
 1

1. INTRODUCTION 

Databases have become an integral part of information systems. In the past two-

decades, different database systems have been developed and maintained independently 

for different types of information systems. Databases are utilized by different groups of 

users and organizations for their daily functions. Each of these information systems are 

developed independently and customized to meet the particular requirements of the 

organization. However, today’s interconnected networks have provided access and a need 

for integrated access to these independently developed information systems as a basic 

necessity for developing the next generation global information systems. Sophisticated 

user requirements (such as data warehousing, knowledge discovery and data mining, 

intelligent access to information on the Web) and the availability of a proliferation of data 

sources containing related information has created intelligent data access from 

heterogeneous distributed data sources a critically importance research issue. The focus 

of research into heterogeneous (multi-) database systems has been to provide such an 

integrated transparent access to a multitude of heterogeneous distributed data sources in a 

meaningful way. In order to better illustrate the problem domain, let us consider the 

following simplified example. 

Example 1: Let us consider two database schemas of a university: 

Schema 1: A relational database containing information about students and faculty of the 

university. 

   

 

STUDENT 
student-id last_name first-name address 

COURSE_ENROLLMENT 
student-id course-id section-id semester year grade 



 2

    

 

 

 

 

 

Schema 2: A Semantic Database Schema [94] in the Computer Science department of the 

university consisting of information about students and the projects they are currently 

working at the department. 

 

Let us consider the following query: 

Query 1: List students who are working in project ‘A’  of ‘Computer Science’  department 

and the courses they have taken at the university. 

Query 1 is a simple query requiring information from two different databases. The results 

for query 1 require accessing schema 2 to obtain information on students working for 

COURSE 
course-id course-name description 

COURSE_OFFERING 
course-id section-id semester year instructor-id 

INSTRUCTOR 
id last_name first-name address dept-id 

 
Figure 1. Schema of a Relational Database Developed for a University Application 

Figure 2. Semantic Database Schema in Computer Science Department of University 
Consisting Information of Students and Projects  

STUDENT 
student-id: String key 

name:String 
email:String 

PROJECT 
name:String 

description:String 

works-on (m:m) 

GRANT 
grant-id: String key 
description:String 

funding-agency:String 
Amount:Number 

 

funded-by 
(m:m) 



 3

project ‘A’  and also requires accessing schema 1 to obtain course information of the 

students.  

  

A straight-forward approach for obtaining the results for the above query is to 

write an application program that firstly accesses Schema 2 to obtain the students 

working on project A. This requires the programmer to write a query in a native query 

language that the database engine supports, (in this case Semantic SQL [98] for Semantic 

Databases). Next, the program accesses Schema 1 to obtain information on students and 

their courses. Similar to the previous database access, the programmer needs to access in 

a different query language pertinent to the database, (in this instance, SQL supported by 

the relational database engine). Finally, the program integrates the results of the two 

previous queries to obtain the result for query 1. The developer of the program needs to 

consider the distribution of data sources and program in different data communication 

protocols to obtain the results of the queries due to network and platform heterogeneity. 

 

It is evident from the above description that the effort required to access 

distributed, heterogeneous data sources is significant and complex. It is not viable to 

expect an application developer to develop such applications accessing a large number of 

data sources for every required data access. Also, in today’s dynamic environments such 

as the World Wide Web where information sources change frequently, keeping these 

applications up-to-date is an enormous task and practically impossible. Some of the 

disadvantages of this approach are enumerated below: 



 4

(i.) Expensive: Need to hire an Application Developer to implement the query to 

access heterogeneous data sources. 

(ii.) Non-generalized solution: That is, a different query requires the development of a 

new application program. 

(iii.) Heterogeneous data models and query interfaces: The application developer must 

be familiar with the different data models and query facilities of the data sources.  

(iv.) Distributed environment and different communication protocols: The application 

developer needs to consider the data distribution and communication protocols 

when accessing the data sources.  

(v.) Considerable effort: Integration the results of different queries require substantial 

effort by the programmer. 

(vi.) Not scalable: Integrating a new data source requires re-writing the application 

program. 

(vii.) Non-optimal solution: Usually the application developer is not well versed with 

the query optimization techniques of distributed databases. Thus, (s)he, most 

probably, will develop the application using a non-optimal query processing 

strategy that may result in considerable degrading of system performance.  

(viii.) Semantic and Schematic Heterogeneity Resolution: The application programmer 

requires to familiarize himself/herself with the data contained in all of component 

databases in order to decide the databases that are required to be accessed.  In 

addition, the application developer needs to resolve schema-level heterogeneities 

that may occur due to different representations of similar data in different 

component databases. 



 5

(ix.) Data consistency problems: Changes of the data sources are not easily 

incorporated. 

 

The solution proposed by the heterogeneous database researchers is to develop a 

homogenizing layer over the heterogeneous, distributed databases providing a single data 

model and query language. This allows the user to pose queries directly to the 

heterogeneous database system, which provides the illusion of a centralized 

homogeneous database system. This methodology avoids the disadvantages described in 

the previous approach. 

 

1.1 Related Work 

Three major approaches for building heterogeneous/multi-database systems can 

be identified in literature: 

(i.) Global schema approach: Schemas of component database are exported to a 

global site and schema integration phase considers the creation of a global 

schema. In this approach, a global integrated schema, capturing the information 

content of the component databases in a single data model and query language, is 

presented to the user. Global schema approach has been discussed in [1], [9],  

[31], [33], [41], [56] and others.  

(ii.) Federated database approach: This approach imports sharable schemas of remote 

databases and integrates with the local schema. Discussion on federated database 

approach can be found in [76], [105] and others. 



 6

(iii.) Multi-database query language approach: A powerful multidatabase language is 

provided to the users to manipulate data and meta-data in a multitude of non-

integrated schemas. This approach is discussed in [62], [71], [72] and others. 

 

We now investigate some of the strengths and weaknesses of each approach.  

(i.) Global Schema Approach: Global schema approach provides users with a single 

global schema identical to the interface of a centralized database system, which 

provides a single schema (in a homogeneous data model and query language), 

containing the information content of all the integrated data sources. This is an 

ideal solution since this provides a well-known paradigm for heterogeneous 

distributed data access. However, the critics of this approach have pointed out the 

difficulty and inability to obtain such global schemas when a large number of data 

sources are integrated (i.e. solution is not scalable) and practically impossible (i.e. 

solution is not feasibile) to obtain the knowledge needed for the creation of such a 

global schema. Also, another limitation, which is not discussed in to a great 

extent, is the overhead of maintaining global schemas with dynamically changing 

component data sources.  

(ii.) The federated database approach does not aim to provide a single global schema, 

rather integrates the local schema with other data sources containing relevant 

information. The creation of global schemas is avoided in this approach. 

However, the issue of identifying related information sources and resolving 

schematic heterogeneity must be addressed.  



 7

(iii.) Multidatabase language approach: In the multidatabase language approach, the 

system does not take part in the integration process. The major advantage is that 

the system is relieved from creating and maintaining global schemas. That is, the 

quality and completeness of content of information depends on the users’  ability 

to specify his/her requirements adequately. The main limitation of this approach, 

is the assumption that the user have the expertise to express their intentions by 

using the complex language features provided for information sharing and 

exchange. Usually, a user of database system may be a naïve user with little 

knowledge of different data sources and technical know-how to manipulate the 

language.  

