
SpSJoin: Parallel Spatial Similarity Joins (Demo Paper)∗

Jaime Ballesteros
jball008@cis.fiu.edu

Ariel Cary
acary001@cis.fiu.edu

Naphtali Rishe
rishen@cis.fiu.edu

School of Computing and Information Sciences
Florida International University

Miami, FL 33199

ABSTRACT
A spatial similarity join of two geospatial datasets finds pairs
of records that are simultaneously similar on spatial and tex-
tual attributes. Such join is useful for a variety of applica-
tions, like data cleansing, record linkage, duplications detec-
tion and geocoding enhancement. Efficient techniques exist
for the individual joins on either spatial or textual attributes.
However, the combined problem has received much less re-
search attention. This paper presents the SpSJoin (Spatial
Similarity join) system to fill in this need. SpSJoin is a plat-
form that merges geospatial and text processing techniques
for efficiently performing spatial similarity joins. The plat-
form leverages parallel computing with MapReduce to tackle
scalability issues in joining large datasets. The efficiency of
the proposed techniques are experimentally validated with
a join case for improving the geolocation of entities in a
real geospatial dataset with referential entities of another
dataset.

1. INTRODUCTION
In modern geographical databases, records contain tex-

tual and spatial attributes to describe characteristics and
location of real-world entities. When the location of the
records has low precision, e.g. geolocated at the center of
the city, their location may be enhanced by finding their
most similar records in another database, known to have
high location precision. For instance, Figure 1 shows sam-
ple records of Physicians database, geolocated at city center
level precision and Yellow Pages database with high geoloca-
tion precision. Intuitively, the most similar object of physi-
cian “John F. Smith MD” is “John Smith MD” in Yellow
Pages, since both names are very similar and geographically
closer. Therefore, finding the most similar pairs between two
geographical databases requires a composite join operation

∗This research was supported in part by NSF grants CNS-
0821345, HRD-0833093, IIP-0829576, IIP-0931517, CNS-
1057661, IIS-1052625, CNS-0959985, CNS-1126619. Ariel
Cary was supported by an FIU dissertation year fellowship

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGSPATIAL GIS ’11, November 1-4, 2011. Chicago, IL, USA
Copyright c© 2011 ACM ISBN 978-1-4503-1031-4/11/11 ...$10.00.

that considers both types of attributes, textual and spatial.
Such type of join, namely Spatial Similarity join, has re-

ceived much less attention in the research community than
individual joins on either textual or spatial attributes. In
the textual case, the degree of resemblance in a similarity
join [1] [7] is measured by a similarity function, e.g. Jac-
card coefficient or Levenshtein distance, and pairs that sa-
tisfy a user-defined similarity threshold are included in the
output. Recently, parallel processing with MapReduce, a
parallel programming model proposed by Google [3], has
been explored to tackle the scalability problem of this type
of joins [6]. In the spatial case, a spatial join [4] between two
geographical datasets matches records based on their spatial
attributes. The spatial relation may be expressed in several
ways, e.g. distance threshold or polygon overlap.

New York, NY

Miami, FL

John F. Kennedy
Loc: (41.3,-74.3)

John Smith MD
Loc: (25.3,-82.4) John F. Smith MD

Loc: Miami,FL

Yellow Pages
Physicians

Best Match?

Figure 1: Best match for physician “John F. Smith”.

Direct application of either spatial join or similarity join
techniques to solve the spatial similarity join problem has
the disadvantage of potentially generating lots of pairs that
do not satisfy the composite constraint; for example, in Fi-
gure 1 several similar physician names and yellow page con-
tact persons may be located far away from each other, e.g.
“John F. Kennedy” in New York, but we are interested only
in the geographically nearest pair. Also, when a thresh-
old is predefined for either similarity or spatial joins, some
records may not find their most similar pair when they do
not satisfy the threshold. It is then up to the user to define
an appropriate distance or similarity threshold even when
there is no knowledge of the precision and quality of the
data. In addition, as geolocation data is rapidly increasing
in databases, scalability in processing spatial similarity joins
is a top concern.

