
Communication Reduction for Floating Car Data-based Traffic Information Systems

Daniel Ayala∗, Jie Lin†, Ouri Wolfson∗, Naphtali Rishe‡ and Masaaki Tanizaki∗
∗Department of Computer Science

University of Illinois at Chicago, Chicago, IL USA
Email: dayala@uic.edu, {tanizaki,wolfson}@cs.uic.edu

†Department of Civil and Materials Engineering
University of Illinois at Chicago, Chicago, IL USA

Email: janelin@uic.edu
‡School of Computing and Information Sciences
Florida International University, Miami, FL USA

Email: rishen@cis.fiu.edu

Abstract—In this paper, we consider a traffic information
sharing system based on Floating Car Data (FCD). FCD is
one of the methods used to gather traffic information. It uses
vehicles as sensor nodes that transmit their speed to the server.
The server then broadcasts the updated speed data to all
vehicles on the road so that vehicles can compute optimal travel
routes based on current traffic data. The cost of communication
and load on the server are issues on this system since many
vehicles on the road can generate a significant amount of
communication between the vehicles and the server. A server
update policy is necessary to reduce the communication load
on the server and to maintain the integrity of the data that will
be broadcasted to the cars. We propose an efficient way for
this client/server architecture to be implemented and present
an update policy that outperforms previously studied server
update policies. This is shown by way of simulation using real
traffic data from Chicago highways.

Keywords-Floating Car Data, randomization, client/server
architecture

I. INTRODUCTION

A. FCD (Floating Car Data)

In order to improve the efficiency of urban transportation,

Floating Car Data (FCD) techniques have been researched

and developed [1]. FCD is a traffic information gathering

method where cars act as mobile sensor nodes that are

equipped with a location detecting device such as a GPS

unit, and a communication device such as a cellular phone.

These traffic-information services based on FCD are already

in use in Japan and the EU [2], [3].

In traffic information systems that are based on FCD

techniques, vehicles send a measured velocity to a server.

This server manages a spatial database which is a represen-

tation of the road network. This database stores real-time

speed information for road segments in the road network.

Upon receiving measured velocities from the floating cars,

the server updates the database and broadcasts the updated

values to all the vehicles travelling in the road network. The

vehicles that receive these updated speed values can then

recalculate a minimum-time route to their destinations based

on the updated real-time values received.

B. Problem and Proposed Solution

To update the traffic information database that resides on

the server, a significant amount of transmissions from the

vehicles are needed. However, in metropolitan areas with

millions of vehicles there are problems of the communi-

cation cost and load on the server to process all received

transmissions. These problems make this traffic information

sharing system based on FCD difficult to expand. One

obvious solution is to reduce the number of transmissions

from the floating vehicles to the server. But reducing the

transmissions indiscriminately will cause the accuracy of the

data that the server will provide to suffer.

Transmissions to the server can be reduced by using

randomization. With randomization each vehicle would have

a probability of transmitting the speed reports to the server.

The effectiveness of this transmission probability will hinge

on its construction and applicability to the server model, i.e.

how the server goes about updating its link-speed database.

In this paper we present a server update policy to be

used by each vehicle that reduces communication cost

and increases the accuracy of the updated average speeds

compared to previous server update methods.

C. Related Work

There are different ways to build a traffic information

sharing system based on FCD. First, from the point of

view of system architecture, one way uses a client/server

architecture, where vehicles as clients send the velocity that

they measure to their server individually. This informs the

server of the real time traffic condition of each road segment.

Then the server broadcasts updated velocities of each road

segment to all vehicles.

The other way is based on a mobile peer to peer (MP2P)

architecture, where vehicles send velocities of road segments

2010 Second International Conference on Advanced Geographic Information Systems, Applications, and Services

978-0-7695-3951-5/10 $26.00 © 2010 IEEE

DOI 10.1109/GEOProcessing.2010.14

44



to each other without server facilities. In this paper we

consider the client/server architecture.