 

1.2 Our Work 

 At High-performance Database Research Center (HPDRC [95]), we undertook the 

Heterogeneous Distributed Database Project, which aims at integrating information from 

a variety of distributed heterogeneous data sources (which includes structured data 

sources such as relational databases, semantic databases and semi-/un-structured data 

sources such as information from the World-Wide Web). This thesis describes the results 

of our efforts in designing the heterogeneous distributed database project at HPDRC.  

 

A common issue to every approach discussed above is the resolution of semantic 

and schematic heterogeneity. That is, identifying related information from a multitude of 

heterogeneous data sources (i.e. resolve semantic conflicts) so as provide complete, 

coherent answers (i.e. resolve schema/data level conflicts) to users’  requests. Our 



 8

approach provides a global knowledge base consisting of semantic knowledge to resolve 

semantic heterogeneity. The semantic heterogeneity resolution methodology applied is 

complete and unambiguous. We present a semi-automated, stepwise methodology to 

acquire semantic knowledge, thus reducing the effort required to gain initial knowledge 

for integration. The semantic heterogeneity resolution methodology presented can be 

easily adapted by global schema approach, federated database approach and multi-

database approach, thus providing better means for intelligent data access. We applied 

this approach to a modified version of global-schema/federated database approach. Our 

approach provides a semi-automated way to create global views to the different user 

groups fulfilling their information requirements. Thus, we provide the ideal solution to 

each user group (that is, an integrated schema in a single query facility similar to a 

centralized database) accessing heterogeneous multiple data sources; however, we avoid 

creating and maintaining a single large global schema. Also, the creation and 

maintenance of global views is semi-automated, thus reducing the overhead. Since the 

approach is based on resolving semantic conflicts, it is scalable and has the ability to 

handle dynamic changes to a high degree. Also, most of the integration processes are 

automated, thus avoiding the need for great efforts and complexities inherent in the 

previous approaches. Further discussion on our semantic and schema level heterogeneity 

mechanisms are discussed in chapters 3 and 4. The next section briefly enumerates the 

contributions of this thesis. 

 

1.2.1 Contributions of Thesis 

 The contributions of our research include the following: 



 9

• Architecture for Heterogeneous Distributed Database System: A scalable, easy-to-

develop architecture using state-of-art technologies for the design of a heterogeneous 

database system is discussed. 

• Semantic Binary Object-oriented Data Model and Semantic SQL query language: We 

have used an expressive data model and query language for the integration of 

heterogeneous data sources, namely Semantic Binary Object-oriented Data Model 

(Sem-ODM) [94] and Semantic SQL query language [98]. The ability to capture 

complex semantics and easy-to-use query facility made Sem-ODM and Semantic 

SQL excellent candidates for information integration and querying of heterogeneous 

data sources. Our approach is different from other approaches as we try to capture 

semantics of the data being integrated for easier integration and querying through our 

data model and other techniques. 

• Semantic Heterogeneity Resolution Methodology: A major impediment for the 

ubiquitous use of multidatabase technology is the difficulty in resolving semantic 

heterogeneity between data sources. That is, identifying and managing semantically 

related information from heterogeneous distributed databases. We outline a 

methodology based on extents of meta-data constructs of schemas to resolve semantic 

heterogeneity. We outline the correctness and completeness of our methodology. 

• Schematic Heterogeneity Resolution: A database system provides a schema (meta-

data) describing the information content of the database. Similarly, a heterogeneous 

database system requires the definition of global views for the different user groups 

allowing access to the required information. Resolving schema-level heterogeneities 

(that occur due to different representation of semantically related information in 



 10

component schemas) is an issue that is addressed in the creation of global Sem-ODM 

schemas. A language to create global Sem-ODM schemas over a set component Sem-

ODM schemas resolving schema-level heterogeneities is provided. The different 

schema conflicts and their resolutions using the language is illustrated. 

• Heterogeneity Resolution Methodology and Knowledge Bases: As discussed earlier, 

our approach to resolving conflicts is unique since we take a step-wise process by 

firstly resolving semantic conflicts and then considering resolving schema-level 

conflicts. The semantic knowledge acquired during semantic heterogeneity resolution 

process is exploited to assist in resolving schema-level heterogeneities. The design of 

a knowledge base is a critical component to store and manage such semantic 

knowledge. Sem-ODM schemas for the storage component of the knowledge bases 

are presented. Rules that semi-automatically resolve conflicts and assist in the 

creation of global views are outlined. This simplifies the creation of global views 

significantly reducing the overhead in the global schema approach.  

• Query processing and optimization: Query processing of Semantic SQL statements 

over a Sem-ODM global schema are presented along with strategies to optimize them 

utilizing semantic knowledge. Our optimizing strategies focus on utilizing semantic 

knowledge acquired during schema integration process to gain maximal system 

performance. 

• A framework for Internet computing: Most database researchers see the Internet as a 

database system, which is loosely structured. However, a more natural perspective is 

to view the Internet as a distributed computing medium with heterogeneous data 

sources and services. We present a framework for Internet computing and present 



 11

how some of our concepts discussed can be applied in such a framework. This 

framework is presented as a future area of research with the goal being to achieve 

intelligent ubiquitous computing and communication on the Internet. 

 

1.2.2 Limitations 

 Similar to other research projects and systems, we also have limitations in our 

research project. In this thesis, we have only considered read-only queries. Insert, delete 

and update queries including distributed transaction processing in a set of heterogeneous 

distributed data sources have been omitted from discussion in our thesis work. 

 

1.2.3 Outline of Thesis 

  This thesis is organized as follows. Chapter 2 describes the high-level 

architectural design of the Heterogeneous Distributed Database System along with 

descriptions of the Semantic Binary Object-oriented Data Model and Semantic SQL 

query facility. Chapter 3 discusses the knowledge required for semantic heterogeneity 

resolution including a methodology for automated identification of semantic relations. 

Chapter 4 describes a language used for creation of Semantic Views over a set of 

component Sem-ODM database schemas resolving schema-level heterogeneities. Also, 

this chapter describes the Knowledge Base tool that assists in the creation of global views 

and Knowledge Base schemas used for the storage of such information. Chapter 5 

discusses Semantic SQL query processing in a heterogeneous database system including 

strategies for optimizing using semantic knowledge. Chapter 6 provides an overview of a 

framework for distributed computing and communication paradigm in the Internet. This 



 12

chapter also details the use of techniques and methodologies developed in the previous 

chapters in the context of this paradigm. Chapter 7 provides the concluding remarks with 

some discussion on future research directions.  



 13

2. HETEROGENEOUS DISTRIBUTED DATABASE SYSTEM 

The Heterogeneous Distributed Database System being developed at HPDRC 

provides access to a set of heterogeneous distributed data sources using the Semantic 

Binary Object-oriented Data Model and Semantic SQL query facility. Providing 

Semantic Access to a multitude of heterogeneous data sources is a more natural, 

expressive and rational approach for integrated data access. In addition, with the 

adaptation of SQL query language to Semantic Databases (called Semantic SQL), we 

have provided a popular declarative query facility for Semantic Data Access. These 

features and other advantages have illustrated that providing Semantic Access to a set of 

heterogeneous data sources reap significant benefits for data integration and query 

processing. 

 

Subsequent sections of this chapter are organized as follows. Firstly, we provide 

an overview of some of the multidatabase systems that have been developed. Next, we 

introduce our prototype system by firstly discussing Semantic Binary Object-oriented 

Data Model. Semantic SQL query language and its adaptation to Sem-ODM schemas are 

discussed in the next section. System architecture of the Heterogeneous Distributed 

Database System including its main components is described in section 2.1.3. Finally, 

benefits of utilizing the proposed architecture and integration methodology are 

summarized. 

