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Abstract—In this paper, we consider a traffic information
sharing system based on Floating Car Data (FCD). FCD is
one of the methods used to gather traffic information. It uses
vehicles as sensor nodes that transmit their speed to the server.
The server then broadcasts the updated speed data to all
vehicles on the road so that vehicles can compute optimal travel
routes based on current traffic data. The cost of communication
and load on the server are issues on this system since many
vehicles on the road can generate a significant amount of
communication between the vehicles and the server. A server
update policy is necessary to reduce the communication load
on the server and to maintain the integrity of the data that will
be broadcasted to the cars. We propose an efficient way for
this client/server architecture to be implemented and present
an update policy that outperforms previously studied server
update policies. This is shown by way of simulation using real
traffic data from Chicago highways.

Keywords-Floating Car Data, randomization, client/server
architecture

I. INTRODUCTION

A. FCD (Floating Car Data)

In order to improve the efficiency of urban transportation,
Floating Car Data (FCD) techniques have been researched
and developed [1]. FCD is a traffic information gathering
method where cars act as mobile sensor nodes that are
equipped with a location detecting device such as a GPS
unit, and a communication device such as a cellular phone.
These traffic-information services based on FCD are already
in use in Japan and the EU [2], [3].

In traffic information systems that are based on FCD
techniques, vehicles send a measured velocity to a server.
This server manages a spatial database which is a represen-
tation of the road network. This database stores real-time
speed information for road segments in the road network.
Upon receiving measured velocities from the floating cars,
the server updates the database and broadcasts the updated
values to all the vehicles travelling in the road network. The
vehicles that receive these updated speed values can then

recalculate a minimum-time route to their destinations based
on the updated real-time values received.

B. Problem and Proposed Solution

To update the traffic information database that resides on
the server, a significant amount of transmissions from the
vehicles are needed. However, in metropolitan areas with
millions of vehicles there are problems of the communi-
cation cost and load on the server to process all received
transmissions. These problems make this traffic information
sharing system based on FCD difficult to expand. One
obvious solution is to reduce the number of transmissions
from the floating vehicles to the server. But reducing the
transmissions indiscriminately will cause the accuracy of the
data that the server will provide to suffer.

Transmissions to the server can be reduced by using
randomization. With randomization each vehicle would have
a probability of transmitting the speed reports to the server.
The effectiveness of this transmission probability will hinge
on its construction and applicability to the server model, i.e.
how the server goes about updating its link-speed database.

In this paper we present a server update policy to be
used by each vehicle that reduces communication cost
and increases the accuracy of the updated average speeds
compared to previous server update methods.

C. Related Work

There are different ways to build a traffic information
sharing system based on FCD. First, from the point of
view of system architecture, one way uses a client/server
architecture, where vehicles as clients send the velocity that
they measure to their server individually. This informs the
server of the real time traffic condition of each road segment.
Then the server broadcasts updated velocities of each road
segment to all vehicles.

The other way is based on a mobile peer to peer (MP2P)
architecture, where vehicles send velocities of road segments



to each other without server facilities. In this paper we
consider the client/server architecture.

Kerner et. al. [4] have developed a traffic information
sharing system using a client/server architecture, where
the server broadcasts velocities with threshold values; each
vehicle sends an update to the server when its measured
speed on a road segment differs from the broadcasted
speed by an amount larger than the threshold. Tanizaki
and Wolfson [5] introduced a randomized update policy to
reduce the communication costs to the server using this
threshold as well. In this randomized policy vehicles transmit
the measured velocities to the server with some probability
smaller than 1. In other words, to determine whether to send
a measured speed to the server, each vehicle will toss a coin
where the probability of getting ’head’ is p, and then will
send the measured speed only if a ’head’ comes up. These
techniques are not suitable for methods where the server
is aggregating multiple velocities. The server will receive
potentially skewed data since there’s a portion of the data
that will not be represented in the sample received at the
server.

Goel et. al. [6] have considered and prototyped a system
based on a mobile P2P architecture, where each vehicle
sends measured velocities to other vehicles, updating each
other using a wide range peer to peer communication method
like SMS.

Shinkawa et. al. [7] have considered a traffic information
sharing system based on mobile P2P extended by using
buses running along fixed routes as ferries which transport
the traffic information to disconnected groups of clients.