Kerner et. al. [4] have developed a traffic information

sharing system using a client/server architecture, where

the server broadcasts velocities with threshold values; each

vehicle sends an update to the server when its measured

speed on a road segment differs from the broadcasted

speed by an amount larger than the threshold. Tanizaki

and Wolfson [5] introduced a randomized update policy to

reduce the communication costs to the server using this

threshold as well. In this randomized policy vehicles transmit

the measured velocities to the server with some probability

smaller than 1. In other words, to determine whether to send

a measured speed to the server, each vehicle will toss a coin

where the probability of getting ’head’ is p, and then will

send the measured speed only if a ’head’ comes up. These

techniques are not suitable for methods where the server

is aggregating multiple velocities. The server will receive

potentially skewed data since there’s a portion of the data

that will not be represented in the sample received at the

server.

Goel et. al. [6] have considered and prototyped a system

based on a mobile P2P architecture, where each vehicle

sends measured velocities to other vehicles, updating each

other using a wide range peer to peer communication method

like SMS.

Shinkawa et. al. [7] have considered a traffic information

sharing system based on mobile P2P extended by using

buses running along fixed routes as ferries which transport

the traffic information to disconnected groups of clients.

Then there are other approaches that reduce the com-

munication cost by reducing the transmission frequency

or the data volume. For example, Shinya et. al. [8] have

developed a compression method of trajectories based on

the decomposition of temporal and spatial component, and

discrete wavelet transformation of the temporal component.

Civilis et. al. [9] have developed a data reduction method

based on the extraction of velocity change-points; it uses a

profiled pattern of acceleration changes on a routine route.

Basically, this research proposes compression methods of

trajectories. Even though they deal with tracking trajectories

and not traffic information, this research still does not

provide a metric to indicate how much the reduction of

transmission impacts the accuracy of information.

The rest of the paper is organized as follows. In section

2, we present the system specification in which we discuss

the server model and the actions taken by clients to report

data to the server. In section 3, an overview of past server

update policies is presented and the flow-based policy is

proposed. In section 4 we describe the simulation and results

to compare the flow-based policy to the information cost

based and deterministic policies. In section 5 we present a

conclusion of our work.

II. SYSTEM SPECIFICATION

We assume that the vehicles have a location detecting

device such as GPS, a transmission device such as a cellular

phone, and a broadcast receiver such as a radio tuner. The

location detecting device is used for determining its position

on one of the road segments in the map data.

The server and vehicles have the same map database that

consists of road segments, identified individually by id. A

road segment is defined as the section of road between two

intersections or between two highway exits on a highway.

At each point in time, each road segment has a velocity

vm that represents the current speed on the segment. vm is

computed by simply dividing the length of the road segment

by the time it took the vehicle to traverse the segment.

Each vehicle has a relation storing the velocity of each

road segment and so does the server. Vehicles traversing

a segment compute vm when they reach the end of the

segment, and inform the server so it can broadcast it to all

vehicles. Clearly, this velocity is of interest to vehicles that

are not on the road segment.

However, a speed value from one car on a segment is not

sufficient evidence to update the speed on that segment in

the server’s database. Traffic speed data has variance from

vehicle to vehicle so then multiple data points are needed to

compute a true value of the speed conditions on the segment.

The server needs to collect multiple data points for each road

segment to update the database with some confidence. Then

the service period will be divided into constant time intervals

called collection periods.

During each collection period the server will expect to

receive multiple speed reports, from vehicles on the road

for each road segment. Then at the end of each collection

period the server will average the received values for each

segment and update the speed of each segment based on

this average. Each vehicle can in turn update their databases

with the new values at the server’s database.

Let k be the number of speed data points that the

server expects to receive during a collection period for a

given road segment. Then k can be constructed such that

the computed speed average falls between some error of

the actual speed average with some confidence percentage.

This sample size determination can be performed when the

variance of the data is known by using a method for sample

size construction that one would encounter in any standard

statistics textbook.

Let vb be the computed average speed for a road segment

on the server’s database, then in order to update the vehicles’

velocity information dynamically, the server continuously

broadcasts the velocity vb of each segment.

III. SERVER UPDATE POLICIES

A server update policy is a method used by each vehicle

to decide whether or not to send a transmission to the server.

45



In this section we present the deterministic, information cost,

and the flow-based server update policies.

