle means a large count in the contingency

table. Blue rectangles indicate that they are more than two standard deviations

above the expected counts. Then, the figure shows that more than half of the (149)

venues have more than 40 reviews. Moreover, we notice that the venues having more

than 40 reviews set the trend of Figure 5.13: while roughly one third of the venues

show no impact, twice as many venues show a positive impact vs. a negative one.

We now focus on the long term impact of Yelp events. For this, we compare the

current ratings of the 149 venues with their ratings before the events. Figure 5.17

136

S
ta

n
d

a
rd

iz
e

d

R
e

s
id

u
a

ls
:

<
−

4
−

4
:−

2
−

2
:0

0
:2

2
:4

>
4

Number of reviews

M
a

g
n

it
u

d
e

 o
f

Im
p

ro
ve

m
e

n
t

0−4 4−10 10−20 20−40 >40

>2.0

0.5

0.0

−0.5

Figure 5.18: Dependency between the long term rating change of venues due to
events and their number of reviews.

shows the distribution (over the 149 venues) of the difference between the current

rating of the venues and their rating before the events. 78% of venues show no

improvement. Furthermore, we see a balance between the number of venues showing

an improvement versus a negative impact (16 positive vs. 14 negative). However,

we emphasize that the negative impact is only half a star, while the positive impact

reaches up to 3.5 stars.

We conduct a χ2 test to verify the dependence of the long term impact of events

on venues on the number of ratings of the venues. The test was highly significant

with χ2 = 29.2038, 12 degrees of freedom and a p-value of 0.003674. Figure 5.18

shows the mosaic plot: a vast majority of the venues having more than 40 reviews

have no impact on the long term. This shows that review spikes have a smaller

impact on constantly popular venues.

Conclusions on Yelp Events. On the long term, events do not seem to impact

the ratings of hosting venues. We believe this is because high numbers of regular

137

Ikes Place Yelp Sam Wo Cow & Crumb Cafe Du Monde

Amplitude

1−review Yelpers

At most 1−friend Yelpers

Visitors

Venues

S
i
z
e

0
2
0

4
0

6
0

8
0

Figure 5.19: SpiDeR output. Zoom-in of Figure 5.11a.

reviews tend to overwhelm the impact of event spikes. However, Yelp events show

a noticeable short term positive impact. Even a short term increase in popularity

may act as a motivation to host such events [AM12].

5.5.3 SpiDeR Evaluation

We implemented SpiDeR in Java. Our implementation pre-loads a compressed ver-

sion of the database of venues in memory, for efficient computation of spikes, avoiding

the I/O overhead incurred by the database engine, e.g. SQLite in our case.

Experimental parameter setup. Figure 5.19 zooms in into several (non-Yelp

event) spikes from Figure 5.11a, showing, for each venue, the spike’s amplitude, the

number of reviewers that have only one review, the number of reviewers that have at

most one friend and the number of out-of-town reviewers. It identifies several other

suspicious spikes and venues (including Yelp’s own venue!), registering between 25-

85% reviewers with 1 review, between 52-90% reviewers with at most one friends

and between 64-100% out-of-town reviewers. Thus, SpiDeR detects the spikes of

these venues even with very low parameter values: Tr = 2, Tf = 2, wr = 0 and

Tp = 0.25.

138

1 2 3 4 5 6 7 8 9 13 14 21

Number of campaigns

N
u
m
b
e
r

o
f

y
e
l
p
e
r
s

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

509

86

28
13 16

2 1 2 4 2 1 1

Figure 5.20: Distribution of the number of campaigns in which users participated,
including Yelp events.

1 2 3 5

Number of campaigns

N
u
m
b
e
r

o
f

y
e
l
p
e
r
s

0
1
0

2
0

3
0

4
0

40

3
1 1

Figure 5.21: Distribution of the number of campaigns in which the fake users par-
ticipated.

139

4−10 11−20 21−30 >30

With Filtered Reviews

No Filtered Reviews

Amplitude of Spike

N
u
m

b
e
r

o
f
S

p
ik

e
s

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

228

170

2 2 2 2 1 1

Figure 5.22: Distribution of the amplitude of spikes detected by SpiDeR when con-
sidering only Yelp non-filtered reviews and when considering also filtered reviews.

The ground truth. In a first experiment, we evaluate the ability of SpiDeR to

detect users that have participated in multiple review campaigns, using the data

we have collected from the fake reviewers identified and described in Section 5.2.4.

Figure 5.21 shows our results: 45 users are identified as participants in fake cam-

paigns. The reason for not identifying all the fake reviewers is that several users

have written neutral (3-star) reviews, thus were not considered by SpiDeR .

In a second experiment, we compare SpiDeR and Yelp’s filtering mechanisms.