Then there are other approaches that reduce the com-
munication cost by reducing the transmission frequency
or the data volume. For example, Shinya et. al. [8] have
developed a compression method of trajectories based on
the decomposition of temporal and spatial component, and
discrete wavelet transformation of the temporal component.
Civilis et. al. [9] have developed a data reduction method
based on the extraction of velocity change-points; it uses a
profiled pattern of acceleration changes on a routine route.
Basically, this research proposes compression methods of
trajectories. Even though they deal with tracking trajectories
and not traffic information, this research still does not
provide a metric to indicate how much the reduction of
transmission impacts the accuracy of information.

The rest of the paper is organized as follows. In section
2, we present the system specification in which we discuss
the server model and the actions taken by clients to report
data to the server. In section 3, an overview of past server
update policies is presented and the flow-based policy is
proposed. In section 4 we describe the simulation and results
to compare the flow-based policy to the information cost
based and deterministic policies. In section 5 we present a
conclusion of our work.

II. SYSTEM SPECIFICATION

We assume that the vehicles have a location detecting
device such as GPS, a transmission device such as a cellular
phone, and a broadcast receiver such as a radio tuner. The
location detecting device is used for determining its position
on one of the road segments in the map data.

The server and vehicles have the same map database that
consists of road segments, identified individually by id. A
road segment is defined as the section of road between two
intersections or between two highway exits on a highway.

At each point in time, each road segment has a velocity
vm that represents the current speed on the segment. vm is
computed by simply dividing the length of the road segment
by the time it took the vehicle to traverse the segment.
Each vehicle has a relation storing the velocity of each
road segment and so does the server. Vehicles traversing
a segment compute vm when they reach the end of the
segment, and inform the server so it can broadcast it to all
vehicles. Clearly, this velocity is of interest to vehicles that
are not on the road segment.

However, a speed value from one car on a segment is not
sufficient evidence to update the speed on that segment in
the server’s database. Traffic speed data has variance from
vehicle to vehicle so then multiple data points are needed to
compute a true value of the speed conditions on the segment.
The server needs to collect multiple data points for each road
segment to update the database with some confidence. Then
the service period will be divided into constant time intervals
called collection periods.

During each collection period the server will expect to
receive multiple speed reports, from vehicles on the road
for each road segment. Then at the end of each collection
period the server will average the received values for each
segment and update the speed of each segment based on
this average. Each vehicle can in turn update their databases
with the new values at the server’s database.

Let k be the number of speed data points that the
server expects to receive during a collection period for a
given road segment. Then k can be constructed such that
the computed speed average falls between some error of
the actual speed average with some confidence percentage.
This sample size determination can be performed when the
variance of the data is known by using a method for sample
size construction that one would encounter in any standard
statistics textbook.

Let vb be the computed average speed for a road segment
on the server’s database, then in order to update the vehicles’
velocity information dynamically, the server continuously
broadcasts the velocity vb of each segment.

III. SERVER UPDATE POLICIES

A server update policy is a method used by each vehicle
to decide whether or not to send a transmission to the server.



In this section we present the deterministic, information cost,
and the flow-based server update policies.

A. Deterministic Policy

Kerner et. al. [4] have developed a traffic information
sharing system using a client/server architecture. In order to
prevent small differences in velocity from being transmitted
to the server, a velocity threshold is used. Let T be this
velocity threshold, then the transmission rule that permits
the vehicles to send vm to the server is expressed as follows:

|vm − vb| ≥ T (1)

In other words, the transmission rule indicates that the ve-
hicle transmits vm to the server if and only if the difference
between the broadcasted velocity (received from the server
and stored in the vehicle database for that road segment) and
the measured velocity exceeds T . We call the policy using
a particular threshold T as the deterministic policy.

B. Information Cost Policy

Tanizaki and Wolfson [5] introduced the randomized data
update policy in FCD traffic information sharing applica-
tions. The randomized policy uses a randomization function
to reduce redundant transmissions. Basically the randomized
policy is the same as the deterministic policy (uses threshold
transmission rule), except that when the transmission rule is
satisfied, instead of transmitting vm with probability 1, the
randomized policy does so with some given transmission
probability p. The main research question in this randomized
update policy is how to determine the transmission probabil-
ity p. Ideally this p should be chosen so that the server can
achieve maximum accuracy on the broadcasted data with a
minimum number of transmissions.