Spatial similarity joins have generally the same applica-
tions as similarity joins, including data cleansing and record
linkage. In addition to geolocation enhancement, this join
might be used in disaster management applications, e.g.

481

joining 911 call records with Nationwide cadastre and White
Pages databases to pinpoint massive emergency events.

Contributions: We propose a combined similarity-based
approach to solve the Spatial Similarity Join problem. We
developed an algorithm that leverages the MapReduce pa-
rallel programming model [3] to handle large amounts of
geographical data, tackling the scalability problem. We im-
plemented the SpSJoin system, a platform for performing
and analyzing results of spatial similarity joins on large ge-
ographical datasets.

2. SYSTEM ARCHITECTURE
The SpSJoin system is divided into four components. Figu-

re 2 shows the proposed architecture for our system. The
Data Repository stores the geographical databases used by
the system and supports data persistency required by the in-
teracting modules. The Spatial Similarity Join module per-
forms the join and returns the result set that is indexed by
the Query Processing module. Finally, the Data Visualiza-
tion module presents an interface to the user for displaying
and analyzing the join results.

R

Data Repository

S

R,S

Attribute
Tokenizer

Spatial
Partitioner

MapReduce

Local
Joiner

Spatial Similarity
Join

Query
Interface

Data
Visualizer

Data Visualization

Data
Indexer

Spatial
Indexer

Inverted File
Indexer

Query
Processor

Query Processing

Terrafly
API

Figure 2: SpSJoin System Architecture

2.1 Data Repository
The data repository contains several geographic datasets

used in different GIS applications. Data comes from di-
fferent sources, including the Internet and public and private
sources, that may or may not need additional geographic lo-
cation processing. Examples of datasets found in the reposi-
tory include Hotels, Crime Data,Places and Landmarks, etc.,
all of them containing different attributes and geographic
location. Figure 3 shows the Physicians and Yellow Pages
datasets with some of their attributes and spatial location.

Name Suffix Licence Zip Code Location
John F. Smith MD L123 333 (0,1)
J. F. Rose MD M456 444 (-1,0)

R: Physicians - PHY

S: Yellow Pages - YP
Bussiness Title Contact Person Address Location
Jackson Memorial John Smith 231 Park Ave (0,0)
Health Care Corp. Judith F. Rose 9218 Tree Pl (-1,0)

Name Contact Person Jaccard C. distance sim(r,s)
John F. Smith John Smith 0.67 1.0 0.33
John F. Smith Judith F. Rose 0.3 1.0 0.15
J. F. Rose Judith F. Rose 0.67 0.0 0.67
J. F. Rose John Smith 0.0 2.0 0.0

R x S

PHY-YP (Spatial Similarity Join)
Name … Contact Person … sim(r,s)
John F. Smith … John Smith … 0.33
J. F. Rose … Judith F. Rose … 0.67

Best Matched
Pairsa) Geographic datasets with textual

and spatial attributes

b) Product R x S and similarity calculations

c) Output of the spatial similarity join

Figure 3: Example of a Spatial Similarity Join. Table
PHY-YP contains the join result.

2.2 Spatial Similarity Join
Intuitively, a Spatial Similarity Join finds pairs of objects

from two spatial datasets, a target and a source, in which
every pair represents a match of an object in the target with
the most related object in the source. Relatedness between
objects is modeled with a composite similarity function that
combines spatial and textual attributes. For instance, in
Figure 3b, the similarity of a pair is calculated by combining
the distance of the objects with their textual similarity on
Name attribute in Physicians and Contact Person in Yellow
Pages. The most related pairs from the Cartesian product
are the ones with the highest value given by the similarity,
sim(r, s), function, e.g. 〈“John F. Smith”, “John Smith”〉
and 〈“J.F. Rose”, “Judith F. Rose”〉. Next, we present the
problem statement and describe our approach for processing
spatial similarity joins efficiently.