For this, we use the data collected from the 2,718 venues, from which we have also

collected the filtered reviews. First, for each venue, we feed SpiDeR with all the

reviews registered by the venue, including the filtered reviews. Second, for each

venue we run SpiDeR on only the non-filtered reviews. In both runs, we set Tp

= 0.5, Tr = 2 and Tf = 2. That is, SpiDeR only returns spikes that have at

140

least 50% reviews written from accounts having at most 2 friends and at most 2

written reviews. Figure 5.22 compares the distribution of the amplitude of the

spikes detected in the two SpiDeR executions. It shows that the reviews filtered by

Yelp belong to 58 spikes of amplitude ranging between 4-10 reviews. Thus, while

Yelp filters reviews based on the number of friends and reviews of their writers, Yelp

is not detecting review campaigns. By discovering clusters of time-clustered reviews

written by low-rated reviewers, SpiDeR complements Yelp’s defense mechanisms.

Repeat campaigners. Figure 5.20 shows the distribution of the number of review

campaigns in which yelpers from our dataset have participated, when considering

also Yelp events. While we expected a long-tail distribution, we note the high num-

ber of participants in review campaigns - over 650, with more than 150 users partic-

ipating in 2 or more campaigns. We emphasize the user with 21 review campaigns,

while 16 users have participated in 5 campaigns for different venues.

5.5.4 Conclusions and Limitations

We were able to detect several hundred review campaigns, that include both (i)

Yelp events that impacted the rating of hosting venues and (ii) malicious behavior

exhibited by other parties, e.g., venue owners or the competition.

Also, we were able to find dependency between Yelp features and long and short

term impact on the venues. Although it is unlikely that for a fake campaign to

impact in the long term, a venue may harness short term impact for quick revenue.

While WatchYT can be bypassed by motivated adversaries, the financial effort

of a successful campaign is increased: campaigners with good reputations need to

be recruited. A good reputation entails having at least 2 active friends and at least

2 written reviews.

141

CHAPTER 6

CONCLUSIONS

This chapter describes the most important conclusions of our work and future re-

search directions.

6.1 Summary

In this dissertation, we have focused on three important problems that arise in lo-

cation based services, including geosocial networks. In order to address the problem

of ensuring data accuracy, we proposed an important geographic database oper-

ator to perform data preprocessing and knowledge discovery using spatio-textual

constraints. Specifically, we defined the SpsJoin operation and implemented our

solution in MapReduce. We have shown that our algorithm harnesses both, textual

and geographic attributes to compute relevant pairs between two datasets. We de-

fined metrics to score importance of geographic objects and we leveraged entropy

definitions to improve the performance of our algorithms. Our ground truth defini-

tion allowed us to evaluate the precision of the join algorithm.

In order to address privacy concerns, we introduced an application to motivate

the use of LBSs and to share sensitive information in a private manner. In particular,

we envisioned a safety awareness LBS that leverage both spatial and nonspatial

data. We have proposed several techniques for evaluating the safety of users based

on their spatial and temporal dimensions in order to motivate participation and

tackled privacy concerns. We implemented our concepts with an application in Safe

Cities. We have shown that data collected by geosocial networks bears relations with

crimes. We have proposed a holistic approach toward evaluating the safety of a user,

that combines the predicted safety of the user’s location with the aggregated safety

142

of the people co-located with the user. We proposed iSafe, a privacy preserving

algorithm for computing safety of users at geographic locations. Our Android and

browser plugin implementations showed that our approach is efficient both, in terms

of the computation and the communication overheads.

Finally, to ensure correctness of the data, we explored malicious behavior in

LBSs in the form of fake review campaigns. We collected large amounts of data

and build an algorithm to identify malicious behavior in a review based LBS (e.g.

Yelp). In particular, we have shown that review campaigns in geosocial networks are

possible and inexpensive. We have developed algorithms that enabled us to detect

hundreds of venues targeted by review campaigns as well as hundreds of participating

transgressors, some in as many as 20 campaigns. Through our prototype evaluation,

we prove that our Yelp extension efficiently alerts users when browsing suspicious

venues, even when the venues have hundreds of reviews.

We also have studied the problem of review campaigns organized by Yelp and

involving elite yelpers. We have shown that Yelp events are also effective review

campaigns, collecting good reviews from influential users. We have proposed Spi-

DeR, an approach that identifies positive and negative review spikes in the timelines

of venues. We have introduced WatchYT, an SpiDeR extension and a browser plu-

gin that finds venues that have spikes correlated with events they organized. We

have used venue and event data collected from Yelp to investigate the impact of

Yelp events. We have shown that while a short term positive effect can be seen, in

the long run, the effects of events are normalized by the reviews of regular users.

6.1.1 Future Directions

This research can be extended in the following directions.

143

1. From the geospatial databases perspective in LBSs, we believe that Spsjoin

has a promising future. One possible direction is to include semantics simi-

larity in our content similarity function. Our current work does not handle

semantics and this will be a great addition to the overall approach. The use of

ontologies and Latent Semantic Indexing (LSI) is definitively a good research

direction,but there is caveat: the performance of the algorithm can be affected

as semantic computations demand large amounts of data lookups.