An Information Cost Model was developed to study the
trade-off relationship that exists between the Communication
Cost and the Uncertainty of the data. This trade-off relation-
ship comes from the fact that the more communication from
the vehicles to the server the less the uncertainty of the data.
But if reduction in communication costs is desired then a
penalty in data uncertainty is accumulated. They define the
total Information Cost to be the sum of the Communication
Cost and the Uncertainty Cost.

As a function of system parameters like the server delay,
the flow of vehicles on the road, uncertainty unit value,
the transmission probability and others; they formulated
the Communication Cost and Uncertainty Cost and solved
for the transmission probability by minimizing the total
Information Cost.

C. Issues with Previous Policies

There are various issues with the previous server update
policies. Both of these policies make use of the transmission
rule with the threshold (Eq. 1). This scheme is problematic
because of the inherent variance of the speed data from

vehicle to vehicle. If every vehicle were measuring the same
data point then this rule would work because the server
would average the correct value. But with this threshold,
the information that is sent to the server is incomplete. The
server will not receive any data point in [vb − T, vb + T ].
But in general, averaging every data point except the points
in that interval will yield the wrong average speed. The
computed average at the server will generally be inaccurate
with these policies.

Besides sending an incomplete and potentially skewed
version of data to the server, these policies are sending
more data than is actually needed. The server is going to
compute the average speed at the segment to update the
database. Statistics can be used to construct a scheme where
the average speed is computed within an error range with
a specified confidence percentage. In this scheme the size
of the sample that guarantees the given confidence can be
computed. Let k be this computed sample size, then there
is no need for the server to receive more than k updates if
communication cost reduction is desired.

D. Flow-based Policy

To deal with these issues the flow-based policy is pro-
posed. This server update policy does not make use of the
transmission rule with the threshold. That means that every
vehicle has an equal chance of transmitting to the server,
regardless of its speed. Thus the server will not run the risk
of receiving incomplete information.

Also, the cars will use a transmission probability that will
be constructed such that the expected number of messages
sent to the server is k. The transmission probability will be
p = k/N where k is the number of messages that the server
expects to receive from the vehicles in order to guarantee a
given confidence in the average speed computation and N is
an estimate of the flow of vehicles through the road segment
during the collection period. The flow on a road segment is
a measure of how many vehicles pass by a certain point in
a certain amount of time (veh/s).

1) Determining k: k is the number of messages that the
server will expect to receive during each collection period.
Let X be a random variable representing the speed of a car
in the segment during a collection period. Let X have mean
µ and variance σ2. µ is what the server wishes to compute
in order to update the database.

By the central limit theorem, the average speed X is
normally distributed with mean µ and variance σ2/N . Then
it follows that if a 100(1 − α)% confidence interval for
the average speed µ is desired with maximum error of the
estimate of ε, i.e. the computed mean will be in µ± ε with
the specified confidence; then the sample size k is [10]:

k =
z2
α/2σ

2

ε2
, (2)



where σ2 is the variance of the data and zα/2 = Φ−1(1−
α
2 ). Φ−1 is the inverse of the cumulative function of the
normal distribution. The real-time variance of X , σ2, is
unknown to each vehicle. In a practical setting σ2 would
have to be determined a priori by using historical data for a
specific time of day. In our forthcoming simulations (section
4) the variance was assumed to be known and a constant for
the tested service period.

2) Determining N : N is an estimate of the flow of
vehicles through the road segment during the collection
period. The flow on the road is given by the formula:

flow = density ∗ speed, (3)

where the density is a measure of vehicles per meter. So
to calculate the flow, a car needs to know the density in
the segment and the speed. The density is not known to
the vehicles traveling on the segment. The only speeds the
vehicles are aware of are their own speed and the speed that
the server is broadcasting, vb (average speed on the segment
during the previous collection period).

Speed-flow models exist which estimate the flow of ve-
hicles based on an average speed [11], [12]. These models
are used on highway road segments. It would be incorrect
for a car to use a speed-flow model with its own speed as a
parameter, these models estimate flow based on an average
speed. The vehicles would have to use a speed-flow model
based on vb, the average speed on the previous collection
period, since this is the only average speed they possess.
This would yield an estimate of the flow of vehicles during
the previous collection period. This computed flow will be
used as N , the estimate for the flow of vehicles during the
current collection period based on the notion that drastic
changes in flow are not expected from one collection period
to the next.