A. Deterministic Policy

Kerner et. al. [4] have developed a traffic information

sharing system using a client/server architecture. In order to

prevent small differences in velocity from being transmitted

to the server, a velocity threshold is used. Let T be this

velocity threshold, then the transmission rule that permits

the vehicles to send vm to the server is expressed as follows:

|vm − vb| ≥ T (1)

In other words, the transmission rule indicates that the ve-

hicle transmits vm to the server if and only if the difference

between the broadcasted velocity (received from the server

and stored in the vehicle database for that road segment) and

the measured velocity exceeds T . We call the policy using

a particular threshold T as the deterministic policy.

B. Information Cost Policy

Tanizaki and Wolfson [5] introduced the randomized data

update policy in FCD traffic information sharing applica-

tions. The randomized policy uses a randomization function

to reduce redundant transmissions. Basically the randomized

policy is the same as the deterministic policy (uses threshold

transmission rule), except that when the transmission rule is

satisfied, instead of transmitting vm with probability 1, the

randomized policy does so with some given transmission
probability p. The main research question in this randomized

update policy is how to determine the transmission probabil-

ity p. Ideally this p should be chosen so that the server can

achieve maximum accuracy on the broadcasted data with a

minimum number of transmissions.

An Information Cost Model was developed to study the

trade-off relationship that exists between the Communication

Cost and the Uncertainty of the data. This trade-off relation-

ship comes from the fact that the more communication from

the vehicles to the server the less the uncertainty of the data.

But if reduction in communication costs is desired then a

penalty in data uncertainty is accumulated. They define the

total Information Cost to be the sum of the Communication

Cost and the Uncertainty Cost.

As a function of system parameters like the server delay,

the flow of vehicles on the road, uncertainty unit value,

the transmission probability and others; they formulated

the Communication Cost and Uncertainty Cost and solved

for the transmission probability by minimizing the total

Information Cost.

C. Issues with Previous Policies

There are various issues with the previous server update

policies. Both of these policies make use of the transmission

rule with the threshold (Eq. 1). This scheme is problematic

because of the inherent variance of the speed data from

vehicle to vehicle. If every vehicle were measuring the same

data point then this rule would work because the server

would average the correct value. But with this threshold,

the information that is sent to the server is incomplete. The

server will not receive any data point in [vb − T, vb + T ].
But in general, averaging every data point except the points

in that interval will yield the wrong average speed. The

computed average at the server will generally be inaccurate

with these policies.

Besides sending an incomplete and potentially skewed

version of data to the server, these policies are sending

more data than is actually needed. The server is going to

compute the average speed at the segment to update the

database. Statistics can be used to construct a scheme where

the average speed is computed within an error range with

a specified confidence percentage. In this scheme the size

of the sample that guarantees the given confidence can be

computed. Let k be this computed sample size, then there

is no need for the server to receive more than k updates if

communication cost reduction is desired.

D. Flow-based Policy

To deal with these issues the flow-based policy is pro-

posed. This server update policy does not make use of the

transmission rule with the threshold. That means that every

vehicle has an equal chance of transmitting to the server,

regardless of its speed. Thus the server will not run the risk

of receiving incomplete information.

Also, the cars will use a transmission probability that will

be constructed such that the expected number of messages

sent to the server is k. The transmission probability will be

p = k/N where k is the number of messages that the server

expects to receive from the vehicles in order to guarantee a

given confidence in the average speed computation and N is

an estimate of the flow of vehicles through the road segment

during the collection period. The flow on a road segment is

a measure of how many vehicles pass by a certain point in

a certain amount of time (veh/s).

1) Determining k: k is the number of messages that the

server will expect to receive during each collection period.

Let X be a random variable representing the speed of a car

in the segment during a collection period. Let X have mean

μ and variance σ2. μ is what the server wishes to compute

in order to update the database.

