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ABSTRACT
The proliferation of mobile devices, location-based services
and embedded wireless sensors has given rise to applications
that seek to improve the efficiency of the transportation sys-
tem. In particular, new applications are already available
that help travelers to find parking in urban settings by con-
veying the parking slot availability near the desired destina-
tions of travelers on their mobile devices.

In this paper we present two notions of parking choice: the
optimal and the equilibrium. The equilibrium describes the
behavior of individual, selfish agents in a system. We will
show how a pricing authority can use the parking availabil-
ity information to set prices that entice drivers to choose
parking in the optimal way, the way that minimizes total
driving distance by the vehicles and is then better for the
transportation system (by reducing congestion) and for the
environment. We will present two pricing schemes that per-
form this task. Furthermore, through simulations we show
the potential congestion improvements that can be obtained
through the use of these schemes.

Categories and Subject Descriptors
K.4.4 [Computers and Society]: Electronic Commerce—
payment schemes

General Terms
Algorithms, Economics
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Cruising for parking by driving around an urban area look-
ing for available parking slots has been shown to be a major
cause of congestion in urban areas. For example, in [16],
studies conducted in 11 major cities revealed that the av-
erage time to search for curbside parking was 8.1 minutes
and cruising for these parking slots accounted for 30% of the
traffic congestion in those cities. This means that each park-
ing slot would generate 4,927 vehicle miles traveled (VMT)
per year [17]. That number would of course be multiplied
by the number of parking slots in the city. For example, in a
big urban city like Chicago with over 35,000 curbside park-
ing slots [18], the total number of VMT becomes 172 million
VMT per year due to cruising while searching for parking.
Furthermore, this would account for waste of 8.37 million
gallons of gasoline and over 129,000 tons of CO2 emissions.

The proliferation of mobile devices, location-based ser-
vices and embedded wireless sensors has given rise to appli-
cations that seek to improve the efficiency of the transporta-
tion system. In particular, new applications are becoming
available to help travelers find parking in urban settings.
For example, wireless sensors embedded on parking slots
are used to detect the availability of slots across some area,
and the locations of currently available parking slots are dis-
seminated to the mobile devices of users that are looking for
parking in the area. A prime example of this application is
SFPark [7] that uses sensors embedded in the streets of San
Francisco. When a user is looking for parking in some area
of the city, the application shows a map with the marked
locations of the open parking slots in the area. Though the
primary motivation for these applications is to help the in-
dividual users to find open parking slots quicker [1, 2], they
can also be used to reduce congestion by decreasing the total
distance traveled by vehicles looking for parking.

This paper deals with this second objective of congestion
reduction. Specifically, we propose to achieve the reduc-
tion by focusing on a conceptual gap between two notions of
parking, which is just a spatio-temporal matching between
mobile agents (drivers) and resources (parking slots). The
two matching notions are optimality and equilibrium. Ide-
ally, we would like the matching to be optimal, i.e. the total
distance driven to park by all vehicles, to be minimum. How-
ever, achieving this optimality requires a central authority
that can dictate the slot in which a driver should park, even
if that driver can do better. Fig. 1 illustrates this point by an
example. Suppose that the edge labels represent distances
in one-hundredths of a mile, i.e., v1 is 0.1 miles from s1,
0.2 miles from s2 and so forth. To achieve minimum total
driving distance, i.e. System Optimum cost, v1 will have to

43



s1

s2

v1 v2

10

20

50

80

Figure 1: An example for the parking pricing prob-
lem.

park in s2, and v2 will have to park in s1. The total driving
distance of this parking assignment, called SO, is 0.7 miles.
However, this requires v1 to drive to a farther slot, s2, i.e.
inferior from her point of view because s1 is closer. There
is no central authority that can dictate this parking assign-
ment to v1. If v1 drives to s1 (and captures it since she is
closer than v2), then v2 must settle for s2. The total driving
distance (cost) of this parking assignment, called NE, is 0.9
= 0.8 + 0.1 miles, i.e., higher than that of SO. However,
the property of the NE assignment is that no driver d can
unilaterally deviate from NE and improve d’s cost. The NE
assignment is the Nash Equilibrium, and it is assumed that
without a central authority to dictate parking assignments
the system will naturally settle into it. The reason for this
is that drivers act selfishly, and will lower their cost if they
can do so. But this means that the total driving distance,
and therefore congestion, will be higher.

This paper is motivated by the fact that although there
is no authority to dictate parking, municipalities have the
authority to price on-street parking slots. Thus, we study
the question: Is it possible to convert the NE parking as-
signment into the SO parking assignment by appropriately
pricing the slots? In other words, is it possible to price
the parking slots in such a way that when considering both,
price and driving distance, the NE assignment becomes the
SO assignment in terms of driving distance? If so, then the
selfish drivers will be incentivized into the SO assignment.
To demonstrate this point by continuing the above example,
assume that on average driving 1 mile has a total $-cost of
50 cents (including gas, driver-time, vehicle wear-and-tear,
etc.). Then, if the authority prices s1 at 15 cents and leaves
s2 free, it will become better for v1 to park in s2, leaving
s1 available for v2. Thus, the NE assignment in terms of
$-cost + driving-distance, is the SO assignment is terms of
driving distance. This means that when considering both
$-cost + driving-distance, if each driver drives to the slot
assigned to her by the SO assignment (i.e. the assignment
that minimizes the total driving distance), she cannot uni-
laterally change her slot and improve her cost. Thus, by
pricing, the authority made it worthwhile for the drivers to
travel a shorter distance in total.