 

2.1 Related Work 



 14

Many research prototypes and a few commercial heterogeneous/multidatabase 

systems have been developed. Following is a list of some multidatabase systems 

developed over the past two decades: 

1. Multibase [63] is first designed and implemented multidatabase prototype. 

Multibase provides a uniform integrated interface for retrieving data from pre-

existing heterogeneous distributed databases. It uses a global schema in a 

functional data model to create an integrated view of the data. A functional query 

language, DAPLEX [107], is provided as the query facility.  

2. Amoco Distributed Database System (ADDS [15], [16]) is another industrial 

prototype of a multidatabase system. It provides both retrieval and update 

facilities on a set of component databases. The global schema is a relational 

schema with two relational query languages provided. 

3. Pegasus ([102], [103]) is an effort by the Hewlett-Packard Laboratories in 

building a heterogeneous multidatabase management system. It provides an 

object-oriented data model schema with HOSQL query facility. 

4. UniSQL/M [52] is a multidatabase system integrating relational and object-

oriented schemas. A data definition and manipulation language, SQL/M, is used 

in the creation of global schemas. 

5. Carnot [28] is an effort by Microelectronics and Computer Technology 

Corporation (MCC) to integrate heterogeneous data using the Cyc – knowledge 

base. Cyc knowledge base uses semantic information, in addition to structural 

knowledge in integration of different schemas. InfoSleuth [10] is an extension of 



 15

Carnot in a web environment with the use of agents and existence of unstructured 

dynamically changing data sources. 

5. TSIMMIS ([23], [44], [49], [86]) is a system to integrate information from semi- 

and un-structured data sources. A common object model, Object Exchange Model 

(OEM), and a query language, OEM-QL, is developed. Major contributions of 

this research include the use of wrappers and mediators to obtain structure and 

query semi- and un- structured data sources. 

6. Garlic [100], was an effort by IBM to integrate information systems and focuses 

on multi-media data and information. An object-oriented data modeling facility is 

used in the integration process.  

Other projects include Mermaid ([19], [125]), Information Manifold [69], METU [36], 

OASIS [99].  

 

It is evident from the above discussion that considerable effort has been focused 

into information integration during past two decades. We have observed a tendency to 

utilize expressive data models and querying capabilities to integrate heterogeneous data 

sources. For instance, earlier prototypes (i.e. Multibase) used functional data models and 

then relational data models were used (i.e. ADDS, etc.) and currently focuses on object-

oriented data models (i.e. Pegasus, TSIMMIS, Garlic, etc.). However, with over two 

decades of research and systems being built using a multitude of methodologies, there has 

not emerged a generally accepted methodology or system in research or industry for 

integration and querying a set of heterogeneous data sources. Information integration is 

still a very active research area that has become critically important research issue 



 16

recently with the advent of the Internet allowing access to thousands and millions of 

heterogeneous distributed data sources and documents. 

 

2.2 Our Work 

 Our approach to the development of a heterogeneous database system considers a 

scalable, easy-to-develop architecture using state-of-art technologies and use of Semantic 

Binary Object-oriented Data Model (as the canonical data model) and Semantic SQL 

query facilities (as the query facility to heterogeneous data sources). 

 

2.2.1 Semantic Binary Object-oriented Data Model 

Semantic Binary Object-Oriented Data Model (Sem - ODM) [94] combines the 

advantages of relational and object-oriented data models. Sem-ODM provides expressive 

data modeling capabilities, similar to object-oriented data models, but also has the 

simplicity of constructs similar to the relational data model [26] (which provides only one 

construct, namely table).  

 

 The central notion of the Semantic Model is an object. An object may be either 

abstract or concrete. An abstract object is any real world entity that may be stored in the 

database.  An abstract object may be tangible (such as car, building, person) or intangible 

(such as idea, event). Concrete objects are printable objects (such as numbers, character 

strings or dates). Objects that possess common properties are grouped into classes called 

categories. The categories may or may not be disjoint allowing an object to belong to 

multiple categories simultaneously. Categories can be further divided into Abstract and 



 17

Concrete whose objects are always abstract or always concrete respectively. Categories 

can be inherited (called subcategories) from other categories (called supercategories). 

Objects of a subcategory are also objects of its supercategories. The category hierarchy 

does not contain a cycle for obvious reasons.   

 

Every object in the real world contains properties ([21], [22]). Relationships 

between two categories are used to model properties (called relations). Relations have 

different cardinalities, such as 1:1, 1:m, m:1 or m:m, specifying the maximum number of 

objects in the domain category and range category that may be related at any database 

instant via the relation. Also, a relation may be total which specifies that the existence of 

an object in the domain category requires the object to be related by the total relation.  

Further discussion on Sem-ODM can be found in [94]. In order to illustrate the 

expressiveness of the Semantic Model, we present the relational schema for the semantic 

schema presented in figure 2 of chapter 1. The semantic schema in figure 2 is a simple 

schema that does not contain expressive constructs such as sub-class/super-class 

relationships which cannot be directly represented in the relational data model. 

 

 

 

 

 

 

STUDENT 
student-id name email 

WORK 
student-id project-id 

PROJECT 
project-id name description 

FUNDED 
project-id grand-id 



 18

 

 

 

In order to represent works-on and funded-by relations which has cardinality m:m, two 

tables needed to be introduced (i.e. WORK and FUNDED). These tables are introduced 

to capture the relationships between tables rather than to provide means for storage of 

data. Also, in the table PROJECT, a field, project-id, which is the primary key field, is 

introduced. This spurious field was required in order to provide a relationship between 

tables GRANT and PROJECT. Note that project-id field does not capture any 

semantically useful information of the real-world. It is merely added as a means for 

creating a relationship.  

  

 This example illustrates a simple scenario of a Semantic Schema and its 

equivalent relational schema. It is apparent that the Semantic Schema captures 

semantically rich information set while relational databases require significant overhead 

to capture the same information and the end schema is not easy to understand by a human 

much less for a machine. Graphically, Sem-ODM schemas are represented as follows: 

- Abstract categories are represented by rectangles with the name of category placed 

inside the rectangle; 

- Subcategory relationships are represented by a dashed arrow from the subcategory to 

the supercategory; 

GRANT 
grant-id description funding-agency amount 

Figure 3. Relational Schema Equivalent to the Sem-ODM Schema Presented in Figure 2 



 19

- Relations are represented by thick arrows pointing from domain category to range 

category with constraints and cardinalities described in brackets; 

- Attributes are placed in their respective domain categories with the range concrete 

category placed after “ :”  (semi-colon).  

 

It is important to point out that Semantic Binary Object-oriented Data Model is a 

semantic data model, with object-oriented features incorporated. Semantic Data models 

are usually more powerful and more easy to use than current proposed object-oriented 

data models. They are especially more powerful in representing integrity constraints and 

various relationships. Object-oriented data models are generally based on class 

hierarchies and inheritance, plus their ability to represent the behavior of objects (for 

further details see [14]). Since Sem-ODM has object-oriented features incorporated, it 

allows the specification of methods and procedures in a category (see chapter 10 of [94]). 

However, the current implementation of Sem-ODB ([89], [91], [92], [97], [104], [117]) 

does not support the definition of methods. This has resulted in enabling us to adapt SQL-

92 [110] for Semantic Database without any modifications to the syntax. Hence, in the 

subsequent chapters, we omit the discussion of methods and procedures. We can easily 

incorporate behavioral properties into the current Sem-ODB implementation and we are 

confident that we will be able to utilize up-coming standard SQL languages such as SQL-

99 [20] when behavioral aspects are included into our implementation. 