By the central limit theorem, the average speed X is

normally distributed with mean μ and variance σ2/N . Then

it follows that if a 100(1 − α)% confidence interval for

the average speed μ is desired with maximum error of the

estimate of ε, i.e. the computed mean will be in μ± ε with

the specified confidence; then the sample size k is [10]:

k =
z2
α/2σ

2

ε2
, (2)

46



where σ2 is the variance of the data and zα/2 = Φ−1(1−
α
2 ). Φ−1 is the inverse of the cumulative function of the

normal distribution. The real-time variance of X , σ2, is

unknown to each vehicle. In a practical setting σ2 would

have to be determined a priori by using historical data for a

specific time of day. In our forthcoming simulations (section

4) the variance was assumed to be known and a constant for

the tested service period.

2) Determining N : N is an estimate of the flow of

vehicles through the road segment during the collection

period. The flow on the road is given by the formula:

flow = density ∗ speed, (3)

where the density is a measure of vehicles per meter. So

to calculate the flow, a car needs to know the density in

the segment and the speed. The density is not known to

the vehicles traveling on the segment. The only speeds the

vehicles are aware of are their own speed and the speed that

the server is broadcasting, vb (average speed on the segment

during the previous collection period).

Speed-flow models exist which estimate the flow of ve-

hicles based on an average speed [11], [12]. These models

are used on highway road segments. It would be incorrect

for a car to use a speed-flow model with its own speed as a

parameter, these models estimate flow based on an average

speed. The vehicles would have to use a speed-flow model

based on vb, the average speed on the previous collection

period, since this is the only average speed they possess.

This would yield an estimate of the flow of vehicles during

the previous collection period. This computed flow will be

used as N , the estimate for the flow of vehicles during the

current collection period based on the notion that drastic

changes in flow are not expected from one collection period

to the next.

The speed-flow model chosen for the flow-based policy

is Greenshields model [12]. This model is old but widely

cited [13]. The relationship is given by equation (4). In

this equation d is the traffic-jam density, i.e., how many

vehicles fit per unit-length when traffic is at standstill. vb

is the average velocity of the previous collection period.

V is the free-flow speed of vehicles on the given segment.

d and V are determined a-priori and are specific to each

road segment. The equation comes from the speed-flow

relationship where flow is 0 at zero speed (vb = 0) and

at free-flow speed (vb = V ). Indeed the flow is 0 when

traffic is at standstill, and at free flow (assuming that free

flow occurs when there is a single vehicle on the road, and

the speed is reduced with each additional vehicle).

flow ≈ d ∗ vb(1 − vb/V ) (4)

Using equation (4) then we can compute the flow through-

out the collection period as:

N = flow ∗ τ, (5)

where τ is the length of the collection period (in seconds).

Now, vehicles will use a transmission probability of

p = k/N . When a vehicle reaches the end of a road

segment it computes k and N , and it transmits its speed

to the server with probability k/N . Using this transmission

probability the expected number of messages sent to the

server will be close to k when the estimated N is close to

the actual flow of vehicles during the collection period. In

the following section we show how this scheme outperforms

the deterministic and information cost server update policies.

IV. SIMULATION AND RESULTS

In order to compare the efficiency of the Flow-based pol-

icy with the other update policies we developed a simulation

system using real traffic data. In this section we describe the

simulation environment and the results of the comparison.

A. The Traffic Data for Simulation Input

We have utilized highway traffic speed data provided by

the GCM travel web site [14] for evaluation of the update

policies. This website is operated by the Illinois, Indiana,

and Wisconsin Department of Transportations and provides

a real-time map of road congestion and construction data,

construction and closure reports, congestion and travel time

reports, video images of the highways they gather data from,

and other services.

We used a detector record that is gathered from loop

sensors installed in highways. The detector records are

provided by the GCM site as XML data and they contain a

data set of records, each of which consists of update time

of the record, sensor device unique id, velocity, number of

vehicles per lane per hour, and others.

Records generated by a sensor at the end of a road

segment on highway I90 in Chicago were downloaded,

for the period of 6AM to 8AM on Tuesday May 22nd,

2007. The data in this period was ideal since it involved

congestion and non-congestion situations and the number of

vehicles that ran over the sensor was 6235. The sequence

data that was collected contained records of time, velocity,

and density over the road segment in five minute intervals.