The above pricing scheme works for the toy example of
Fig. 1. What about an arbitrary configuration, i.e. initial
locations of vehicles and slots? In this paper we propose
an algorithm that prices the parking slots in such a way
that when considering both, price and driving distance, the

NE assignment becomes the SO assignment in terms of to-
tal driving distance. This algorithm is given as input the
driving-distances between parking slots and vehicles. Ob-
serve that the algorithm can be generalized to take into
consideration other factors such as walking distances from
the slot to the destination of each driver, safety of the area
around the parking slot; these may in turn depend on the
weather, e.g., in the rain the importance of walking cost may
be higher.

Several questions arise at this point. First, what if the
parking slots already have a price? Moreover, this price may
be time-dependent, e.g. $2/hour. Then the price computed
by our algorithm will be a flat fee in addition to the normal
parking fees. Second, how the pricing authority would know
the configuration of vehicles and slots? In other words, the
pricing scheme depends on the distances between slots and
vehicles, and computing these would necessitate knowing
the locations of slots and vehicles. How would the authority
know these? The answer is that as explained previously, the
locations of available slots are already known based on sen-
sors; and vehicles can announce their locations when starting
to look for parking. Finally, how should the algorithm be
adapted to a dynamic situation in which vehicles and slots
enter the matching-game at different times and different lo-
cations? The answer is that every time a new slot becomes
available or a new vehicle is looking to park, new prices are
computed. This in turn may change the target slots for the
vehicles. However, this is expected since such events change
the optimum parking assignment, and adjustments need to
be made. Furthermore, we assume that the target slot for a
vehicle is computed automatically by some Parking Naviga-
tor that makes the best choice for the driver, and the driver
may not even be aware of the price changes. A driver is
only aware of the price of a slot s that exists at the time she
reaches s. This is the price she pays, and is guaranteed that
she cannot unilaterally improve upon it. The Parking Nav-
igator is an add-on to a car navigation system, or an app in
a smartphone, that guides the driver to a parking slot in the
same sense that a Car Navigation System guides the driver
to a destination.

This paper considers an additional pricing problem, called
vs-pricing, which is distinguished from the previous one by
the fact that rather than pricing individual slots, the au-
thority prices pairs of (vehicle, slot); in other words, dif-
ferent vehicles may pay different prices for the same slot.
The objective is again to convert NE assignments to SO
assignments. Vs-pricing strategies are more flexible in that
they can be revenue-neutral. In contrast, observe that in the
regular pricing problem discussed above, the pricing author-
ity has a revenue which can be considered as an additional
tax. Vs-pricing strategies show how to distribute this addi-
tional revenue back to the drivers, so that drivers which drive
longer than necessary in the SO assignment that is eventu-
ally achieved, are compensated. Moreover, drivers are guar-
anteed not to pay more in terms of $-cost + driving-distance
than they do in the NE assignment, upon which they cannot
unilaterally improve.

Continuing with the above example from figure 1, assume
again that on average driving 1 mile has a total $-cost of
50 cents. Then to enforce a vs-pricing scheme, the pricing
authority can set vehicle-slot for v1 as an extremely large
quantity for s1 and $0 for s2. For v2 the pricing authority
will set the prices as 0.3 miles for s1 and an extremely large
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quantity for s2. That 0.3 miles that v2 will have to pay con-
verts to 15 cents. Then by setting these vehicle-slot prices,
the pricing authority incentivizes the vehicles to choose slots
according to the SO assignment (v1 to s2 and v2 to s1). By
paying this price, i.e. 15 cents, v2 actually ends up paying
the same amount (by adding $-cost and driving distance)
that she would’ve paid had she gone to s2, as in the NE
assignment. v1 pays more for her trouble, but the pricing
authority can compensate her from the money that was col-
lected from v2. In this paper we will propose the vs-pricing
scheme that computes the vehicle-slot pair prices in a way
where every vehicle will:

• Choose parking according to the SO assignment.

• Pay the same total cost ($-cost + driving cost) as in
the NE assignment.

• Receive extra compensation from the pricing authority.

Besides these benefits for the drivers, we will show that
the pricing authority will still be able to make a profit for
managing these transactions.

Finally, in this paper we compute by simulation the aver-
age difference in total driving distance between the SO and
NE matchings. The results showed that on average the driv-
ing distance used on the NE assignment is up to 1.3 times
bigger than the distance traveled with the SO assignment.
This leads to an improvement on of 23% by using our pricing
schemes. Then the distances traveled on average could be
potentially reduced by 23% and this leads to a 23% reduc-
tion in congestion, gas consumption and gas emissions that
affect the environment.