 

2.2.2 Semantic SQL Query Language 



 20

One of the major advantages contributing to relational databases’  success is the 

standard query language, SQL, which is declarative in nature. Object-Oriented 

Databases’  (OODB) query languages (such as OQL [13], and others) need to be 

correlated with an Object-Oriented Programming Language (OOPL) and/or are 

procedural in nature [58]. This has also resulted in the well-known problem of impedance 

mismatch. We have adapted SQL (specifically SQL-92 [110]) for Sem-ODM (called 

Semantic SQL [98]), thus providing a well-known declarative query language for Sem-

ODM. 

 

Semantic SQL [98] is the interpretation of SQL language, specifically SQL-92 

[110], on Sem-ODM schemas. SQL-92 is a query language based on the relational data 

model. The basic constructs of the relational data model are tables. Basically, a SQL 

query statement is a set of operations on a set of tables of the relational schema. Thus, in 

order to adapt SQL for Semantic Binary Object-oriented Data Model, we provided a 

means to interpret tables from a Sem-ODM schema. The tables over a Sem-ODM schema 

are named virtual tables. Next, we adapted SQL for Sem-ODM, called Semantic SQL, 

which is SQL over virtual tables of a Sem-ODM schema. 

  

Virtual tables of a Sem-ODM schema are named thus because they are never 

physically generated. Every virtual table is a finite representation of a spanning tree of 

Sem-ODM schema starting at a certain category in the schema. A formal recursive 

definition for virtual tables is presented in [98]. We provide it below for completeness.  

 Definition of virtual table T(C): 



 21

Let us consider virtual table T(C) where C is the starting category: 

•  C – attribute of T, range: C (m:1) 

For every attribute A of T, for every relation r whose domain intersects with the 

range of A 

• A__r – attribute of T, range: range(r) (m:1) 

Note that this recursive definition may result in an infinite table (i.e. a table with an 

infinite number of attributes). A finite depth of this virtual table is determined by 

examining the query being processed. That is, we recursively generate the virtual table 

until all the attributes mentioned in the query statement are placed in the virtual table.  

After eliminating the extraneous paths traversed (i.e. paths traversed that do not contain 

the attributes mentioned in the query), the query is posed on the resultant virtual table. 

That is, the query is posed on the minimal virtual table containing all the attributes 

mentioned in the query statement. 

   

Another aspect of the above definition is that attribute names for virtual tables are 

long in certain cases. Abbreviation of attribute names by eliminating the prefixes is 

allowed as long as no ambiguity arises. That is, attribute y of T is a synonym of the 

attribute X__y if T has no other attribute Z__y where depth(Z) ≤ depth(X) such that 

depth(x) represents the length of path x.  

 

In order to understand the semantics for generating a virtual table, we re-iterate 

the definition of an extension of a virtual table from [98].  

 



 22

 Definition of the Extension of a Table: 

  The virtual table T for a category C is logically generated as follows: 

(1) Initially, t[C] = C, i.e. T contains one column called C whose values are the 

objects of the category 

(2) For every attribute A of T, for every schema relation or attribute r whose 

domain may intersect range(A), let R be the relation r with its domain 

renamed A and range renamed A__r, let T be the left-outer-join of T with R 

(unlike a regular join, the outer join creates A__r = null when there is no 

match.) 

Notice that during the creation of a virtual table, null values may be placed for every 

relation traversed. This issue is considered during query processing of Semantic SQL 

statements (see chapter 5).  

 

Semantic SQL query language has identical syntax and semantics of SQL-92 with 

the exception that a Semantic SQL query statement is posed on (minimally projected) 

virtual tables generated for the Sem-ODM schema instead of actual physically resident 

tables in the database which is the case for relational database. There are many benefits of 

using Semantic SQL over Sem-ODM schema rather than SQL over its equivalent 

relational schemas such as the size of the resultant queries. To illustrate this feature, let us 

consider Semantic SQL query posed on the Sem-ODM schema provided in figure 2 and a 

semantically equivalent SQL query posed on the relational schema presented in figure 3. 

Query: For every grant, obtain grant-id, the names of project that it funds and the names 

of students working for the project. 



 23

a. Semantic SQL:   
SELECT  grant-id, funded-by___name, works_on___name 

    FROM  GRANT 
 

b. SQL:  
SELECT  GRANT.grant-id,  PROJECT.name,  

STUDENT.name 
FROM (((GRANT LEFT OUTER JOIN FUND ON  

(GRANT.grant-id = FUNDED.grant-id)) LEFT OUTER 
JOIN PROJECT ON(PROJECT.project-id = 
FUNDED.project-id)) LEFT OUTER JOIN WORK ON 
(PROJECT.project-id = WORK.project-id) LEFT OUTER 
JOIN STUDENT ON (WORK.student-id = 
STUDENT.student-id) 

 

 

As apparent from figure 4, Semantic SQL queries posed on Sem-ODM schemas are much 

shorter than its counter-part SQL queries on an equivalent relational schema. Further 

discussion on benefits of using Semantic SQL is presented in section 2.4. 

Figure 4. (a.) Semantic SQL Query posed on the Sem-ODM Schema (b.) SQL Query posed 
on the Equivalent Relational Schema  



 24

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Global Query 
Processor & Optimizer 

Commercial RDBMS 
(e.g. ORACLE, SQL Server, …) Sem-ODB 

GLOBAL SITE 

RELATIONAL 
SITE 

SEMANTIC
SITE

SDB-SQL Engine 

CORBA 
 

Figure 5. Architecture of Heterogeneous Distributed Database System 

Integrator & 
Knowledge 

Reconciliator 

DBA 
Sem-ODM 

Views 
Semantic SQL 
queries/results 

Knowledge 
Base 

User 

View Definition & 
Semantic Knowledge 

Knowledge 
Base 

Query 
Translator 

KDBTool 

Schema 
Loader 

Subquery 
Processor 

Sem-ODM schema 
& meta-data 

Subquery 
Processor 

Semantic SQL sub-
queries, QEP & 

query result 

ODBC 
 

Semantic SQL 
queries & results 

Derivation 
information 

SQL queries Relational Schema 

Semantic Schema 

Customized Semantic 
Schema and info.  

DBA/Domain 
Expert 

Semantic SQL 
queries & results 

Knowledge 
Base 

Native C++/Java API 



 25

2.2.3 System Architecture 

The system architecture of the Heterogeneous Distributed Database System is 

given in figure 5.  It consists of three major components: (i.) Relational Site; (ii.) 

Semantic Site; and (iii.) Global Site.   

• Relational Site: The relational site contains a relational database. The relational 

database is wrapped using a wrapper (i.e. SemWrap [74], [96], [97]) to provide the 

illusion of a Semantic Binary Object-oriented Database (Sem-ODB [92], [97], [104], 

[117]). The wrapper provides both a Sem-ODM schema and Semantic SQL query 

facility to the relational database.  The components that make up the relational site 

are:  

(i.) Relational Database: The relational database is usually an existing commercial 

relational database (such as Oracle [85], SQL Server [109] or Access [2]). 

This commercial database is accessed using the Object Database Connectivity 

(ODBC [81]) protocol.  