Notation. We denote our input datasets as R (target)
and S (source). Without loss of generality, records in these
datasets are tuples of the form o = 〈a, p〉, where a denotes a
textual attribute and p is a point in the space that denotes
the location of the object o. In practice, objects may contain
additional textual attributes, which we omit to simplify the
explanation. MBR refers to the Minimum Bounding Rect-
angle that encloses a set of objects. Given two objects r and
s, we refer to the function simt(ar, as) as the textual simi-
larity between attributes ar and as, and dist(pr, ps) as the
distance between points pr and ps. We denote sim(r, s) as
the composite similarity function in the problem statement.

2.2.1 Problem Statement
Given two datasets R and S and a composite similarity

function sim(r, s) ∈ [0, 1], that combines spatial and tex-
tual similarity, the problem of Spatial Similarity Join finds
the set of pairs (r, s) ∈ R × S , such that sim(r, s) =
max
s′∈S

{sim(r, s′)}. We say that s is the most related object of

r found in S and the pair (r, s) is a best matched pair.
Choosing an adequate sim(r, s) function is challenging

since each type of attribute has its own semantics and inde-
pendent similarity values. Therefore, careful analysis of the
datasets is required. For example, if R and S are known to
have very precise spatial attributes, then sim(r, s) may give
less importance to the textual attributes.

2.2.2 Processing Spatial Similarity Joins
In our approach, sim(r, s) meets the criterion that similar-

ity of pairs of proximal objects must be higher than objects
located far away from each other. We defined the following
similarity function

sim(r, s) =
simt(ar, as)

1 + dist(pr, ps)
(1)

Where simt(ar, as) is a textual similarity function (we used
the Jaccard coefficient in our experiments, simt(ar, as) =
|ar∩as|
|ar∪as|) and dist(pr, ps) is a distance function (we usedGreat

Circle distance since geographical objects are located with
latitude and longitude). In general, if an object r has two
possible matching objects s and s′ with equal similarity
value (i.e. sim(r, s) = sim(r, s′)), the pair with minimum
distance is considered the better pair.

When processing spatial similarity joins in large datasets,
scalability is a key challenge. Our algorithm leverages pa-
rallel computing with MapReduce, which has proven its effec-

482

tiveness in large-scale data intensive problems [3].
The join process is divided into two main phases: a Spatial

Filtering phase and an Expansion phase. In the Spatial
Filtering phase, the entire set of records is partitioned w.r.t.
their spatial attribute. The rationale is that geographically
proximal object pairs are more likely to generate higher si-
milarity values, using Equation 1. In this way, potential best
matches are co-located in the same partition, filtering out
pairs with low similarity value whose evaluation is not nece-
ssary, e.g. far away objects do not represent the same real
world entity. Since each partition may contain some local
best pairs that may have globally best matches, i.e. with
increased similarity value, the Expansion phase gradually
expands the search space of each partition using an upper
bound Expansion Region. Object pairs are reprocessed itera-
tively on adjacent geographical regions until their similarity
value cannot be improved anymore, i.e. the best pairs are
found, or the expansion region covers all universe of objects.
We illustrate the join execution with an example, shown in
Figure 5, that describes the workflow of the process. We
denote clusters of records as Ci, i = {1, 2, 3}, and sets Lj

i as
local output in cluster Ci at iteration j. Final join output
is denoted as L.

iii SRC

2C

1C

3C

3'S2'S

1'S
1'S

Expansion
Region

Internal
Region for

(r,s)

pr

1
),(

1),(
srsim

srer

ps

Figure 4: Dataset clustering. Clusters Ci are
formed after Spatial Filtering phase. The dotted-
line squares represent the MBRs of the upper bound
expansion region for Ci

Spatial Filtering phase. Figure 5 part (I). The Spatial
Partitioner component is used for partitioning the entire
set of records. It is expressed as a MapReduce job that
clusters R ∪ S in parallel using a clustering algorithm; in
our experiments, we used the X-means clustering technique
[5]. Figure 4 shows the spatial layout of the three clusters in
this example: C1, C2 and C3. Note that each Ci is expressed
in Figure 5 as Ri ∪ Si.