In summary, this paper presents three contributions:

1. A pricing scheme that computes prices of parking slots;
the scheme that converts the NE assignment into the
SO assignment.

2. A vs-pricing scheme that assigns vehicle-slot pair prices
and not only converts the NE assignment into the SO
assignment, but also guarantees that no driver will pay
a higher total cost than the one she can obtain by be-
having selfishly.

3. The computation, through simulations, of the practical
impact that our pricing schemes have.

The Roadmap The rest of the paper is organized as fol-
lows. In Section 2 we survey prior relevant work related to
this research. In Section 3 we state the general setup of the
related transportation problem with appropriate notations
that are followed in the rest of the paper. In Section 4 we
present the two possible models for the parking congestion
reduction problem and related game-theoretic concepts. In
Section 5 we present a pricing scheme based on an auction
algorithm and prove its correctness. In Section 6 we present
the vs-pricing scheme that is vehicle-dependent in the sense
that the price of a slot may be different for different vehicles.
In Section 7 we present simulations results to determine the
empirical effectiveness of our pricing schemes. Finally, in
Section 8 we present some concluding remarks.

2. PRIOR RELATED WORKS
For the purpose of this paper, we assume that all vehi-

cles can receive information about open parking slots at any
time. Such information can indeed be obtained by already
published and existing research works and technologies on
monitoring and sensing open parking slots. Examples of re-
search works dealing with detection of open parking slots
include the usage of ultrasonic sensor technology that is
used to determine the spatial dimensions of open parking
slots [14], and usage of wireless sensors that are used to
track open parking slots in a parking facility [13]. Beyond
simple detection of slots, Mathur et al. [10] show how to cou-
ple detection with sharing of the parking slot information in
a mobile sensor network by presenting a methodology for
vehicles driving past curbside parking slots to detect open
ones, as opposed to having to spend on equipping each park-
ing slot with wireless sensors for monitoring. These mobile
sensors generate a map of parking slot availability.

In [1, 2], the authors of this paper introduced the so-called
Parking Slot Assignment Games (Psag) to analyze various
parking related problems in competitive settings. The park-
ing problem was studied in a centralized context as well as
in the context of a distributed model with individual selfish
agents, and a relationship between the Nash equilibrium and
stable marriage assignments [6] was established in [2]. When
drivers are selfish and cannot be controlled by a central au-
thority, it is well accepted that the overall system converges
to the Nash equilibrium since it describes a situation where
they cannot improve on their incurred costs.

Pricing of resources to obtain some system-wide objec-
tives as studied in this paper has been studied in the past in
other contexts for transportation applications. In the trans-
portation literature this is commonly known as “congestion
pricing” [19]. The most common type of congestion pric-
ing is that of toll-like prices assessed on major urban areas
or major roads to decrease the demand of entering to these
areas and roads, and pricing strategies of similar type has
been famously implemented in the central business district
of Singapore [15] and in other major cities across the world.

This paper investigates the pricing problems in the con-
text of algorithmic game theory which has a rich history, see
textbooks such as [12] for further details.

3. BASIC DEFINITIONS AND NOTATIONS
The general setup of our parking problem is as follows:

• We have a set of n vehicles V = {v1, v2, . . . , vn} and a
set of n parking slots S = {s1, s2, . . . , sn}.

• Each vehicle makes an independent choice of its park-
ing slot, and thus competes with other vehicles for the
parking slots contained in S.

• dij denotes the driving distance between vi ∈ V and
sj ∈ S.

• Each vehicle is assumed to be moving independently
of all other vehicles at a fixed velocity. Without loss
of generality, we assume that the speeds of all vehicles
are the same1.

1Otherwise, we simply need to rescale the distances for each
vehicle in our algorithmic strategies.
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• An assignment of vehicles to parking slots is a function
g : V → S, where g(vi) is the parking slot that is as-
signed to vehicle vi.

2 We call this matching of vehicles
to slots an assignment but it doesn’t mean that there
is a central authority assigning the vehicles to slots.
These assignments are just matchings of vehicles and
slots.

• There is a natural cost aij associated with a vehicle vi

and a slot sj . This natural cost may, for example, be
the distance from the vehicle to the slot, or a weighted
average of the driving distance from the vehicle to the
slot and the walking distance from the slots to the
vehicle’s ultimate destination.

• The obtained natural cost Cg(vi) of a vehicle vi, based
on an assignment g, is defined as:

Cg(vi) =

(
aij if vi is closest of all vehicles assigned to g(vi)

α otherwise

Here α is a penalty for not obtaining its assigned slot,
and is a large number, e.g. equal to the sum of all the
natural costs between all vehicles and slots.

• We will setup a price pj for each parking slot sj when
we consider the pricing problem for parking. The priced
cost between a vehicle vi and a slot sj is defined as
aij + pj .