The speed-flow model chosen for the flow-based policy
is Greenshields model [12]. This model is old but widely
cited [13]. The relationship is given by equation (4). In
this equation d is the traffic-jam density, i.e., how many
vehicles fit per unit-length when traffic is at standstill. vb
is the average velocity of the previous collection period.
V is the free-flow speed of vehicles on the given segment.
d and V are determined a-priori and are specific to each
road segment. The equation comes from the speed-flow
relationship where flow is 0 at zero speed (vb = 0) and
at free-flow speed (vb = V ). Indeed the flow is 0 when
traffic is at standstill, and at free flow (assuming that free
flow occurs when there is a single vehicle on the road, and
the speed is reduced with each additional vehicle).

flow ≈ d ∗ vb(1− vb/V ) (4)

Using equation (4) then we can compute the flow through-
out the collection period as:

N = flow ∗ τ, (5)

where τ is the length of the collection period (in seconds).
Now, vehicles will use a transmission probability of

p = k/N . When a vehicle reaches the end of a road
segment it computes k and N , and it transmits its speed
to the server with probability k/N . Using this transmission
probability the expected number of messages sent to the
server will be close to k when the estimated N is close to
the actual flow of vehicles during the collection period. In
the following section we show how this scheme outperforms
the deterministic and information cost server update policies.

IV. SIMULATION AND RESULTS

In order to compare the efficiency of the Flow-based pol-
icy with the other update policies we developed a simulation
system using real traffic data. In this section we describe the
simulation environment and the results of the comparison.

A. The Traffic Data for Simulation Input

We have utilized highway traffic speed data provided by
the GCM travel web site [14] for evaluation of the update
policies. This website is operated by the Illinois, Indiana,
and Wisconsin Department of Transportations and provides
a real-time map of road congestion and construction data,
construction and closure reports, congestion and travel time
reports, video images of the highways they gather data from,
and other services.

We used a detector record that is gathered from loop
sensors installed in highways. The detector records are
provided by the GCM site as XML data and they contain a
data set of records, each of which consists of update time
of the record, sensor device unique id, velocity, number of
vehicles per lane per hour, and others.

Records generated by a sensor at the end of a road
segment on highway I90 in Chicago were downloaded,
for the period of 6AM to 8AM on Tuesday May 22nd,
2007. The data in this period was ideal since it involved
congestion and non-congestion situations and the number of
vehicles that ran over the sensor was 6235. The sequence
data that was collected contained records of time, velocity,
and density over the road segment in five minute intervals.
Using this sequence of records the following information
was computed: how many vehicles went through the end
of the road segment, at what time each one went through,
and what was the speed of the vehicle at that time. In
other words, a vehicles-sequence was generated where each
vehicle in the sequence is a pair consisting of the vehicle’s
sensor (end-of-segment) crossing time, and its velocity at
that time. The vehicle speeds were generated as normally
distributed with mean of the average speed collected by the
loop sensor and a constant variance of σ2 = 16mph.



B. Procedure of the Simulation

In this section we describe how one simulation run was
executed. The input to each simulation run is as follows:

• the generated vehicles-sequence (see last subsection),
• a velocity threshold T used in the transmission rule (for

deterministic and information cost policies),
• a collection period length τ which is fixed for the

duration of the simulation,
• a server update policy (Deterministic, Information Cost

based or Flow-based).

The simulation is executed by two threads, the server
thread, and the client thread. The server thread keeps re-
ceiving the measured velocities vm sent by the client thread
and updates vb (broadcasted velocity by the server) at the
end of the collection period τ by computing an average of
the received speed values. The client thread then uses this
updated vb to test the transmission rule for each car that
passes the end of the segment (deterministic and Information
cost only). vb is also used by the client thread to estimate
the flow N .

If the server receives m messages, m < k then it will
compute a weighted average with the average of the m
values having weight m/k. It will use current value of vb
with weight (k−m)/k. This is done to validate cases where
an extremely low number of messages is received.