(ii.) Schema Loader: This module imports the relational schema into the 

knowledge base. In addition, it creates an equivalent Sem-ODM schema for 

the relational database schema and stores this information along with 

derivation rules for schema mappings in the knowledge base. The schema 

transformation process is a bottom-up methodology similar to the reverse 

order of conversion described in [90].  

(iii.) Knowledge Base: This component acts as the interface among the Knowledge 

Base Tool (KDBTool), Schema Loader and Query Translator components. 

Knowledge Base stores schema information (semantic and relational 



 26

schemas), derivation information between relational schema and its equivalent 

semantic schema, and context information about constructs of the semantic 

schema. Further discussion about the knowledge base is presented in [74], 

[93] and subsequent chapters.  

(iv.) Knowledge Base Tool (KDBTool): The relational schema does not have the 

ability to express complex semantics such as inheritance and m:m relations 

which are inherent to the Sem-ODM schemas. Hence, semantic schema 

generated by Schema Loader does not contain such complex structures. The 

DBA uses the KDBTool (also called Knowledge Base Editor) and Knowledge 

Base to add such complex features to the semantic schema along with 

derivation rules. The DBA also provides other semantic information such as 

context information, discussed in chapter 3, in order to resolve semantic 

heterogeneity.  

(v.) Query Translator: The purpose of this module is to translate Semantic SQL 

queries based on the semantic schema to its equivalent SQL queries in the 

relational schema. To achieve this goal, the module uses the existing 

derivation information and schema information stored in the Knowledge Base. 

A detailed discussion on translation of Semantic SQL queries based on the 

Sem-ODM schemas to SQL queries based on the equivalent relational schema 

is presented in [74].  

(vi.) Subquery Processor: This module receives the query execution plan (QEP) for 

the site and Semantic SQL subqueries. The Semantic SQL subqueries are 

passed to the query translator and the operations specified by the QEP are 



 27

performed on the query results and transmitted to the appropriate site. Note 

that postquery processing of the query results may be needed to resolve 

heterogeneities and/or integrate results from subqueries of remote data 

sources. These tasks are specified in the QEP and performed by the subquery 

processor. 

• Semantic Site: This module implements the Semantic Database Engine (Sem-ODB 

[92], [97], [104], [117]), Semantic SQL interpreter ([97]), Knowledge Base and 

Subquery Processor. Sem-ODB engine is a multi-platform fully functional client-

server database system (platforms include Solaris, HPUX, Linux, and various 

versions of Windows). Clients running on any platform can interact with one or more 

database servers running on the same or different platforms. Moreover, database files 

are fully compatible across platforms at binary level. Multiple clients can access 

server through network protocols such as TCP/IP or NETBIOS while some other 

clients can run locally as threads within the server process. In addition to the SQL-

level access provided by Semantic SQL interpreter, the database engine provides a 

native C++ and Java API for elementary database access, similar to procedural access 

in an OODB. SQL-level access is provided by the SDB-SQL Server which interacts 

with the database engine via the elementary database access interfaces. Subquery 

Processor at the semantic site performs similar tasks as in the relational site. 

Knowledge Base interacts with the domain expert to obtain context information. 

Further discussion on Semantic Site including Sem-ODB and SDB-SQL Server can 

be found in [92], [97] and [117]. 



 28

• Global Site: The significant tasks and processing for integration and global query 

processing are performed at the global site. Resolutions of heterogeneities such as 

semantic heterogeneities, global view definitions including resolving schematic 

heterogeneities are performed at this level. Also, global query processing and 

optimization of users’  Semantic SQL queries are carried out. During the incorporation 

of a data source into the Heterogeneous Distributed Database System, a Sem-ODM 

schema is imported to the global site including its relevant context information. This 

meta-data is integrated to existing knowledge in a semi-automated methodology 

(described in chapter 3). The Integrator and Knowledge Reconciliator module 

performs the integration process, including semantic heterogeneity resolution and 

schema-level heterogeneity resolution. The global views are created by the DBA (see 

chapter 4) and stored in knowledge base along with relevant meta-data and semantic 

information. The users pose Semantic SQL queries on the Sem-ODM global views. 

The Global Query Processor and Optimizer module creates an optimized query 

execution plan and a set of subqueries to obtain the results for the users’  query. In 

order to accomplish this task, this module uses knowledge acquired during integration 

process which is stored in the knowledge base. The subqueries along with the 

appropriate QEPs are transmitted to the relevant sites to obtain results for the query. 

Certain postquery processing of the results for subqueries are executed at the 

component and global sites as specified by the QEP.  

 

It is significant to note the communication protocols that have been used in the 

architecture for inter-site communication and from the wrapper to relational database.  



 29

For inter-site communication, we have used Object Management Group’s (OMG [84]), 

Common Object Request Broker Architecture (CORBA), which is an industry standard 

for application development within heterogeneous distributed environments. CORBA 

provides a network transparent distributed computing medium for developing 

applications on a distributed heterogeneous environment. CORBA consists of numerous 

features, including ORB Core, Interface Definition Language (IDL), Stubs, Skeletons, 

Services (such as Name Service, Query Service) and others. The main feature of ORB 

Core is its abstractions of the object implementations. Due to these features, the 

application developer need not consider the state of the object, how to communicate the 

remote object (such as TCP/IP, RPC, etc.) and other complexities. The use of CORBA 

has significantly reduced the effort and complexity in developing our system. Further 

information on CORBA and its use in Heterogeneous Distributed Database System are 

provided in [74]. We enumerate some of the benefits of using CORBA in section 2.4. In 

addition, we developed common interfaces  (APIs) to access the Semantic as well as 

Relational sites thus re-using much of the code for accessing data sources.   

 

At the relational site, Object Database Connectivity (ODBC) protocol and 

standard query language, SQL, is utilized. The use of such industry-wide standards has 

achieved portability and reusability to a very high-degree. We discuss these issues in the 

next section which outlines the benefits of using the architecture and methodology for the 

Heterogeneous Distributed Database System. 

 

2.3 Benefits  



 30

Our approach in designing and developing the Heterogeneous Distributed Database 

System provides many advantages from the use of Semantic Binary Object-oriented Data 

Model, Semantic SQL query language, CORBA architecture, standard query languages 

such as SQL, standard protocols such as ODBC and other design considerations. We 

discuss these aspects below. 

 

There are many advantages of using Sem-ODM as the canonical data model in the 

Heterogeneous Distributed Database System. They include: 

(i.) A semantically expressive data model capturing the meaning of information 

content in a set of heterogeneous distributed data sources. Expressive modeling 

capabilities include m:m relations, disjoint categories, inheritance, arbitrary 

relations, multi-valued attributes and others. 

(ii.) Due to the fact that Sem-ODM captures the semantics of the information content 

presented, it provides (a.) friendlier and more intelligent generic user interfaces;  

(b.) comprehensive enforcement of integrity constraints; (c.) greater flexibility; 

(d.) substantially shorter application programs; and (e.) easier query facility. 

 

By adapting SQL for Sem-ODM, we have gained many benefits including, 

(i.) A well-known declarative query language; 

(ii.) The ability to use existing relational tools. That is, with the SQL interface 

provided to the Sem-ODM, we can reutilize tools that execute on relational 

database platforms without any modification; 



 31

(iii.) Easier query facility. We have gained an easier and less complex query facility. A 

Semantic SQL query over a Sem-ODM is significantly shorter and less complex 

than a SQL statement on an equivalent relational schema. This is, due to the 

ability to traverse relations in a semantic schema without specifying joins and the 

expressiveness of Sem-ODM when compared to relational schemas. This feature 

is demonstrated in [74], [96] and [97]. 