• The obtained priced cost Cp
g (vi) of a vehicle vi based

on an assignment g is defined as:

Cp
g (vi) =

(
aij + pj if vi is closest of all vehicles assigned to g(vi)

β otherwise

Here β is a penalty for not obtaining its assigned slot,
and is a large number, e.g. equal to the sum of all the
priced costs between all vehicles and slots.

• We assume that one has a “conversion factor” between
the natural costs (aij ’s) and monetary prices. So when
we talk about combining the prices (pj ’s) and the nat-
ural costs into the obtained priced cost (aij + pj), we
assume that the natural cost is in terms of dollars. For
example, if the natural cost is simply the driving time
to the slot, then one would need a suitable conversion
of time into money. We will assume that this con-
version factor will be chosen by the pricing authority
(whoever has the right to set the prices).

4. THE PARKING PROBLEM
In a parking problem, we wish to compute an assignment

g of vehicles to slots that will optimize some objective. One
natural way of modeling the problem is in a centralized man-
ner in which a central authority will assign vehicles to slots
in order to optimize some system-wide objectives. Another
way of modeling the problem is to let the vehicles choose
their slots independently and selfishly, and study the com-
petition between the vehicles for the slots. In this section
we will present solutions for both these models.

2Based on this definition, there is a difference between where
a vehicle is assigned and where a vehicle parks. If more than
one vehicle is assigned to the same slot, then the vehicle
closest to the slot will park there and the other vehicles are
left without parking.

4.1 Centralized Model – Optimizing Social Wel-
fare

In a centralized model, a central authority is in charge of
assigning vehicles to slots with the goal of optimizing some
system-wide objectives (“social welfare”). In the transporta-
tion literature this is usually called a system optimal assign-
ment in which the total obtained natural cost of the assigned
vehicle-slot pairs is minimized, i. e., the assignment g mini-
mizes the following objective function:

nX
i=1

Cg(vi)

In [1], we showed how such a system optimal assignment can
be computed in polynomial time by posing it as a minimum-
cost network flow problem on a bipartite graph [4]. Even
though this centralized model shows good computational
properties, it is difficult to justify in real life to distributed
mobile users that make their own choices, e.g., optimizing
social welfare may imply that some travelers will incur a
greater cost for the good of others.

4.2 Distributed Model – Nash Equilibrium
In a distributed model there is no centralized authority

that guides drivers and each user makes an independent
and selfish choice for its parking slot. These choices are
used to determine the vehicle-slot assignment g. Viewed in
another equivalent way, such a model can be viewed as a
game where the strategies of the players (vehicles) are the
available parking slots, and the payoff (cost) for the play-
ers are their obtained natural cost (or obtained priced cost
when there are slot prices). The well-known Nash equilib-
rium [11] is a standard desired strategy that is used to model
the individual choices of selfish players in a game by defin-
ing a situation in which no player can decrease its cost by
changing strategy unilaterally. The standard definition of
Nash equilibrium translates to the following definition for
our distributed parking slot assignment model:

Definition 1. (Nash Equilibrium for distributed park-
ing slot assignment model) Let g be an assignment of vehi-
cles to slots that represents the strategy choices of the players
in the distributed parking slot assignment model. Then, g is
a Nash equilibrium strategy for all the players if and only if,
for every index i and for every assignment g′ that is identical
to g except that g(vi) 6= g′(vi), it holds that

Cg(vi) ≤ Cg′(vi)

In [2], we have shown that the Nash equilibrium strategy
for parking slot assignment games is actually a stable mar-
riage [6] between the vehicles and the slots in the following
manner. For this stable marriage, the preferences of the ve-
hicles are determined by their natural cost (aij) and the pref-
erences of the slots are determined by the distances to the
vehicles (dij). When the parking slots have prices assigned
to them, the preferences of the vehicles will be determined
by their obtained priced cost (aij + pj), and this equilib-
rium can then also be computed in polynomial time using
the Gale-Shapley deferred acceptance algorithm [6, 12].

The Nash equilibrium exemplifies the behavior of a system
with individual selfish agents. This applies to real-world ap-
plications because travelers in the real-world are selfish and
look to minimize their own costs rather than those of the
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system. Nevertheless, the system optimal assignment is the
one that minimizes congestion caused by vehicles cruising
for parking since vehicles travel less as a whole. This system
optimal assignment also has greater benefits for the environ-
ment. This is why we want to design a pricing scheme that
makes the system optimal assignment be equal to the Nash
equilibrium assignment. With this pricing scheme, the self-
ish vehicles will travel in accordance with the system optimal
assignment.

5. EQUILIBRIUM PRICING SCHEME
We will denote a parking pricing scheme as a set of prices

that are assigned to each available parking slot and represent
it as a n-tuple P = (p1, p2, . . . , pn). We will say that P is
an equilibrium pricing scheme if it makes the Nash equilib-
rium assignment identical to the system optimal assignment.
In this section we will present an algorithm that computes
such a desired equilibrium pricing scheme. Our algorithm is
based on the auction algorithm that was created to compute
optimal assignments [3].