2. Another interesting direction is the Fuzzy Spatio-Semantic query (FSS) for

geocoding. The FSS scores objects based on the current location. When

the geocoder transforms a string into coordinates, it will first retrieve the

current position and finds the context in which the query was done. FSS will

return results based on the importance in the current position. For instance, if

someone is in Miami, OH, a query to “Miami” will likely to return objects from

Miami, FL. The FSS identifies the current context and returns corresponding

results, putting Miami, OH objects ranked first.

3. SpsJoin can be extended to handle multiway joins. Although our solution

suggests how it can be done, further research is necessary to define efficient

algorithms. A possible approach leverages parallel computation with Mapre-

duce. It requires clustering using all datasets envolved in the join. Further

research is required to handle heterogeneous datasets and different types of

schemas.

4. Safe cities is also another niche of future research. The possibility of incor-

porating safety information in LBSs opens up new ideas for interesting appli-

cations, such as finding the “safest route”. The safest route tells the user of

the LBS system the directions that she must follow to arrive to a certain lo-

cation. Inspired in the shortest route, found in Google Maps and Terrafly, the

144

safest route receives an initial point or source and a destiny. Then, the system

computes the aggregated safety information based on safety footprints that

iSafe users leave in the system and computes the trajectory that maximizes

the safety. This system may also involve safety information from venues and

social networks.

5. Our mechanisms for detection of fake reviews in review based LBSs can be

extended in several directions. We have observed that plagiarism is a common

practice in fake review campaigns. One possible reason is that it is cheaper for

the attacker to copy text from a well-written review in a venue and post it in

another venue. Plagiarism can be detected by computing similarity self-joins

on large datasets of reviews. We have found several users that seem to be

engineered specifically to post fake reviews and to exercise the social network.

If successful, those users may create a connected component, strong enough to

bias the opinion in different venues and also to create long term impact, which

is the ultimate goal of these reviews campaigns. Careful analysis, attacks and

defenses can be a great topic for research in security.

6. Our work can be extended to handle adversary attacks that attempt to increase

the rating of a given venue through a well known attack called ballot stuffing

attack. Another interesting type of attack is the de-anonymization attack. A

possible approach is to use geosocial networks data and use SpsJoin to de-

anonymize a a geosocial network data set. In this case, the approach does

not use the network as its major source of attack, but rather, the spatial and

nonspatial attributes of the data.

7. It would be interesting to apply other machine learning algorithms for classifi-

cation of fake reviews. However, the lack of ground truth is a major problem in

supervised learning. Building such a ground truth is definitively an important

145

contribution in solving the problem of fake reviews. In our work, we developed

our own ground truth to evaluate the performance of our solution but it has

flaws that may be fixed by producing a more complete golden dataset that

allows researchers to further experiment in this exciting topic.

146

BIBLIOGRAPHY

[AAGY01] Charu C. Aggarwal, Fatima Al-Garawi, and Philip S. Yu. Intelligent
crawling on the world wide web with arbitrary predicates. In Proceedings
of the 10th international conference on World Wide Web, WWW ’01,
pages 96–105, New York, NY, USA, 2001. ACM.

[ABL10] Sattam Alsubaiee, Alexander Behm, and Chen Li. Supporting location-
based approximate-keyword queries. In Proceedings of the 18th SIGSPA-
TIAL International Conference on Advances in Geographic Information
Systems, GIS ’10, pages 61–70, New York, NY, USA, 2010. ACM.

[AGK] Arvind Arasu, Venkatesh Ganti, and Raghav Kaushik. Efficient exact
set-similarity joins. In VLDB’06.

[AI08] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms
for approximate nearest neighbor in high dimensions. Commun. ACM,
51(1):117–122, January 2008.

[AM12] Michael Anderson and Jeremy Magruder. Learning from the crowd:
Regression discontinuity estimates of the effects of an online review
database. Economic Journal, 122(563):957–989, 2012.

[Ama] Amazon. www.amazon.com.

[Apa12] Apache. Hadoop. http:\\hadoop.apache.org, 2012.

[APR+98] Lars Arge, Octavian Procopiuc, Sridhar Ramaswamy, Torsten Suel, and
Jeffrey Scott Vitter. Scalable sweeping-based spatial join. In Proceedings
of the 24rd International Conference on Very Large Data Bases, VLDB
’98, pages 570–581, San Francisco, CA, USA, 1998. Morgan Kaufmann
Publishers Inc.

[ASE13] ASEANSTARTUP.com. Three-quarters of smartphone owners
use location-based services. http://aseanstartup.com/2013/04/23/

foursquare-from-location-based-service-to-big-data-provider/,
2013.

[AWS] Amazon web services. http://aws.amazon.com/.

[BCR11] Jaime Ballesteros, Ariel Cary, and Naphtali Rishe. Spsjoin: parallel
spatial similarity joins. In Proceedings of the 19th ACM SIGSPATIAL

147

International Conference on Advances in Geographic Information Sys-
tems, GIS ’11, pages 481–484, New York, NY, USA, 2011. ACM.

[BCR+13] Jaime Ballesteros, Bogdan Carbunar, Mahmudur Rahman, Naphtali
Rishe, and S.S. Iyengar. Towards safe cities: A mobile and social net-
working approach. Parallel and Distributed Systems, IEEE Transactions
on, 2013. Accepted.