Using this sequence of records the following information

was computed: how many vehicles went through the end

of the road segment, at what time each one went through,

and what was the speed of the vehicle at that time. In

other words, a vehicles-sequence was generated where each

vehicle in the sequence is a pair consisting of the vehicle’s

sensor (end-of-segment) crossing time, and its velocity at

that time. The vehicle speeds were generated as normally

distributed with mean of the average speed collected by the

loop sensor and a constant variance of σ2 = 16mph.

47



B. Procedure of the Simulation

In this section we describe how one simulation run was

executed. The input to each simulation run is as follows:

• the generated vehicles-sequence (see last subsection),

• a velocity threshold T used in the transmission rule (for

deterministic and information cost policies),

• a collection period length τ which is fixed for the

duration of the simulation,

• a server update policy (Deterministic, Information Cost

based or Flow-based).

The simulation is executed by two threads, the server

thread, and the client thread. The server thread keeps re-

ceiving the measured velocities vm sent by the client thread

and updates vb (broadcasted velocity by the server) at the

end of the collection period τ by computing an average of

the received speed values. The client thread then uses this

updated vb to test the transmission rule for each car that

passes the end of the segment (deterministic and Information

cost only). vb is also used by the client thread to estimate

the flow N .

If the server receives m messages, m < k then it will

compute a weighted average with the average of the m
values having weight m/k. It will use current value of vb

with weight (k−m)/k. This is done to validate cases where

an extremely low number of messages is received.

Every time a vehicle passes the end of the segment, it

decides whether to send a transmission to the server by

using the transmission rule and by tossing a coin with

probability p (transmission probability). The computation of

this probability differs for both randomized update policies.

Table 1 shows the value ranges for each system parameter

that was tested in the simulations.

Parameter Symbol Unit Range
Threshold T mph [1,2,3,4,5,6,7,8]

Collection Period τ min [2,3,4,5,6,7]

Table I
PARAMETERS TESTED ON SIMULATION

The free-flow speed V of the segment was estimated as

77.845 mph, and the traffic-jam density d of the segment as

0.1085 vehicles/m. d and V were determined a-priori by the

least square method using equation (4) and data downloaded

from the GCM website [14]. These values are used in the

Greenshields model for estimating the flow.

The server was setup to expect a 95% confidence (α =
0.05) that the maximum estimation error would be ε =
2mph. These values are used for computing k. This setup

yields k = 15.366 using equation (2) with σ = 4. The

value for ε was determined through simulation. In the next

section we describe this procedure, the performance metrics

and results of the simulations.

C. Comparison of the Server Update Policies

1) Performance metrics: We compare the two random-

ized policies and the deterministic policy by using two

values that are measured during the two-hour execution of

the simulations. One is the communication cost, namely, the

number of data transmissions from the cars to the server that

occurred during the simulation run. The other is the average
error.

The error is calculated as the absolute value of the

difference between the computed average speed from the

received sample at the server and the actual average speed

during the collection period. To compute the average error
for a simulation run, for each collection period of the

simulation run, the error of the sampled average speed is

computed. Then we take the sum of all these error values

and divide it by the total number of collection periods in the

simulation run. Then we have the average error measured

in [mph].

This average error computed in the simulations is not the

same as the ε used for determining k. ε is used to establish an

error range for the average speed on one collection period

to have with a specified confidence. The average error is

the actual computed average error for each collection period

during a simulation run. Still, it is true that as ε increases,

so will the average error as well. Figure 1 shows this

relationship since the average error increased as ε increased.

However, simulations showed that they don’t increase at the

same rate. Figure 1 will be further explained and formalized

in section 4.3.2.

We compare the policies by combining the average error
and communication cost into an efficiency metric. The

number of messages spent (communication cost) by the cars

in a simulation run by the cars can be considered the input to

the system. The output of the system would be the average

error that was attained by using the given communication

cost. But the goal of this system is to minimize this average

error. In other words we could say that we want to maximize

1/averageError and for the efficiency metric this will be

the output of the system. Then,

efficiency = output/input

= (1/averageError)/communicationCost

= 1/(averageError ∗ communicationCost)
(6)

Notice that for instances in which the averageError is

approximately equal, this metric will favor a policy which

has less communicationCost. Likewise, if the communi-

cation costs are equal, the metric will favor a policy which

has less average error.