5.1 Algorithmic Preliminaries and Notations
In this section we describe the intuition behind an algo-

rithm that computes the desired equilibrium pricing scheme
through an iterative process that simulates an auction among
the vehicles.

If a vehicle vi is assigned and obtains slot sj , then the
obtained priced cost for vi is aij +pj . Ideally, vi would want
to be assigned to a slot sj such that:

aij + pj = min
1≤k≤n

˘
aik + pk

¯
If this is possible, then this vehicle vi would have no incentive
to deviate to another strategy and thus this strategy would
be an equilibrium strategy for vi. If this condition holds for
all vehicles with their assigned and obtained slots, then the
assignment is an equilibrium.

Let ε be called the “minimum bidding increment” for the
algorithm (we will soon define what this means). Then,
define a vehicle vi as being in almost at equilibrium with an
assignment and a set of prices if the value of its assigned slot
sj is within ε of being minimal, i.e.,

aij + pj ≤ min
1≤k≤n

˘
aik + pk

¯
+ ε

We will say that an assignment and a set of prices are al-
most at equilibrium (or at ε-approximate equilibrium) when
the above condition holds for all vehicles with their assigned
and obtained slots. We will now present an algorithm that
will compute prices that make an ε-approximate equilibrium
also be an optimal solution within a factor of ε. The algo-
rithm will compute the desired prices in a way such that
vehicles will be almost at equilibrium when assigned with a
system-optimal assignment. We note that similar definitions
of ε-approximate equilibrium have been used before in the
algorithmic game theory community (e.g., see [5, 8, 9]).

5.2 The Auction Algorithm for Pricing Park-
ing Slots

The algorithm executes in “rounds” or iterations starting
with an arbitrary assignment and an arbitrary set of prices.
We will assume that we start with all prices set at 0. There
is an assignment and a set of prices at the end of each itera-
tion. If all the vehicles are at almost equilibrium with their

assigned parking slot at the end of any round then the algo-
rithm terminates. Otherwise, any vehicle that is not almost
at equilibrium, say vehicle vi, is selected. Let sj be the slot
that has minimal cost for vi, i.e.:

j = argmin
1≤k≤n

˘
aik + pk

¯
Then the following steps are executed:

1. vi exchanges slots with the vehicle assigned to sj at
the beginning of the round.

2. vi sets the price of his/her best slot sj to the level
at which he/she is indifferent between sj and his/her
second most preferred slot in the following manner.
Let xi = aij + pj be his/her obtained cost for the
most preferred slot, and let wi = mink 6=j

˘
aik + pk

¯
be his/her obtained cost for the second most preferred
slot. Then pj is set to:

pj + γi,

where γi = wi−xi+ε. Basically, γi is the highest value
that sj ’s price can be increased while still being vi’s
preferred slot. Also notice that the minimum value for
γi is ε (the minimum bid increment).

This algorithm continues in a sequence of rounds until all
vehicles are at almost equilibrium. The iterative approach
can be viewed as an auction where vi raises the price of his
bid on slot sj by the bidding increment γi.

Primal-dual interpretation of the auction algorithm.
Readers familiar with the primal-dual approach for solv-

ing linear programs by iteratively satisfying complementary
slackness conditions [4] will realize that the above auction
algorithm can be interpreted as a primal-dual schema in the
following manner: start with a feasible (not necessarily op-
timal) solution of the dual linear program for the parking
problem [12, Section 11.3.1] by, for example, setting all the
dual variable (prices) to zeroes and iteratively increase dual
variables until all complementary slackness conditions are
satisfied.

5.3 Proof of Correctness
The auction algorithm as described in the previous sec-

tion is guaranteed to terminate in a finite number of steps
that depends on ε [3]. Since the algorithm terminates when
all vehicles are almost at equilibrium, obviously it computes
an ε-approximate equilibrium in terms of the priced cost.
Thus, what remains to be done is to show the relation-
ship of this assignment to the system optimal assignment
in terms of the natural cost. The following theorem is a
special case of a more general result on the existence of an
ε-approximate competitive equilibrium of ascending item-
price auctions [12, Theorem 11.30].

Theorem 2 (see also [12, Theorem 11.30]). The o-
btained priced cost of the assignment computed by the auc-
tion algorithm for parking pricing is within an additive fac-
tor of nε of the minimum value of the total obtained natural
cost.