[BCRR13] Jaime Ballesteros, Bogdan Carbunar, Mahmudur Rahman, and Naph-
tali Rishe. Yelp Events: Making Bricks Without Clay? In Proceedings
of the 5th International Workshop on Hot Topics in Peer-to-peer com-
puting and Online Social Networking (HOTPOST). In conjunction with
IEEE ICDCS 2013, Philadelphia, PA, July 2013.

[BGM12] Panagiotis Bouros, Shen Ge, and Nikos Mamoulis. Spatio-textual simi-
larity joins. Proc. VLDB Endow., 6(1):1–12, November 2012.

[BMBR11] Yazan Boshmaf, Ildar Muslukhov, Konstantin Beznosov, and Matei Ri-
peanu. The socialbot network: when bots socialize for fame and money.
In The 27th Annual Computer Security Applications Conference, (AC-
SAC), pages 93–102, 2011.

[BMS07] Roberto J. Bayardo, Yiming Ma, and Ramakrishnan Srikant. Scaling
up all pairs similarity search. Proceedings of the 16th International
Conference on World Wide Web (WWW), May 2007.

[BMZ12] John W. Byers, Michael Mitzenmacher, and Georgios Zervas. The
groupon effect on yelp ratings: a root cause analysis. In Proceedings
of the 13th ACM Conference on Electronic Commerce, EC ’12, pages
248–265, New York, NY, USA, 2012. ACM.

[Bos11] Big Boss. Location spoofer. http://goo.gl/59HMk, 2011.

[BRC+13] Jaime Ballesteros, Mahmudur Rahman, Bogdan Carbunar, Rahul
Potharaju, Radu Sion, Nitya Narasimhan, and Naphtali Rishe.
POSTER: Towards Detecting Yelp Review Campaigns. In Proceedings
of the 34th IEEE Symposium on Security and Privacy, San Francisco,
CA, May 2013.

[BRCR12] J. Ballesteros, M. Rahman, B. Carbunar, and N. Rishe. Safe cities. a
participatory sensing approach. In Local Computer Networks (LCN),
2012 IEEE 37th Conference on, pages 626–634, 2012.

148

[BSBK09] Leyla Bilge, Thorsten Strufe, Davide Balzarotti, and Engin Kirda. All
your contacts are belong to us: automated identity theft attacks on
social networks. In Proceedings of the 18th international conference on
World wide web, WWW ’09, 2009.

[BSV98] N. Barberis, A. Shleifer, and R Vishny. A model of investor sentiment.
Journal of Financial Economics, 49:307–243, 1998.

[BYC07] Ricardo Baeza-Yates and Carlos Castillo. Crawling the infinite web. J.
Web Eng., 6(1):49–72, March 2007.

[CDBN09] A. Caragliu, C. Del Bo, and P. Nijkamp. Smart cities in europe. Se-
rie Research Memoranda 0048, VU University Amsterdam, Faculty of
Economics, Business Administration and Econometrics, 2009.

[Cen10] United States Census. 2010 census.
http://2010.census.gov/2010census/, 2010.

[Coc11] Kira Cochrane. Why TripAdvisor is getting a bad review.
The Guardian, http://www.guardian.co.uk/travel/2011/jan/25/

tripadvisor-duncan-bannatyne, January 2011.

[Com79] Douglas Comer. Ubiquitous b-tree. ACM Comput. Surv., 11(2):121–
137, June 1979.

[CP12] Bogdan Carbunar and Rahul Potharaju. You unlocked the Mt. Everest
Badge on Foursquare! Countering Location Fraud in GeoSocial Net-
works. In To appear in Proceedings of the 9th IEEE International Con-
ference on Mobile Ad hoc and Sensor Systems (MASS), 2012.

[CR05] S. Chainey and J. Ratcliffe. GIS and Crime Mapping. Wiley, 2005.

[Cri] James Cridland. Mapping the riots. http://james.cridland.net/

blog/mapping-the-riots/.

[CRKH11] D. Christin, A. Reinhardt, S. Kanhere, and M. Hollick. A survey on
privacy in mobile participatory sensing applications. Journal of Systems
and Software, 84(11):1928 – 1946, 2011.

149

[CRS02] S Chainey, S Reid, and N Stuart. When is a Hotspot a Hotspot? A Pro-
cedure for Creating Statistically Robust Hotspot Maps of Crime. Kidner,
D and Higgs, G and White, S, 2002.

[CSHR09] Ariel Cary, Zhengguo Sun, Vagelis Hristidis, and Naphtali Rishe. Ex-
periences on processing spatial data with mapreduce. In Proceedings of
the 21st International Conference on Scientific and Statistical Database
Management, SSDBM 2009, pages 302–319, Berlin, Heidelberg, 2009.
Springer-Verlag.

[CT91] Thomas M. Cover and Joy A. Thomas. Elements of information theory.
Wiley-Interscience, New York, NY, USA, 1991.