 

The use of CORBA as the communication protocol between component and 

global sites has: 

(i.) Significantly reduced the complexity and effort required in developing the 

system; 

(ii.) Resulted in faster development time. CORBA’s ORB and Name Service is 

utilized to locate, identify and communicate to component data sources 

transparent of the network. This has resulted in less complexity and faster 

development time; 

(iii.) CORBA’s Object Model has resulted in modular design. Every data source is 

considered as a CORBA object with a common interface; 

(iv.) Platform and network level heterogeneity is resolved. A common interface to all 

data sources avoids the use of different communication and/or network protocols; 

(v.) Scalability: CORBA architecture provides scalability by allowing hundreds and/or 

thousands of data source to be seamlessly incorporated into the system. 

 



 32

During the development of the wrapper for relational databases, we utilized the 

standard query language SQL and ODBC protocol. This has resulted in many advantages 

including, 

(i.) Reusability: That is, use of ODBC and SQL has resulted in enabling the wrapper 

to be plugged into any commercial relational database system (consisting of 

required ODBC Driver) without any modification; 

(ii.) Portability: The wrapper can connect to databases residing on different platforms. 

 

By providing a common interface (that is, Sem-ODB interface) to component 

database, we gain many benefits such as: 

(i.) Extendibility: A new type of data source can be integrated into the Heterogeneous 

Distributed Database System by providing a Sem-ODM interface to the data 

source. Such an approach is considered in Data Extractor project [12], which 

integrates semi- and un- structured data from the Web data sources into the 

Heterogeneous Distributed Database System; 

(ii.) Reusability: Since all data sources contain a common Sem-ODM interface, 

Subquery Processor module and CORBA IDL interfaces can be reused;  

(iii.) Preserved autonomy of data sources: Our architecture preserves component 

databases’  autonomy. That is, component data source does not require any 

changes in order to participate in the Heterogeneous Distributed Database System.   

 

The transformation of component data schema to a common model and 

exportation of these schemas to the global sites has been discussed in [105]. The use of 



 33

CORBA as a distributed communication and integration medium for resolving network 

and platform heterogeneity is seen in METU ([36], [37]) and OASIS [99] multidatabase 

systems. OASIS uses a translation knowledge base similar to the relational wrapper, 

SemWrap [96]. Also, wrappers and mediators are used in TSIMMIS ([23], [44], [49], 

[86]). However, our architecture is unique with the fact that we have incorporated a 

Semantic Binary Object-oriented Data Model (i.e. a semantic object-oriented data model) 

with SQL query language (i.e. a well-known declarative query language) to provide a 

semantic access to a set of heterogeneous distributed data sources. The architecture 

described in this section is extendible, scalable, resolves platform and network 

heterogeneity, preserves autonomy of data sources and provides a common interface 

(data model and query facility) to component databases providing integrated access to 

heterogeneous distributed data sources. However, as mentioned earlier, ubiquitous 

deployment of heterogeneous database systems is hindered by the difficulty of resolving 

semantic heterogeneity. The next two chapters address this issue in detail.  



 34

3. SEMANTIC HETEROGENEITY RESOLUTION 

As mentioned in chapter 1, a significant impediment for ubiquitous deployment of 

multidatabase technologies is the difficulty in identifying semantically related entities of 

different database schema. To illustrate this problem, we will use the following example. 

Example 2: Let us consider the following semantic schema of a university application.  

 

 

 

 

 

 

 

 

 

 

Provided with schemas such as in figures 3 and 6, how do we integrate them? This is the 

problem faced by heterogeneous database researchers. This is an over simplified 

example. Consider a scenario of hundreds of schemas independently developed being 

provided and asked to integrate them. The answer to the above-mentioned problem 

necessitates two steps for its solution.  

Step 1: Identify the constructs of the schemas that capture the same real-world concepts. 

Step 2: Represent these constructs in a non-redundant, meaningful way. 

PUPIL 
 

s-id:Number key 
lname:String 

address:String 

 
GRADUATE 

 

 
UNDERGRADUATE 

 

DEPARTMENT 
 

name:String 1:m 
 

major 
(m:1) 

minor 
(m:1) 

Figure 6. Semantic Schema of a University Application 



 35

Step 1 pertains to semantic heterogeneity resolution. Step 2 pertains to schema-level 

heterogeneity resolution. In this chapter, we will consider semantic heterogeneity 

resolution. In the next chapter, we discuss the schema-level heterogeneity resolution 

schemes. 

  

Step 1 discussed above seems to be a simple problem. Let us investigate in detail. 

Looking at the schemas provided in figures 3 and 6, we kind of see that category PUPIL 

in schema of figure 3 is related to category STUDENT of figure 6. We figured this 

relationship based on our previous knowledge on what PUPIL and STUDENT meant and 

probably looking at the structures and relations within the schema which seem to 

correspond. Now if we take away all the pre-assumed and context knowledge based on 

which we made the previous conclusion, just taking into consideration the schema 

diagrams by themselves, can we conclude any relationship. The answer is obviously 

“No”. Thus, it is clear that even humans are unable to conclude relationships between 

constructs of schemas without the appropriate knowledge to make these decisions. Thus, 

it is safe to conclude that computers & programs cannot determine relationships without 

providing the appropriate knowledge (“assuming that humans are intelligent than 

computers”). Practically, in real world situations, we are faced with schemas of a large 

number of legacy systems without adequate knowledge on what schemas capture in their 

data sources. Now it is clearer as to why heterogeneous database researchers are moving 

in the direction of utilizing expressive data models that capture more information to be 

used for integration. This is to obtain as much knowledge as possible so as to make 

intelligent design decisions in integration. In our approach, we used the Semantic Binary 



 36

Object-oriented Data Model instead of relational or object-oriented data model since we 

are convinced that Sem-ODM is expressive to capture the semantics of the data being 

modeled. 

 

3.1 Related Work 

In this section, we consider the existing approaches proposed for identification of 

related entities of different database schemas. Next, we discuss answer-completeness of 

queries and illustrate why current approaches fail to satisfy this requirement. 

 

In the early work, such as the twelve approaches outlined in [9], [105] and others, 

we have seen the assumption that step 1 is resolved manually and focuses on techniques 

for resolving step 2, which is the representation issue. This approach may result in good 

integration, however require the integrator(s) to familiarize themselves with the schemas 

of component data sources and place much effort into integration. With a large number of 

schemas, this may be impractical and automation of semantic heterogeneity resolution is 

a highly desirable goal. 

 

In [83], domains (extents) of the schema constructs in Entity-Category-

Relationship (E-C-R) model ([42], [122]) are considered for resolving semantic 

heterogeneity. Also, methodologies for resolving schema level heterogeneities with 

different domain relationships are outlined. In [65], the authors present a heuristic method 

for determining the different domain relationships by using attribute equivalences based 

on the common principle of integrating attributes. A tool developed, using these 



 37

principles, to assist database designers in schema integration and modeling is discussed in 

[106].  

 

In [18], a semantic heterogeneity resolution methodology for multidatabase 

language system is presented. The Summary Schemas Model is introduced which uses a 

global data structure to abstract information available in a multidatabase system. The use 

of linguistic theory for translation of users’  queries to a set of system imprecise queries is 

discussed. The important feature is that semantic heterogeneity is resolved by translating 

users’  queries to a set of semantically related system defined terms. The resultant queries 

are imprecise and provide imprecise answers unlike centralized homogeneous database 

systems. However, a global schema is not created thus avoiding this effort.  