Proof. Let h : V → S be an arbitrary assignment, and
let g be the assignment computed by the auction algorithm
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resulting in the pricing scheme P = (p1, p2, . . . , pm). Ac-
cording to the auction algorithm and with subsequent alge-
braic manipulation, we get the following inequalities:

aig(vi) + pg(vi) ≤ aih(vi) + ph(vi) + ε

⇒
nX

i=1

(aig(vi) + pg(vi)) ≤
nX

i=1

(aih(vi) + ph(vi) + ε)

≡
nX

i=1

aig(vi) +

nX
i=1

pg(vi) ≤
nX

i=1

aih(vi) +

nX
i=1

ph(vi) + n ε

⇒
nX

i=1

aig(vi) ≤
nX

i=1

aih(vi) + n ε

where the last implication follows from the fact that

nX
i=1

pg(vi) =

nX
i=1

ph(vi) =

nX
j=1

pj

Thus, we can use the auction algorithm to compute the de-
sired prices that ensure that the ε-approximate equilibrium
assignment is identical to the system optimal assignment
within a factor of ε. In this way, vehicles looking for park-
ing are incentivized to act in a way that benefits the system
by reducing the total time traveled to find parking. The
potential benefits of the algorithm are studied empirically
through simulations in Section 7.

5.4 Illustrative example of the pricing scheme
We illustrate the pricing approach using an example shown

in Fig. 1. Suppose that the numbers represent one-hundredths
of a mile, i.e., v1 is 0.1 miles from s1, 0.2 miles from s2 and
so forth. The Nash equilbrium assignment gne for this sit-
uation is given by gne(v1) = s1 and gne(v2) = s2, and the
system optimal assignment gso is given by gso(v1) = s2 and
gso(v2) = s1.

If we were to run our auction algorithm, with starting
prices at 0, for this parking situation, we would get that
s1 will have a price of 0.3 + ε miles and s2 will be free.
The monetary amount that these 0.3 + ε miles will even-
tually translate to, depends on the conversion factor. This
conversion factor is set by the pricing authority based on
an estimate of what is the cost of driving for an average
user (based on gas expenditure, time, etc.). Suppose that
ε = 0 for this example and that users feel that one mile of
travel is worth 50. Then the price of parking in s1 would
be 15. This price of 15 will make s2 more valuable for v1
and would make the equilibrium assignment identical to the
system optimal one.

5.5 Illustrative example of the pricing scheme
with general costs

Take the example shown in Fig. 1. Now we add walking
times by defining the time to walk from slot sj ∈ S to the
destination of vj ∈ V as wij . For this example, let w11 = 30,
w12 = 18, w21 = 42, and w22 = 6. Let the weights in Fig. 1
now represent travel times as well. Then we can combine
the walk times and the driving times into a more general
cost with the cost values defined as: a11 = 40, a12 = 38,
a21 = 92, and a22 = 86.

If we were to run our auction algorithm, with starting
prices at 0, for this parking situation, we would get that

s2 will have a price of 6 + ε seconds and s1 will be free.
Again, the monetary amount that these 6 + ε seconds will
eventually translate to, depends on the conversion factor
between seconds (time) and money. This pricing scheme
will lead to v1 preferring slot s1 and v2 going to slot s2,
which is the system optimal assignment when minimizing
this general cost.

6. VEHICLE-SLOT (VS) PRICING SCHEME

6.1 Formal Definitions
In the previous scheme, prices were set to each available

parking slot regardless of who was going to park there, i.e.,
the prices did not depend on the assigned vehicles. One
could also consider a vs-pricing scheme in which the assigned
price depends on the vehicle that wants to park there. Thus,
instead of having a pricing scheme P = (p1, p2, . . . , pn) like
before, we now have a vs-pricing scheme P = (P1,P2, . . . ,Pn),
where each Pi = (pi1, pi2, . . . , pin) for 1 ≤ i ≤ n, and each
pij represents the price that vehicle vi would have to pay to
park in slot sj . This is a vehicle-dependent pricing scheme.
The prices in this scheme will again be designed to incen-
tivize drivers into making parking slot choices in a system
optimal manner.

6.2 Computing the pricing scheme

Theorem 3. There exists a vs-pricing scheme
P = (P1,P2, . . . ,Pn) that converts the system optimal as-
signment of the vehicles and slots to a Nash equilibrium as-
signment considering the priced costs.

Proof. Let gso : V → S be a system optimal assignment
between the vehicles and slots and let gne be the Nash equi-
librium assignment. If gne(vi) = sj then let jne

i = j, and
similarly if gso(vi) = sj then let jso

i = j. Set pij as:

pij =

(
max

˘
0, aijne

i
− aijso

i

¯
if gso(vi) = sj

β otherwise
(1)

Recall (from section 3) that β is a sufficiently large quantity
and pij is the price that vehicle vi would have to pay if it
wants to park in slot sj . Since β is sufficiently large, each
vi will have incentive to only choose the strategy gso(vi).
Then, gso(vi) is the equilibrium strategy for vi as well as
the system optimal strategy (by definition). Thus, if each
Pi = (pi1, pi2, . . . , pin) is computed using Equation (1), then
the pricing scheme P = (P1,P2, . . . ,Pn) makes the Nash
equilibrium assignment be identical to the system optimal
assignment.