[CTU08] Spencer Chaineya, Lisa Tompson, and Sebastian Uhlig. The utility
of hotspot mapping for predicting spatial patterns of crime. Security
Journal, 21:4 – 28, 2008.

[CWR] Ariel Cary, Ouri Wolfson, and Naphtali Rishe. Efficient and scalable
method for processing top-k spatial boolean queries. In SSDBM’10,
pages 87–95.

[Dep] Miami-Dade Police Department. Crimeview community.
http://crimemaps.miamidade.gov.

[DG] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on
large clusters. Communications of the ACM 2008, page 51(1).

[DG92] David DeWitt and Jim Gray. Parallel database systems: the future of
high performance database systems. Commun. ACM, 35(6):85–98, June
1992.

[EA07] Volkan S. Ediger and Sertac Akar. Arima forecasting of primary energy
demand by fuel in turkey. Energy Policy, 35:1701–1708, 2007.

[ECC+05] John E. Eck, Spencer Chainey, James G. Cameron, Michael Leitner,
and Ronald E. Wilson. Mapping crime: Understanding hot spots. Spe-
cial, U.S. Department of Justice, Office of Justice Program, National
Institute of Justice, August 2005.

[Eng12] 2011 England riots. Wikipedia, at http://en.wikipedia.org/wiki/

2011_England_riots, Last accessed on July 12, 2012.

150

[Est10] Deborah L. Estrin. Participatory sensing: applications and architecture.
In Proceedings of the 8th international conference on Mobile systems,
applications, and services, 2010.

[FAdO+10] Vasco Furtado, Leonardo Ayres, Marcos de Oliveira, Eurico Vasconce-
los, Carlos Caminha, Johnatas DOrleans, and Mairon Belchior. Collec-
tive intelligence in law enforcement the wikicrimes system. Information
Sciences, 180(1):4 – 17, 2010.

[FIU] High Performance Database Research Center Florida International Uni-
versity. Terrafly. http://terrafly.com/.

[FLI] Flickr. http://www.flickr.com/.

[fou] Foursquare. https://foursquare.com/.

[Fra12] 2005 civil unrest in France. Wkipedia, at http://en.wikipedia.org/

wiki/2005_civil_unrest_in_France, Last accessed on July 12, 2012.

[FXGC12] Song Feng, Longfei Xing, Anupam Gogar, and Yejin Choi. Distribu-
tional footprints of deceptive product reviews. In Proceedings of the
Sixth International Conference on Weblogs and Social Media (ICWSM),
2012.

[Gas04] William I. Gasarch. A survey on private information retrieval (column:
Computational complexity). Bulletin of the EATCS, 82:72–107, 2004.

[GHW+10] Hongyu Gao, Jun Hu, Christo Wilson, Zhichun Li, Yan Chen, and
Ben Y. Zhao. Detecting and characterizing social spam campaigns.
In Proceedings of the 10th annual conference on Internet measurement,
IMC ’10, pages 35–47, 2010.

[GKBM10] Minas Gjoka, Maciej Kurant, Carter T. Butts, and Athina
Markopoulou. Walking in Facebook: A Case Study of Unbiased Sam-
pling of OSNs. In Proceedings of IEEE INFOCOM ’10, San Diego, CA,
March 2010.

[GO01] Gorr and A. Olligschlaeger. Crime hot spot forecasting: Modeling and
comparative evaluation. Draft final report, U.S. Department of Justice,
Office of Justice Program, National Institute of Justice, 2001.

151

[GPS] Gpscheat! http://www.gpscheat.com/.

[Gua] The Guardian. Uk riots: every verified incident. http:

//www.guardian.co.uk/news/datablog/2011/aug/09/

uk-riots-incident-listed-mapped.

[Gut84] Antonin Guttman. R-trees: a dynamic index structure for spatial
searching. In Proceedings of the 1984 ACM SIGMOD international con-
ference on Management of data, SIGMOD ’84, pages 47–57, New York,
NY, USA, 1984. ACM.

[HA01] H.Brian Hwarng and H.T Ang. A simple neural network for arma(p,q)
time series. Omega, 29(4):319 – 333, 2001.

[Ham71] Frank R. Hampel. A general qualitative definition of robustness. Annals
of Mathematical Statistics, 42:1887–1896, 1971.

[HHLM07] Ramaswamy Hariharan, Bijit Hore, Chen Li, and Sharad Mehrotra. Pro-
cessing spatial-keyword (sk) queries in geographic information retrieval
(gir) systems. In Proceedings of the 19th International Conference on
Scientific and Statistical Database Management, SSDBM ’07, pages 16–,
Washington, DC, USA, 2007. IEEE Computer Society.

[HJR97] Yun-Wu Huang, Ning Jing, and Elke A. Rundensteiner. Spatial joins
using r-trees: Breadth-first traversal with global optimizations. In Pro-
ceedings of the 23rd International Conference on Very Large Data Bases,
VLDB ’97, pages 396–405, San Francisco, CA, USA, 1997. Morgan
Kaufmann Publishers Inc.