 

In [6], a stepwise methodology to obtain information from a remote schema is 

presented and integrated with the local schema. This methodology uses a Heterogeneous 

Semantic Data Model (HSDM) as the canonical data model to enrich the remote schema 

with semantic information. However, this methodology uses knowledge extensively from 

local domain expert and remote domain experts for integration decisions. For legacy 

systems, it may be difficult to obtain such information from domain experts.  

 

In [70], neural networks are trained (based on field specifications and data 

contents) to identify equivalent attributes and similarity constructs of schemas. In [50], 

MUVIS system is introduced. MUVIS determines the degree of similarity and 



 38

dissimilarity of two objects based on comparing the field names of the attributes. Next, 

this tool provides recommendations on the integration process.  

 

All of the approaches discussed above provide with non-exact reasoning 

techniques for semantic heterogeneity resolution. For instance, methodology presented in 

[18] results in imprecise queries, techniques described in [50], [65], [70] uses heuristic 

based approaches and conclude via names and structures specification of attributes, thus 

it is possible to result in incomplete incorrect answers and/or recommendations. This 

leads to problems such as obtaining incomplete answers for queries. An example best 

illustrates the problem of answer-completeness.  

Example 3. Let us consider accessing two databases (i.e. DB1 and DB2) with the 

following schema (figure 7):  

 

 

 

 

 

Note that we consider only Sem-ODM schemas for integration since the architecture 

presented in chapter 2 provides a Sem-ODM schema of every component data source. 

However, our presentation of answer completeness problem can be extended to the any 

data model without loss of generality. 

 

PERSON 
 

ssn: Number key 
last_name:String 
first_name:String 

address:String 

(a.) 

RESEARCHER 
 

social-sec: Number key 
position:String 
Office:String 

PROJECT 
 

id: Number key 
name:String 

funding-
agency:String 

(b.) 

works-in 
(m:m) 

Figure 7. (a.) Schema of Database DB1 in Administration Office of Company A  
   (b.) Schema of Database DB2 in Lab L of Company A  



 39

The category PERSON in database DB1 contains objects describing the currently 

employed personnel at company A. Database DB2 describes researchers and their projects 

at lab L of company A since its inception. The category RESEARCHER contains the 

researchers working or has worked at lab L of company A. The category PROJECT 

contains projects that the lab is currently working or already completed. The attributes 

social-sec and ssn in categories PERSON and RESEARCHER represent the social 

security number of a person.  

 

 Let us consider the above-mentioned approaches to schema integration. 

Accordingly, categories PERSON and RESEARCHER will be mapped as equivalent since 

they both represent personnel working at company A or mapped as a sub-category/super-

category relationship because categories RESEARCHER represent a specialized class of 

all personnel working at company A represented by category PERSON.  Thus, the 

integration process results in the following integrated schema: 

 

 

 

 

 

 

 

PERSON 
 

ssn: Number key 
last_name:String 
first_name:String 

address:String 

RESEARCHER 
 

position:String 
Office:String 

PROJECT 
 

id: Number key 
name:String 

funding-
agency:String 

works-in (m:m) 

Figure 8.  Integrated Schema for Schemas Presented in Figure 7 



 40

The derivation rules for the integrated schema are as follows. Note that 
�

 represents is 

derived from semantics: 

Rule1:  PERSON   �   DB1.PERSON  

Rule2:  RESEARCHER �  DB2.RESEARCHER 

Rule3:  PROJECT  �  DB2.PROJECT 

Rule4:  works-in  �  DB2.works-in 

Note that derivation rules for attributes are not presented here (as they are obvious). 

Equivalence condition for common objects of PERSON and RESEACHER is as follows: 

 DB1.PERSON.ssn  = DB2.RESEARCHER.social-sec 

The schema in figure 8 along with above-mentioned derivation rules can be considered as 

a reasonable result of integration using the approaches discussed above (such as based of 

name equivalences and structural equivalences). 

 

 Let us now consider the query, which obtains the last names of researchers who 

worked or are working at lab L, and the names of the projects they worked on or are 

working on. This query can be represented by the following Semantic SQL query on the 

integrated schema (see figure 8): 

 SELECT RESEARCHER.last_name, RESEARCHER.works-in__name 

 FROM  RESEARCHER 

 
The heterogeneous/multidatabase or mediator system translates this query (based on the 

derivation rules) to the set of operations depicted by the following SQL statement: 

SELECT DB1.PERSON.last_name, DB2.RESEARCHER__works-in__name 



 41

FROM  DB1.PERSON, DB2.RESEARCHER 

WHERE  DB1.PERSON.ssn = DB2.RRESEARCHER.social-sec  

Note that the result of this query only suffices to provide only a partial answer. 

Researchers who have worked on a project at lab L but not currently employed in 

company A are not represented in the query result. This aspect is known as answer-

completeness [68], [82] of queries. This issue becomes a critical factor when dealing with 

multiple databases.  

 

 Our approach, based on extent of schema constructs, for database integration and 

query processing of multitude of data sources is guaranteed to avoid errors such as 

incomplete answers. A very desirable goal of heterogeneous databases users is obtaining 

relevant, complete, correct information from a variety of available heterogeneous 

distributed data sources. These factors translate to successful integration of data sources 

and answer-completeness of user’s queries. Our approach addresses both these situations 

successfully. This approach is discussed in detail in section 3.3. 

 

3.2 Our Work 

The goal of our methodology is to achieve reliable, correct and complete answers 

to users’  requests from a heterogeneous database management system, similar to 

centralized database system, through unambiguous, complete and correct integration. It is 

important to note that in achieving this goal, we incorporated many techniques discussed 

in previous approaches into our methodology. Our methodology is based on the extents 

of schema constructs similar to [83]. It is apparent from our previous discussion that 



 42

without appropriate knowledge, we are unable to achieve correct integration. We employ 

a step-wise process similar to [6] to gain such knowledge. In [18] a global data structure 

was used for matching users terms with systems concepts. In our approach we use shared 

ontologies to obtain the context meanings of schema constructs. 

 

 In describing our methodology, we will first introduce the foundations of 

semantic knowledge, which is the basis for integration. Next, we outline a methodology 

based on ontological concepts to semi-automatically obtain semantic knowledge.  

 

3.2.1 Foundations of Semantic Knowledge 

 Our approach to resolving semantic heterogeneity assumes the existence of a 

schema describing the information content of a data source. The architecture (discussed 

in chapter 2) provides us a Sem-ODM schema for every component data source. The 

schema of a data source provides us with an unambiguous definition of the data content 

of the source, whether easily comprehensible or not. The schema captures the original 

database designer’s intent of precisely what is stored in the database. The data is stored as 

a set of data items (extent) for each construct in the schema. Utilizing this information, 

we propose a set of relations, called semantic relations, which exploits both schema and 

its extent in database integration and query processing. This is similar to the domain 

relations discussed in [83]. However, we extend this concept in many ways to provide a 

complete basis for integration. With the use of the semantic relations as the basis in 

integration, we can easily preserve data quality attributes including completeness and 



 43

accuracy, which is not guaranteed in the approaches using heuristic methods based on 

name equivalences.  

 

3.2.1.1 Semantic Relations 

We have identified four semantic relations between entities of different schema. 