With the vs-pricing scheme presented in the above proof,
no vehicle will pay more than the price dictated by the orig-
inal Nash equilibrium assignment gne. If a vehicle travels
less than what it would have originally traveled according
to original Nash equilibrium then it has to pay a $-cost of
aijne

i
− aijso

i
and additionally it incurs the cost of travel

which is aijso
i

. Therefore such a vehicle ends up paying ex-
actly aijne

i
, which is the natural cost it would have paid

originally with the assignment gne. However, if a vehicle
travels more than originally stipulated by the Nash equilib-
rium then it does not have to pay an extra $-cost according
to equation 1. But it travels more and therefore it ends up
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paying aijso
i

> aijne
i

, a driving cost. The next paragraph
explains how to compensate such an unhappy vehicle.

Let us call a vehicle happy if it pays the original cost stip-
ulated by the equilibrium. Suppose the pricing authority
pays back to an unhappy vehicle the amount of aijso

i
−aijne

i
.

Then the user of this vehicle will end up paying a total of
aijso

i
− (aijso

i
− aijne

i
) = aijne

i
, which is the natural cost the

user would have paid originally with the Nash equilibrium
assignment gne. This would make the user happy.

Thus, it follows that with this scheme there is a potential
for everyone to be happy because all users will simply pay
the same costs that they would have paid originally with the
Nash equilibrium assignment. The only question that is left
to be answered is if the pricing authority will also make a
profit as well.

Theorem 4. The vs-pricing scheme described above yields
a non-negative profit for the pricing authority.

Proof. Using simple algebraic manipulation, the total
profit for the pricing authority can be ultimately written as:X

i : aijne
i

>aijso
i

h
aijne

i
− aijso

i

i
−

X
i : aijso

i
≥aijne

i

h
aijso

i
− aijne

i

i
=

X
i : aijne

i
>aijso

i

h
aijne

i
− aijso

i

i
+

X
i : aijso

i
≥aijne

i

h
aijne

i
− aijso

i

i
=

nX
i=1

h
aijne

i
− aijso

i

i
=

nX
i=1

aijne
i
−

nX
i=1

aijso
i
≥ 0

where the last inequality follows since the total cost of gne

is by definition greater than the total cost of gso.

Thus, the pricing authority could act as a broker where:

• it collects payments from the vehicles that travel less
with the system optimal assignment,

• it pays an amount to the vehicles that travel more with
the system optimal assignment, and

• it makes a profit.

Since the vehicles pay exactly what they would have paid
originally with the Nash equilibrium and the pricing author-
ity is also making a profit, everybody is “happy”. Further-
more, the pricing authority could potentially make the users
even happier by splitting a fraction of the profits with them
and still keeping the other fraction of the profits for itself.
In this case each vehicle will pay a total cost that is lower
than the one that they would have paid by being selfish.

It should also be noted that this pricing scheme could also
work for the more general case where the number of vehicles
is not equal to the number of slots. If there are more vehicles
than slots, the vehicles that would have been left unassigned
in the system optimal assignment would be charged really
high prices for all the slots. This would incentivize them
to not park so as to not pay such a high price for parking.
We have not yet shown that the pricing scheme presented in
section 5 could work with differing amounts of vehicles and
slots.

6.3 Illustration of vs-pricing scheme
In this section we again analyze the parking situation of

Fig. 1, but now with this new vs-pricing scheme. With this
new scheme, the prices of s1 and s2 for v1 are p11 = β and

p12 = 0, respectively, and the prices of s1 and s2 for v2 are
p21 = 0.3 and p22 = β, respectively. This means that the
pricing authority will charge 0.3 miles to v2 so that it can get
s1. If the conversion factor is again 50 per mile then v2 will
have to pay 15. Then, the pricing authority will pay back
0.1 miles≡ 5 to v1, and will make a profit of 10 as a broker.
These 10 could potentially be used to further compensate
the drivers for driving optimally by giving them a fraction
of these 10 and keeping the other fraction as profit.

7. SIMULATION AND RESULTS
In this section we use simulations to determine empiri-

cally, on average, the benefits of using the pricing schemes.

7.1 Simulation Setup
The goal of our simulation is to test the solution concepts

presented in Section 4 to empirically ascertain how much
better off is the transportation system and the environment
by using our proposed pricing schemes.

Our simulations were run on a road network (grid) that
was embedded in an Euclidean space. The positions of the
vehicles, the motion of the vehicles and locations of the slots
were restricted to be on the network. The number of vehicles
and slots (n) was a parameter of the simulation. The values
of n that were tested were n = 25k for k = {1, 2, . . . , 12}.
A system optimal assignment and a Nash equilibrium were
computed for each configuration of vehicles and slots, and
the total distance traveled by all the vehicles based on these
two assignment was saved. This means that the natural cost
(aij) for these simulations was simply the driving distance
(dij) between the vehicles and the slots. This choice was
made to determine what are the environmental benefits that
are obtained from the pricing scheme.

We also tested a varying number of competitive ratios. Say
now that there are m available slots and n vehicles. Then
define the competitive ratio as n/m. The higher the com-
petitive ratio, the bigger the competition for the available
slots.