[Hor] Richard Hornsby. Florida criminal penalty chart.
http://www.richardhornsby.com/criminal/penalties/.

[Hou87] Piet Houthuys. Box sort, a multidimensional binary sorting method for
rectangular boxes, used for quick range searching. The Visual Computer,
3(4):236–249, 1987.

[HRRS86] Frank R. Hampel, Elvezio M. Ronchetti, Peter J. Rousseeuw, and
Werner A. Stahel. Robust Statistics: The Approach Based on Influence
Functions. New York: Wiley, 1986.

[IBM] IBM. Ibm smarter cities. http://www.ibm.com/smarterplanet/us/

en/smarter_cities/overview/index.html.

152

[IH93] B. Iglewicz and D. Hoaglin. How to detect and handle outliers, page 87.
ASQC Press, 16 edition, 1993.

[IKE] IKE’s Place. http://www.yelp.com/biz/

ikes-place-san-francisco.

[iSa] iSafe: Context Aware Safety. http://users.cis.fiu.edu/

~mrahm004/isafe/.

[Jef99] E. Jefferis. A multi-method exploration of crime hot spot: A summary of
findings. Technical report, U.S. Department of Justice, Office of Justice
Program, National Institute of Justice, 1999.

[JL08] Nitin Jindal and Bing Liu. Opinion spam and analysis. In Proceedings
of the international conference on Web search and web data mining,
WSDM ’08, pages 219–230, New York, NY, USA, 2008. ACM.

[JLL10] Nitin Jindal, Bing Liu, and Ee-Peng Lim. Finding unusual review pat-
terns using unexpected rules. In Proceedings of the 19th ACM inter-
national conference on Information and knowledge management, CIKM
’10, pages 1549–1552, New York, NY, USA, 2010. ACM.

[JS] Edwin H. Jacox and Hanan Samet. Spatial join techniques. ACM
TODS’07.

[KS98] Nick Koudas and Kenneth C. Sevcik. High dimensional similarity joins:
Algorithms and performance evaluation. Proceedings of the Fourteenth
International Conference on Data Engineering (ICDE), February 1998.

[KSM05] Byung-Jae Kwak, Nah-Oak Song, and Leonard E. Miller. Performance
analysis of exponential backoff. IEEE/ACM Transactions on Network-
ing, 13(2), April 2005.

[KW10] Balachander Krishnamurthy and Craig E. Wills. On the leakage of
personally identifiable information via online social networks. Computer
Communication Review, 40(1):112–117, 2010.

[Lab] MIT Media Lab. Smart cities. http://cities.media.mit.edu/.

[LAR12] 1992 Los Angeles riots. Wikipedia, at http://en.wikipedia.org/

wiki/1992_Los_Angeles_riots, Last accessed on July 12, 2012.

153

[LHYZ11] Fangtao Li, Minlie Huang, Yi Yang, and Xiaoyan Zhu. Learning to
identify review spam. In Proceedings of the 22nd International Joint
Conference on Artificial Intelligence, IJCAI ’11, pages 2488–2493, 2011.

[LNJ+10] Ee-Peng Lim, Viet-An Nguyen, Nitin Jindal, Bing Liu, and
Hady Wirawan Lauw. Detecting product review spammers using rat-
ing behaviors. In Proceedings of the 19th ACM international conference
on Information and knowledge management, CIKM ’10, pages 939–948,
New York, NY, USA, 2010. ACM.

[LNS11] Hongrae Lee, Raymond T. Ng, and Kyuseok Shim. Similarity join
size estimation using locality sensitive hashing. Proc. VLDB Endow.,
4(6):338–349, March 2011.

[LR94] Ming-Ling Lo and Chinya V. Ravishankar. Spatial joins using seeded
trees. In Proceedings of the 1994 ACM SIGMOD international confer-
ence on Management of data, SIGMOD ’94, pages 209–220, New York,
NY, USA, 1994. ACM.

[Lue78] George S. Lueker. A data structure for orthogonal range queries. In
Proceedings of the 19th Annual Symposium on Foundations of Computer
Science, SFCS ’78, pages 28–34, Washington, DC, USA, 1978. IEEE
Computer Society.

[Lyn11] Matthew Lynley. Yelp CEO: IPO window is still open, Yelp
on track. Venture Beat http://venturebeat.com/2011/09/13/

yelp-ipo-on-track-disrupt/, September 2011.

[MAT10] MATLAB. version 7.10.0 (R2010a). The MathWorks Inc., Natick,
Massachusetts, 2010.

[ME92] Priti Mishra and Margaret H. Eich. Join processing in relational
databases. ACM Comput. Surv., 24(1):63–113, March 1992.

[MLG12] Arjun Mukherjee, Bing Liu, and Natalie Glance. Spotting fake reviewer
groups in consumer reviews. In ACM WWW, 2012.

[MRS08] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze.
Introduction to Information Retrieval. Cambridge University Press, New
York, NY, USA, 2008.

154

[Nau] Robert F. Nau. Decision 411 forecasting.
http://www.duke.edu/ rnau/411avg.htm.