Expansion phase. Figure 5 part (II). Each cluster Ci

is processed locally in parallel using several expansion itera-
tions. Each iteration of our example is described next.

Iteration 1. For each cluster Ci, the Local Joiner compo-
nent joins Ri and Si using a nested-loop approach; we imple-
mented the Local Joiner using a modified version of the fuzzy
join proposed in [6], leveraging the MapReduce framework.
Mappers tokenize textual attributes from records in Ri ∪ Si

and generate record projections for each token, tagged with
the relation name. Reducers receive records that share the
same token, sorted by relation (Si first), and records in Ri

are combined with records in Si. To accelerate the process,
records in Si are indexed using their spatial attibute. For
every record in Ri, the spatial index filters records in Si that

Spatial
Partitioner

11 SR 22 SR 33 SR

1
1L 1

2L 1
3L

11 'SP

2
1L

11 'SP

3
1L

1'S

 ' 2S 3'S

2
2L 2

3L

22 'SP 33 'SP

1

2

3

2B

SR

(II)

(I)

Local JoinerLocal Joiner Local Joiner

11 'SP and Compute 22 'SP and Compute 33 'SP and Compute

1'S Compute

1B 3B

Local Joiner Local Joiner Local Joiner

2
3

2
2

3
1

3

1

LLLBL
i

i

SpSJoin Result SetLocal Joiner

Figure 5: Example workflow for SpSJoin. Spatial
Filtering phase is shown in step (I). The Expansion
phase (II) performs iterations 1-3.

will not improve in the combined similarity. The combined
similarity is computed for candidate pairs and the pair with
the highest sim(r, s) is kept. The output of the Local Joiner
L1

i is the set of local best matched pairs found in cluster Ci.
In order to prepare for the next iteration, the input Pi∪

S′i needs to be calculated. We observed that each pair (r, s)
in L1

i defines an internal region, as shown in Figure 4, with
center pr of r and radius er

1. The union of all internal
regions defines the upper bound Expansion Region for the
cluster, in which objects from Ri may find better matches.
Since the Expansion Region may overlap adjacent clusters,
objects in pairs with internal regions that lie within the clus-
ter’s MBR will not find a better match and the correspond-
ing pairs are stored in the Bi database as part of the final
output. This reduces the size of the input in the next itera-
tion. With the remaining pairs, objects in Ri are extracted
and stored in Pi, which need further iterations. Finally, the
system identifies the nearest cluster Ck, that overlaps the
Expansion region, and stores the overlapping objects from
Sk in S′i. In Figure 4 for example, the nearest cluster of
C1 is C3, so S′1 is the set of records from S3 in the shaded
region of C3.

Iteration 2. Each Local Joiner receive Ci = Pi∪ S′i as in-
put and joins Pi and S′i as in the previous iteration. Ouput
pairs in L2

i that improved their similarity are updated as
the new best pair matches. If further clusters need to be ex-
plored, the next nearest cluster that overlaps the Expansion
region is identified and S′i is computed as above. Else, the

1From Eq. 1, to improve a current sim(r, s) with s2, at
best simt(ar, as2) = 1, hence sim(r, s) ≤ 1

1+dist(pr,ps2)
. It

follows that dist(pr, ps2) ≤ 1
sim(r,s)

− 1 = er(r, s).

483

Table 1: Geographical databases of Physicians
(PHY) and Yellow Pages (YP) used in experiments.

Joining Attributes
Database Records Textual Spatial
PHY 2 millions name zip
YP 20 millions contact person location

local process finishes its execution. In Figure 4, Expansion
regions for clusters C2 and C3 do not expand anymore so
L2

2 and L2
3 are part of the final output. On the other hand,

Expansion region of C1 overlaps C2 so P1 requires further
processing. S′1 is now the set of records from S2 in the
shaded region of C2

Iteration 3. Local Joiner is called again with the new
input Ci = Pi∪ S′i and the output L3

i is generated. In
our example, the Expansion region for cluster C1 has no
more overlapping clusters to cover, hence set L3

1 is part of
the final output. Since no clusters need further expansion,
the process terminates and the join result set L is complete.
Shaded blocks in Figure 5 form the final output of the join.