2) Maximum Estimation Error (ε): Simulations were ran

to determine the value for ε that should be used. This value

will affect the computation of k and will in turn affect the

48



Figure 1. ε equilibrium (τ = 300s)

performance of each method. As k increases so will then

increase the number of messages sent to the server. The aim

of our method is to reduce the communication cost so then

k should not be too big that the communication is too large,

but also it should not be so small that the communication is

reduced but the accuracy of the average speed computed at

the server is compromised.

Simulation runs as described in section 4.2 were executed

for different values of ε. The average error and communi-
cation cost were computed for each run (using flow-based

policy). These two metrics are measured in different scales.

The communication cost, the number of transmissions, can

take values between 0 and 6235 (total number of cars). The

average error can take values between 0 and 17mph. The

maximum average error (17mph) was determined by running

a simulation in which no messages are sent to the server and

thus there is no update of the database. Then the average

error values were normalized to the [0,6235] scale so that

both metrics could be visualized on the same scale.

Figure 1 shows a plot of the communication cost and

normalized average error with varying ε values. There exists

a trade-off relationship between the communication cost and

the average error as it pertains to ε. If ε is too big then the

communication cost is low but the average error will be

much higher. If ε is too small then the average error is low

which is good as well but the communication cost is too

high. Then an equilibrium ε can be chosen that balances

the average error and communication cost. Similar to the

supply-demand model in economic theory, the equilibrium

occurs at the point where the two curves intersect. In this

case the equilibrium ε ≈ 2mph.

3) Results evaluation: Simulations were also run to com-

pare the server update policies using the parameters specified

on Table I.

In Figure 2 we can see the comparison of average errors

Figure 2. T and Average Error (τ = 300s)

Figure 3. T and Comm. Cost (τ = 300s)

obtained by the different policies when the collection period

was 5 minutes and for different threshold values. The flow-

based policy has a constant average error because it makes

no use of the threshold. In this case the flow-based policy

obtained a better average error than the other policies when

the threshold value used was greater than 2 mph.

Nevertheless, the flow-based policy obtained these aver-

age errors at the servers even though the number of messages

sent were much less. In Figure 3 we can see that for this

same case of the 5 minute collection period there was less

communication cost for any threshold used by the other two

policies.

Figure 4 shows how the flow-based update policy outper-

forms the other policies in terms of the efficiency metric

for any of the instances shown. This pattern was observed

for all of the simulations that were run. In some cases

were the threshold is very low the other policies obtained

49



Figure 4. T and Efficiency (τ = 300s)

a better average error but at the expense of having a high

communication cost.

Even though many more messages are sent by the other

policies the flow-based policy obtains better results because

with it the vehicles that send their speeds are a complete

representation of the whole population. In the other policies

because of their use of the threshold there is an interval of

data that is not represented at the server when computing

the average speed. It’s clear that the flow-based policy is

more efficient with the smaller amount of messages that it’s

sending to the server.

Figures 5 shows how the average error changes with

different lengths for the collection period. The trend is that

as the collection period length increases so does the average

error. The main reason for this phenomenon is that the longer

the collection period is then the bigger the change in flow

will be from one collection period to the next. This makes it

so that the smaller the collection period is then the better the

estimation of the flow for the current collection period will

be based on the flow estimation of the previous collection

period. Also, when the collection periods are shorter, more

data is sent to the server since the same expected number

of messages should be sent to the server during each period

(k) but there are more collection periods during the two-hour

simulation run.

Using the flow from the previous collection period as

an estimation for the what the flow will be in the current

collection period turned out to give excellent results. In our

simulation we set the server to desire a confidence interval

of 95% (α = 0.05) and with a maximum estimate error

of ε = 2mph which yielded k = 15.366 with σ = 4.

For all simulation cases, the average number of messages

sent during each collection period was between 15 and 16

messages. So then the number of messages the server was

expecting (k) on average was achieved with the flow-based

Figure 5. Collection Period Length and Average Error

server update policy.

V. CONCLUSIONS

In this paper, we addressed the problem of reducing the

communication cost in traffic information sharing systems

that are based on Floating Car Data. In these systems cars

travelling on a road segment measure their speeds on each

road segment and send updates of current traffic conditions

to a server. The server then broadcasts the updated speed

data to all cars on the road. The vehicles in turn use this

data to compute optimal travel routes.