Every time a vehicle passes the end of the segment, it
decides whether to send a transmission to the server by
using the transmission rule and by tossing a coin with
probability p (transmission probability). The computation of
this probability differs for both randomized update policies.

Table 1 shows the value ranges for each system parameter
that was tested in the simulations.

Parameter Symbol Unit Range
Threshold T mph [1,2,3,4,5,6,7,8]

Collection Period τ min [2,3,4,5,6,7]

Table I
PARAMETERS TESTED ON SIMULATION

The free-flow speed V of the segment was estimated as
77.845 mph, and the traffic-jam density d of the segment as
0.1085 vehicles/m. d and V were determined a-priori by the
least square method using equation (4) and data downloaded
from the GCM website [14]. These values are used in the
Greenshields model for estimating the flow.

The server was setup to expect a 95% confidence (α =
0.05) that the maximum estimation error would be ε =
2mph. These values are used for computing k. This setup
yields k = 15.366 using equation (2) with σ = 4. The
value for ε was determined through simulation. In the next
section we describe this procedure, the performance metrics
and results of the simulations.

C. Comparison of the Server Update Policies

1) Performance metrics: We compare the two random-
ized policies and the deterministic policy by using two
values that are measured during the two-hour execution of
the simulations. One is the communication cost, namely, the
number of data transmissions from the cars to the server that
occurred during the simulation run. The other is the average
error.

The error is calculated as the absolute value of the
difference between the computed average speed from the
received sample at the server and the actual average speed
during the collection period. To compute the average error
for a simulation run, for each collection period of the
simulation run, the error of the sampled average speed is
computed. Then we take the sum of all these error values
and divide it by the total number of collection periods in the
simulation run. Then we have the average error measured
in [mph].

This average error computed in the simulations is not the
same as the ε used for determining k. ε is used to establish an
error range for the average speed on one collection period
to have with a specified confidence. The average error is
the actual computed average error for each collection period
during a simulation run. Still, it is true that as ε increases,
so will the average error as well. Figure 1 shows this
relationship since the average error increased as ε increased.
However, simulations showed that they don’t increase at the
same rate. Figure 1 will be further explained and formalized
in section 4.3.2.

We compare the policies by combining the average error
and communication cost into an efficiency metric. The
number of messages spent (communication cost) by the cars
in a simulation run by the cars can be considered the input to
the system. The output of the system would be the average
error that was attained by using the given communication
cost. But the goal of this system is to minimize this average
error. In other words we could say that we want to maximize
1/averageError and for the efficiency metric this will be
the output of the system. Then,

efficiency = output/input

= (1/averageError)/communicationCost
= 1/(averageError ∗ communicationCost)

(6)

Notice that for instances in which the averageError is
approximately equal, this metric will favor a policy which
has less communicationCost. Likewise, if the communi-
cation costs are equal, the metric will favor a policy which
has less average error.

2) Maximum Estimation Error (ε): Simulations were ran
to determine the value for ε that should be used. This value
will affect the computation of k and will in turn affect the



Figure 1. ε equilibrium (τ = 300s)

performance of each method. As k increases so will then
increase the number of messages sent to the server. The aim
of our method is to reduce the communication cost so then
k should not be too big that the communication is too large,
but also it should not be so small that the communication is
reduced but the accuracy of the average speed computed at
the server is compromised.

Simulation runs as described in section 4.2 were executed
for different values of ε. The average error and communi-
cation cost were computed for each run (using flow-based
policy). These two metrics are measured in different scales.
The communication cost, the number of transmissions, can
take values between 0 and 6235 (total number of cars). The
average error can take values between 0 and 17mph. The
maximum average error (17mph) was determined by running
a simulation in which no messages are sent to the server and
thus there is no update of the database. Then the average
error values were normalized to the [0,6235] scale so that
both metrics could be visualized on the same scale.

Figure 1 shows a plot of the communication cost and
normalized average error with varying ε values. There exists
a trade-off relationship between the communication cost and
the average error as it pertains to ε. If ε is too big then the
communication cost is low but the average error will be
much higher. If ε is too small then the average error is low
which is good as well but the communication cost is too
high. Then an equilibrium ε can be chosen that balances
the average error and communication cost. Similar to the
supply-demand model in economic theory, the equilibrium
occurs at the point where the two curves intersect. In this
case the equilibrium ε ≈ 2mph.