We also tested a varying number of regional skews of the
locations of slots. In reality, available parking slots are not
uniformly distributed across a road network. Thus, we gen-
erate skewness as follows. The map is partitioned into 16
equal-sized square regions. A random permutation of the
regions is generated (uniform distribution) and is used as
the ranking of the popularity of each region for available
slots. To choose the location of each of the available slots,
first a random number is generated to determine in which
region to place the slot. The Zipf distribution with its skew
parameter and the regional popularity previously generated
are used to generate this random number. Then a random
position in the grid (uniform) is chosen from the region de-
noted by the Zipf number. The n vehicles’ initial positions
are generated using the uniform distribution on the grid.

For each value of simulation configuration under consid-
eration, 1000 different simulation runs were tested and av-
eraged. Each test was done to compute what is basically an
average price of anarchy (PoA). PoA is the ratio of the total
cost in the Nash equilibrium assignment to the total cost of
the system optimal assignment [12]. In [1] we showed that
in general the PoA of the parking problem is unbounded.
In these simulations we computed the average PoA to de-
termine the average benefit of using our proposed parking
pricing schemes for the system.
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Figure 2: Average Price of Anarchy with varying
values of n and varying competitive ratio (skew =
0).

The parameters for the simulation are:

• n - the number of agents.

• n/m - the competitive ratio between vehicles and slots.

• skew - the regional skew of the Zipf distribution.

The values that were tested for each parameter are de-
tailed in table 1. For each configuration of the parameters,
100 different simulation runs were generated and tested.

Parameter Symbol Range

Vehicles n {25,50,...,275,300}
Competitive Ratio n/m {2, 4

3
,1}

Regional Skew - {0, 1, 2, 3}

Table 1: Parameters tested on Simulation

7.2 Simulation Results
Fig. 2 shows the results for the average PoA computation

for various values of n. It also shows the results for varying
values of competitive ratio (n/m).

We can see that the highest values of average PoA were
attained when the competitive ratio was lowest (n/m = 1).
This means that as the availability of slots increases, so does
the congestion cost incurred by the system based on the
Nash equilibrium assignment compared to the System opti-
mal assignment.

We can see that at n = 300 and n/m = 1, the average
PoA that was obtained was around 1.3. This was the high-
est PoA obtained in all simulations. This means that for
every mile traveled by each vehicle with the system optimal
assignment, the vehicles will travel 1.3 miles when using the
Nash equilibrium assignment on an average. That in turn
means that the percent improvement of the system optimal
assignment can be up to 1− 1/1.3 ≈ 23%.

Figure 3 shows some results with varying skew. We can
also see that the highest values of average PoA were obtained
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Figure 3: Average Price of Anarchy with varying
values of n and varying regional skew (n/m = 1).

when the skew was 0, i.e. slots were distributed uniformly
across the road network.

According to the analysis presented in Section 1, cruising
for parking accounts for 172 million vehicle miles traveled
(VMT) per year in a big urban city like Chicago. Further-
more, this accounts for waste of 8.37 million gallons of gaso-
line and over 129,000 tons of CO2 emissions per year. By
using our proposed pricing scheme and incentivizing vehicles
to use the system optimal assignment to choose their park-
ing slots, we can get an improvement of up to 23% which
leads to a reduction of up to 39 million VMT per year year
in a city like Chicago. This would account for a reduction of
1.9 million gallons of gasoline and over 29,000 tons of CO2

emissions per year.

8. CONCLUSIONS AND FUTURE WORK
In this paper we studied the problem of assigning prices

to available parking slots to incentivize travelers to choose
parking slots in a way that helps the system and environ-
ment. We presented the system optimal assignment and the
Nash equilibrium assignment of vehicles to parking slots. In
general, the system optimal assignment is more economical
in terms of the total distance traveled by all the vehicles.
However, due to the lack of an authority to impose parking
assignments, drivers act selfishly leading to the Nash equilib-
rium. We introduced a pricing scheme, based on the auction
algorithm [3], that makes the Nash equilibrium assignment
and the system optimal assignment be approximately iden-
tical. Additionally, we presented a vs-pricing scheme that
not only has the desired property that the vehicles will move
in accordance with the system optimal assignment but also
keeps all vehicles happy by guaranteeing that each vehicle
pays a cost equal to its (selfish) equilibrium cost. According
to simulations that were run, this type of pricing scheme
can lead to improvements in total distance traveled of up to
23%. In a big city like Chicago this leads to improvements
of up to 39 million vehicle miles traveled, 1.9 million gallons
of gasoline and over 29,000 tons of CO2 emissions per year.

The pricing schemes presented here work in an offline set-
ting. The number of vehicles and resources are known and
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don’t change. However, the parking problem in real life
works in an online setting since vehicles and slots come in to
the system at future times. One could recompute the prices
every time a new object arrives to the system. Neverthe-
less, the effectiveness of this idea would need to be proven
for this online framework. Future work for this research in-
cludes modeling the parking pricing problem in an online
setting and finding a suitable pricing scheme that adapts to
changes in the vehicles and parking slots while still manages
to move vehicles in a system optimal fashion in the online
sense.
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