[Net] Netbeans. https://netbeans.org/.

[New12] IT News. Study: Geolocation apps draw users, despite privacy
concerns. http://www.itnews.com/mobile-applications/44048/

study-geolocation-apps-draw-users-despite-privacy-concerns,
2012.

[NH94] Raymond T. Ng and Jiawei Han. Efficient and effective clustering meth-
ods for spatial data mining. In Proceedings of the 20th International
Conference on Very Large Data Bases, VLDB ’94, pages 144–155, San
Francisco, CA, USA, 1994. Morgan Kaufmann Publishers Inc.

[NLT] NLTK Project. Natural Language Toolkit. http://nltk.org/.

[NNMF06] Alexandros Ntoulas, Marc Najork, Mark Manasse, and Dennis Fetterly.
Detecting spam web pages through content analysis. In Proceedings
of the 15th international conference on World Wide Web, WWW ’06,
pages 83–92, 2006.

[oC] Florida Department of Corrections. Florida criminal punishment code.
http://www.dc.state.fl.us/pub/sen cpcm/cpc manual.pdf.

[OCCH11] Myle Ott, Yejin Choi, Claire Cardie, and Jeffrey T. Hancock. Finding
deceptive opinion spam by any stretch of the imagination. In Proceed-
ings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies - Volume 1, HLT ’11, pages
309–319, Stroudsburg, PA, USA, 2011. Association for Computational
Linguistics.

[Oll97] A.M Olligschlaeger. Artificial neural networks and crime mapping.
Studies/research report, U.S. Department of Justice, Office of Justice
Program, Drug Market Analysis Program, 1997.

[ON10] Christopher Olston and Marc Najork. Web crawling. Found. Trends
Inf. Retr., 4(3):175–246, March 2010.

[Pat10] Z. Patton. Sensors make cities smarter. http://www.governing.com/

topics/public-justice-safety/Sensors-Make-Cities-Smarter.

html, April 2010.

155

[PD96] Jignesh M. Patel and David J. DeWitt. Partition based spatial-merge
join. In Proceedings of the 1996 ACM SIGMOD international conference
on Management of data, SIGMOD ’96, pages 259–270, New York, NY,
USA, 1996. ACM.

[PM] Dan Pelleg and Andrew W. Moore. X-means: Extending k-means with
efficient estimation of the number of clusters. In VLDB 2000.

[R D11] R Development Core Team. R: A Language and Environment for Sta-
tistical Computing. R Foundation for Statistical Computing, Vienna,
Austria, 2011. ISBN 3-900051-07-0.

[Sam90] H. Samet. Hierarchical spatial data structures. In Proceedings of the first
symposium on Design and implementation of large spatial databases,
SSD ’90, pages 193–212, New York, NY, USA, 1990. Springer-Verlag
New York, Inc.

[SF] E. Steel and G. Fowler. Facebook in pri-
vacy breach. http://online.wsj.com/article/

SB10001424052702304772804575558484075236968.html.

[SIG01] Bluetooth SIG. Specification of the bluetooth system, 2001.

[SSBL05] Tobias Sing, Oliver Sander, Niko Beerenwinkel, and Thomas Lengauer.
Rocr: visualizing classifier performance in r. Bioinformatics,
21(20):3940–3941, October 2005.

[SW09] Stefan Saroiu and Alec Wolman. Enabling New Mobile Applications
with Location Proofs. In Proceedings of HotMobile, 2009.

[TBGE10] A. Thiagarajan, J. Biagioni, T. Gerlich, and J. Eriksson. Cooperative
transit tracking using smart-phones. In 8th ACM Conference on Em-
bedded Networked Sensor Systems, pages 85–98, 2010.

[TD00] A. C. Tamhane and D. D Dunlop. Statistics and data analysis: From
elementary to intermediate. Upper Saddle River, NJ: Prentice Hall,
2000.

[Ter] Terrafly Project. Crimes and Incidents Reported by Miami-
Dade County and Municipal Police Departments. http:

156

//vn4.cs.fiu.edu/cgi-bin/arquery.cgi?lat=25.81&long=-80.

12&category=crime_dade.

[TMLS09] Nguyen Tran, Bonan Min, Jinyang Li, and Lakshminarayanan Subra-
manian. Sybil-resilient online content voting. In NSDI’09: Proceedings
of the 6th USENIX symposium on Networked systems design and im-
plementation, pages 15–28, Berkeley, CA, USA, 2009. USENIX Associ-
ation.

[Tri] Tripadvisor. http://www.tripadvisor.com/.

[TSK05a] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to
Data Mining. Addison Wesley, 1 edition, May 2005.

[TSK05b] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction
to Data Mining, (First Edition). Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2005.

[TT02] Fang-Mei Tseng and Gwo-Hshiung Tzeng. A fuzzy seasonal arima model
for forecasting. Security Journal, 126:367 – 376, 2002.

[UCL] Urban Sensing CENS UCLA. Walkability project. http://urban.

cens.ucla.edu/projects/walkability/.