3) Results evaluation: Simulations were also run to com-
pare the server update policies using the parameters specified
on Table I.

In Figure 2 we can see the comparison of average errors

Figure 2. T and Average Error (τ = 300s)

Figure 3. T and Comm. Cost (τ = 300s)

obtained by the different policies when the collection period
was 5 minutes and for different threshold values. The flow-
based policy has a constant average error because it makes
no use of the threshold. In this case the flow-based policy
obtained a better average error than the other policies when
the threshold value used was greater than 2 mph.

Nevertheless, the flow-based policy obtained these aver-
age errors at the servers even though the number of messages
sent were much less. In Figure 3 we can see that for this
same case of the 5 minute collection period there was less
communication cost for any threshold used by the other two
policies.

Figure 4 shows how the flow-based update policy outper-
forms the other policies in terms of the efficiency metric
for any of the instances shown. This pattern was observed
for all of the simulations that were run. In some cases
were the threshold is very low the other policies obtained



Figure 4. T and Efficiency (τ = 300s)

a better average error but at the expense of having a high
communication cost.

Even though many more messages are sent by the other
policies the flow-based policy obtains better results because
with it the vehicles that send their speeds are a complete
representation of the whole population. In the other policies
because of their use of the threshold there is an interval of
data that is not represented at the server when computing
the average speed. It’s clear that the flow-based policy is
more efficient with the smaller amount of messages that it’s
sending to the server.

Figures 5 shows how the average error changes with
different lengths for the collection period. The trend is that
as the collection period length increases so does the average
error. The main reason for this phenomenon is that the longer
the collection period is then the bigger the change in flow
will be from one collection period to the next. This makes it
so that the smaller the collection period is then the better the
estimation of the flow for the current collection period will
be based on the flow estimation of the previous collection
period. Also, when the collection periods are shorter, more
data is sent to the server since the same expected number
of messages should be sent to the server during each period
(k) but there are more collection periods during the two-hour
simulation run.

Using the flow from the previous collection period as
an estimation for the what the flow will be in the current
collection period turned out to give excellent results. In our
simulation we set the server to desire a confidence interval
of 95% (α = 0.05) and with a maximum estimate error
of ε = 2mph which yielded k = 15.366 with σ = 4.
For all simulation cases, the average number of messages
sent during each collection period was between 15 and 16
messages. So then the number of messages the server was
expecting (k) on average was achieved with the flow-based

Figure 5. Collection Period Length and Average Error

server update policy.

V. CONCLUSIONS

In this paper, we addressed the problem of reducing the
communication cost in traffic information sharing systems
that are based on Floating Car Data. In these systems cars
travelling on a road segment measure their speeds on each
road segment and send updates of current traffic conditions
to a server. The server then broadcasts the updated speed
data to all cars on the road. The vehicles in turn use this
data to compute optimal travel routes.

We described a server model that computes average
speeds on road segments during pre-defined collection peri-
ods. To address the problem of reducing the communication
cost to the server while maintaining data integrity at the
databases we proposed the flow-based server update policy.
This update policy uses a transmission probability that
enables the server to receive the amount of messages that
it desires from each segment depending on a confidence
percentage and maximum allowable error for the average
speeds that will be computed.

Simulations and results were presented that showed how
the flow-based update policy outperformed the deterministic
and information cost based policies in various respects.
The simulations were performed with data from Chicago
highways. An efficiency metric was presented to evaluate
both policies. In terms of system efficiency, the flow-based
policy exhibited superior results in all the simulations that
were run. The average error was less for the flow-based
policies in most cases. Also, the flow-based policy accrued
less communication cost for all of the simulations that were
run.

Future work includes extensions in several directions.
There exist other more modern speed-flow models that could
work well and were not tested in this work (e.g., [11]).



The proposed method is designed to work for highway
road segments because of the use of the highway speed-
flow model. Further work is required to propose a different
approach for arterial or minor roads. We’re also interested in
server side reductions of transmissions in this system. For
example, the server could possibly use server-side predic-
tions of the average speed to further reduce k and thus reduce
the communication cost further. It would also be interesting
to adapt our update policy to a P2P architecture like the one
proposed in [6].
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