2.3 Query Processing
The Query Processing module , Figure 2, is used primari-

ly by the Data Visualizer component to retrieve records of
joined databases (generated by the Spatial Similarity Join
module). This module executes spatial queries with non-
spatial constraints posted by users for join quality inspec-
tion. Attributes in the join result are first indexed using
a hybrid data structure that leverages R-trees and inverted
files [2] by the Data Indexer. Second, the Query Processor
parses a user query to identify the query window (geographi-
cal region) and (optionally) non-spatial constraints, and it
uses the hybrid index structure to efficiently retrieve records.
For instance, in the join example of Figure 3, joined records
of physicians with last name“Smith”and located in “Miami,
FL” are displayed in Figure 6.

2.4 Data Visualization
The Data Visualization module displays the results of spa-

tial similarity joins on a map. Figure 6 shows the general
user interface of the system. Aerial and satellite imagery as
well as user interface widgets are provided by the TerraFly
system2 via its public API.
When the user selects a location to visualize, the currently

displayed map portion determines the query window that
will be submitted to the Query Processing module. Then,
users pick a previously joined database from a database
drop-down list to visualize its records. Optionally, users
can include keywords in the query to locate specific objects
for inspection. Records that match the query criteria are
displayed as pairs, visually distinguished by circles and di-
amonds, united by lines and enclosed in rectangles. Users
can click on individual object icons to display detailed in-
formation about the pair the object participates on.

3. DEMO DESCRIPTION
The setup for the demonstration is as follows. First, two

real geographical databases, Physicians (target) and Ye-
llow Pages (source), were joined with the SpSJoin opera-
tor. The database sizes and joining attributes are shown

2http://terrafly.fiu.edu

Details for pair Id: 3048

PHY database

YP database

Ranking score:
Attribute sim.:

Distance:

PHY record:
YP record:

0.33

0.67

1.0

<"John F. Smith", (0,1)>

<"Smith, John", (0,0)>

Figure 6: Data visualization of joined records.

in Table 1. Objects in the databases represent real-world
entities located in the United States. For example, YP
entries include medical professionals of various specialities,
which are expected to match with records in PHY. Jac-
card coefficient and Great Circle distance were used to com-
pute the similarity of textual and spatial attributes, res-
pectively. The data was provided by the HPDRC labora-
tory3. Second, joined records were stored in a third database
PHY-YP inside our Data Repository, and its attributes were
indexed by the Data Indexer component. The use case
demonstrates the improvement of geolocation precision in
the Physicians database with matching objects in the Yellow
Pages database; initially, records in PHY were geolocated to
the center of their ZIP codes.

During the demonstration, users will have the opportunity
to interact with the system by visualizing the joined data in
the PHY-YP database as shown in Figure 6.

4. REFERENCES
[1] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact

set-similarity joins. In VLDB’06.

[2] A. Cary, O. Wolfson, and N. Rishe. Efficient and
scalable method for processing top-k spatial boolean
queries. In SSDBM’10, pages 87–95.

[3] J. Dean and S. Ghemawat. Mapreduce: simplified data
processing on large clusters. Communications of the
ACM 2008, page 51(1).

[4] E. H. Jacox and H. Samet. Spatial join techniques.
ACM TODS’07.

[5] D. Pelleg and A. W. Moore. X-means: Extending
k-means with efficient estimation of the number of
clusters. In VLDB 2000.

[6] R. Vernica, M. J. Carey, and C. Li. Efficient parallel
set-similarity joins using mapreduce. In SIGMOD’10.

[7] C. Xiao, W. Wang, X. Lin, and J. X. Yu. Efficient
similarity joins for near duplicate detection. In
WWW’08.

3http://hpdrc.fiu.edu

484