[VCL10] Rares Vernica, Michael J. Carey, and Chen Li. Efficient parallel set-
similarity joins using mapreduce. In Proceedings of the 2010 ACM SIG-
MOD International Conference on Management of data, SIGMOD ’10,
pages 495–506, New York, NY, USA, 2010. ACM.

[WAT] WatchYT: Watch Yelp Timelines. http://users.cis.fiu.edu/

~mrahm004/watchyt.

[Wik12] Wikipedia. Yelp Inc. http://en.wikipedia.org/wiki/Yelp,_Inc.,
Last accessed on July 30, 2012.

[WXLY11] Guan Wang, Sihong Xie, Bing Liu, and Philip S. Yu. Review graph
based online store review spammer detection. In ICDM ’11, pages 1242–
1247, 2011.

[XWLY] Chuan Xiao, Wei Wang, Xuemin Lin, and Jeffrey Xu Yu. Efficient
similarity joins for near duplicate detection. In WWW’08.

157

[YBL+08] Anna Yu, Athanasios Bamis, Dimitrios Lymberopoulos, Thiago Teix-
eira, and Andreas Savvides. Personalized Awareness and safety with
mobile phones as sources and sinks. In International Workshop on Ur-
ban, Community, and Social Applications of Networked Sensing Systems
(UrbanSense08), 2008.

[Yel] Yelp. http://www.yelp.com.

[Yel09] Yelp. Yelp Elite Events: What’s the deal? http://officialblog.

yelp.com/2009/03/yelp-elite-events-whats-the-deal.html,
2009.

[YG09] Kyung Hyan Yoo and Ulrike Gretzel. Comparison of deceptive and
truthful travel reviews. In ENTER, pages 37–47, 2009.

[YSK+09] Haifeng Yu, Chenwei Shi, Michael Kaminsky, Phillip B. Gibbons, and
Feng Xiao. Dsybil: Optimal sybil-resistance for recommendation sys-
tems. In Proceedings of the 2009 30th IEEE Symposium on Security and
Privacy, SP ’09, pages 283–298, Washington, DC, USA, 2009. IEEE
Computer Society.

[ZC11] Z. Zhu and G. Cao. APPLAUS: A Privacy-Preserving Location Proof
Updating System for Location-based Services. In Proceedings of IEEE
INFOCOM, 2011.

[ZHLW09] Shubin Zhang, Jizhong Han, Zhiyong Liu, and Kai Wang.
Sjmr:parallelizing spatial join with mapreduce on clusters. IEEE CLUS-
TER 2009, August 2009.

[Zic12] Kathryn Zickuhr. Three-quarters of smartphone owners use location-
based services. Pew Internet & American Life Project, http://

pewinternet.org/Reports/2012/Location-based-services.aspx,
2012.

158

VITA

JAIME BALLESTEROS

2005 B.Sc., Computer Science
Pontificia Universidad Javeriana
Bogota, Colombia

2012 M.S., Computer Science
Florida International University
Miami, Florida

2013 PhD., Computer Science
Florida International University
Miami, Florida

PUBLICATIONS AND PRESENTATIONS

* Jaime Ballesteros, Ariel Cary, and Naphtali Rishe. Spsjoin: parallel spatial
similarity joins. In Proceedings of the 19th ACM SIGSPATIAL International Con-
ference on Advances in Geographic Information Systems, GIS ’11, pages 481-484,
New York, NY, USA, 2011. ACM.

* Bogdan Carbunar, Mahmudur Rahman, Jaime Ballesteros and Naphtali Rishe.
Private Location Centric Profiles for GeoSocial Networks. Proceedings of the 20th
ACM SIGSPATIAL International Conference on Advances in Geographic Informa-
tion Systems, Redondo Beach, CA, November 2012

* Jaime Ballesteros, Mahmudur Rahman, Bogdan Carbunar, and Naphtali Rishe.
Safe cities. A participatory sensing approach. In Local Computer Networks (LCN),
2012 IEEE 37th Conference on, pages 626-634, 2012.

* Jaime Ballesteros, Bogdan Carbunar, Mahmudur Rahman, and Naphtali Rishe.
Yelp Events: Making Bricks Without Clay? In Proceedings of the 5th International
Workshop on Hot Topics in Peer-to-peer com- puting and Online Social Networking
(HOTPOST). In conjunction with IEEE ICDCS 2013, Philadelphia, PA, July 2013.
Best Paper Award.

* Jaime Ballesteros, Mahmudur Rahman, Bogdan Carbunar, Rahul Potharaju,
Radu Sion, Nitya Narasimhan, and Naphtali Rishe. POSTER: Towards Detecting

159

Yelp Review Campaigns. In the 34th IEEE Symposium on Security and Privacy,
San Francisco, CA, May 2013.

* Jaime Ballesteros, Bogdan Carbunar, Mahmudur Rahman, Naphtali Rishe, and
S.S. Iyengar. Towards Safe Cities: A Mobile and Social Networking Approach. IEEE
Transactions on Parallel and Distributed Systems, 2013. Accepted.

160