We described a server model that computes average

speeds on road segments during pre-defined collection peri-

ods. To address the problem of reducing the communication

cost to the server while maintaining data integrity at the

databases we proposed the flow-based server update policy.

This update policy uses a transmission probability that

enables the server to receive the amount of messages that

it desires from each segment depending on a confidence

percentage and maximum allowable error for the average

speeds that will be computed.

Simulations and results were presented that showed how

the flow-based update policy outperformed the deterministic

and information cost based policies in various respects.

The simulations were performed with data from Chicago

highways. An efficiency metric was presented to evaluate

both policies. In terms of system efficiency, the flow-based

policy exhibited superior results in all the simulations that

were run. The average error was less for the flow-based

policies in most cases. Also, the flow-based policy accrued

less communication cost for all of the simulations that were

run.

Future work includes extensions in several directions.

There exist other more modern speed-flow models that could

work well and were not tested in this work (e.g., [11]).

50



The proposed method is designed to work for highway

road segments because of the use of the highway speed-

flow model. Further work is required to propose a different

approach for arterial or minor roads. We’re also interested in

server side reductions of transmissions in this system. For

example, the server could possibly use server-side predic-

tions of the average speed to further reduce k and thus reduce

the communication cost further. It would also be interesting

to adapt our update policy to a P2P architecture like the one

proposed in [6].

REFERENCES

[1] S. Turksma, “The various uses of floating car data,” in Tenth
Intl. Conf. on Road Transport and Information Control (Conf.
Publ. No. 472), April 2000, pp. 51–55.

[2] “http://www.premium-club.jp/technology/index.html,” Last
visited Dec. 2009.

[3] “http://www.vmzberlin.de/vmz/,” Last visited Dec. 2009.

[4] B. Kerner, C. Demir, R. Herrtwich, S. Klenov, H. Rehborn,
M. Aleksic, and A. Haug, “Traffic state detection with floating
car data in road networks,” in IEEE Proc. on Itelligent
Transportation Systems, 2005, pp. 44–49.

[5] M. Tanizaki and O. Wolfson, “Randomization in traffic infor-
mation sharing systems,” in GIS ’07: Proc. of the 15th annual
ACM Intl. Symp. on Advances in Geographic Information
Systems, 2007.

[6] S. Goel, T. Imielinski, K. Ozbay, and B. Nath, “Grassroots:
A scalable and robust information architecture,” Dept. of
Computer Science, Rutgers University, Tech. Rep. DCS-TR-
523, June 2003.

[7] T. Shinkawa, T. Terauchi, T. Kitani, N. Shibata, K. Yasumoto,
M. Ito, and T. Higashino, “A technique for information
sharing using inter-vehicle communication with message fer-
rying,” in MDM ’06: Proceedings of the 7th International
Conference on Mobile Data Management, 2006.

[8] A. Shinya, N. Satoshi, and T. Teruyuki, “Research of com-
pression method for probe data-a lossy compression algorithm
for probe data,” IEIC Technical Report (Institute of Electron-
ics, Information and Communication Engineers), vol. 104, no.
762, pp. 13–18, 2005.

[9] A. Civilis, C. S. Jensen, and S. Pakalnis, “Efficient tracking
of moving objects with precision guarantees,” in In Proc.
MobiQuitous, 2004, pp. 164–173.

[10] R. V. Hogg and E. A. Tanis, Probability and Statistical
Inference. Prentice Hall, 2001.

[11] Highway Capacity Manual 2000. Transportation Research
Board, 2000.

[12] B. D. Greenshields, “A study of traffic capacity,” Highway
Research Board Proc., vol. 14, pp. 448–477, 1935.

[13] H. Lieu, “Traffic flow theory - a state-of-the-art
report: Revised monograph on traffic flow theory,”
Turner Fairbank Highway Research Center (TFHRC) at
http://www.tfhrc.gov/its/tft/tft.htm, 2002.

[14] “http://www.gcmtravel.com/,” Last visited Dec. 2009.

51