Before discussing the semantic relations, we introduce the notation, EXT(A) which is 

used to represent the extent of schema construct A. Let A be a construct of Schema1 and B 

be a construct of Schema2. We can derive four possible semantic relations between 

constructs A and B as follows: There are as follows: 

1. Semantically Equivalent (SEM_EQ): A is semantically equivalent to B (represented 

as, A SEM_EQ B) if and only if EXT(A) = EXT(B) for all database instances at any 

given time t. 

2. Semantically Subset (SEM_SUB): A is semantically subset of B (represented as, A 

SEM_SUB B) if and only if EXT(A) ⊆ EXT(B) for all database instances at any given 

time t1 and EXT(A) ⊂ EXT(B) for some database instance at time t2. 

3. Semantically Overlap (SEM_OVER): A is semantically overlapping with B 

(represented as, A SEM_OVER B) if and only if EXT(A) ∩ EXT(B) ≠ φ for some 

database instances at time t1 and EXT(A) ∩ EXT(B) ≠ A or EXT(A) ∩ EXT(B) ≠ B 

for all database instances. 

4. Semantically Disjoint (SEM_DIS): A is semantically disjoint with B (represented as, A 

SEM_DIS B) if and only if EXT(A) ∩ EXT(B) = φ for all database instances at any 

given time t. 



 44

Note that the semantic relations are disjoint. That is, if A r1 B and A r2 B where r1, r2 ∈ 

{ SEM_EQ, SEM_SUB, SEM_OVER, SEM_DIS} , then r1 = r2.  

 

Proof Sketch: The completeness and correctness of the above semantic relations can be 

verified by examining all the possible scenarios of a Venn diagram for the extents of 

constructs A and B (see figure 9(a.)-(d.)). EXT(A) and EXT(B) are shaded in the figure. 

Note that ε represents the { domain of database containing construct A}  ∪ { domain of 

database containing construct B} . Figure 9(a.) – (d.), depict all possible cases for 

semantic relations between any two database constructs A and B. 

 

Some commutative rules and inference rules for semantic relations are 

enumerated below:  

Rule 1:  A SEM_EQ B ≡ B SEM_EQ A  

Rule2:  A SEM_DIS B ≡ B SEM_DIS A  

Rule 3:  A SEM_OVER B ≡ B SEM_OVER A 

Rule 4:  If A SEM_EQ B and B SEM_EQ C then A SEM_EQ C  

Rule 5:  If A SEM_EQ B and B SEM_SUB C then A SEM_SUB C 

Figure 9. All Possible Scenarios for EXT(A) and EXT(B): (a.) EXT(A) = EXT(B);  
(b.) EXT(A) ⊆ EXT(B); (c.) EXT(A) ∩ EXT(B) ≠ φ; (d.) EXT(A) ∩ EXT(B) = φ 

   

EXT ( B )   

ε   EXT ( A )      EXT ( B )   ε   

EXT   
( A )   

   

EXT ( B )   

ε   

EXT ( A )   

(a.) (b.) 

   

EXT ( B )   

ε   

EXT ( A )   

(c.) (d.) 



 45

Rule 6:  If A SEM_EQ B and B SEM_OVER C then A SEM_OVER C 

Rule 7:  If A SEM_EQ B and B SEM_DIS C then A SEM_DIS C 

Rule 8:  If A SEM_SUB B and B SEM_SUB C then A SEM_SUB C 

Rule 9:  If A SEM_SUB B and B SEM_DIS C then A SEM_DIS C 

where A, B, C are constructs of different database schemas. The correctness of each rule 

can be directly verified using Venn diagrams or using set theory principles and thus not 

discussed any further. 

 

The following example illustrates each semantic relation: 

Example 4. Let us consider five constructs of different database schema in a university 

application.  

Database  Construct  Extent  

Registrar  Employee   contains all current employees of  

university A 

Registrar  Student  contains all currently enrolled  

students of university A  

Registrar  Department  contains all the departments of  

university A 

Payroll   Faculty  contains all current faculty of  

university A  

Payroll  Emp   contains all current employees of  

university A  

 



 46

By considering the extents, we can assume the following. In section 3.2.2, we discuss a 

methodology to automatically identify these relations. 

• Registrar.Employee SEM_EQ Payroll.Emp  (since both constructs represents the 

current employees of university A) 

• Payroll.Faculty SEM_SUB Registrar.Employee (since Faculty construct contain 

the current faculty members of university A who are also employees of university 

A)  

• Payroll.Faculty SEM_OVER Registrar.Student (assuming that the faculty member 

can also be registered to courses as students in university A) 

• Registrar.Department SEM_DIS Payroll.Emp (since departments cannot be 

employees for obvious reasons) 

 

Utilizing the rules described above, we can generate the following semantic 

knowledge from existing knowledge: 

Payroll.Faculty SEM_SUB Registrar.Emp   (Rule 5) 

Registrar.Department SEM_DIS Payroll.Employee (Rule 7) 

Payroll.Faculty SEM_DIS Registrar.Department (Rule 9) 

The above-mentioned rules are important in gaining new knowledge from existing 

semantic relations and also for checking correctness and consistency of the existing 

knowledge in the knowledge base. Further discussion on the knowledge base can be 

found in chapter 4. 

 

3.2.1.2 Object Equivalence 



 47

When two constructs, say A and B, are known to be semantically related by either 

SEM_EQ, SEM_SUB or SEM_OVER, it is possible for EXT(A) and EXT(B) to have the 

same real-world objects represented (i.e. this is the set of objects in EXT(A) ∩ EXT(B)). 

The identification of equivalent objects in different constructs is especially advantageous 

in schema integration. This allows extraction of extra information.  To illustrate this fact, 

we provide the following example. 

Example 5. Let us consider two databases schemas DB1 and DB2 consisting of students 

at university A: 

 

 

 

 

 
 

For simplicity, let us assume that DB1.PUPIL SEM_EQ DB2.STUDENT and 

attributes, ssn and social_sec, represent social security numbers in the same format and 

they are key attributes of categories DB1.PUPIL and DB2.STUDENT respectively. Hence, 

if DB1.PUPIL.ssn match with DB2.STUDENT.social_sec, implies that objects are 

equivalent (i.e. the same student).   

 

Since Pupil SEM_EQ Student, every object in Pupil has a matching object in 

Student and vice-versa at every database instance. These matching objects are identified 

by comparing attributes DB1.PUPIL.ssn and DB2.STUDENT.social_sec. Hence, it is 

PUPIL 
 

ssn:Number key 
address:String 

STUDENT 
 

social-sec:Number key 
gpa: Real 

phone:String 

(a.) 
(b.) 

Figure 10 (a.) Category of Database DB1 Containing Information of Students in 
University A (b.) Category of Database DB2 Containing Information of Students in 
University A 



 48

possible to obtain a category, say STD, in global schema, which contains attributes: 

social_security, address, gpa, and phone for every student object of university A. This 

information cannot be obtained by accessing DB1 or DB2 individually. That is, it was 

possible to obtain additional information (i.e. address, gpa, phone attributes collectively) 

for every student in university A using an integrated access to DB1 and DB2. This 

example illustrates a simple scenario; this concept can be generalized for complex 

schemas. 

 

In order to make the semantic relations useful for schema integration we obtain a 

condition which when satisfied will identify the common objects in entities A and B. The 

direct methodology is to identify a key attribute(s) that match in the two entities. For 

instance, in our previous example, we have equivalence condition as: DB1.PUPIL.ssn = 

DB2.STUDENT.social-sec. In the general case, obtaining such equivalent key attributes 

between entities DB1.A and DBn+1.B may not be possible. Then we try to gain an 

equivalence condition by using the following theorems. 

 

Theorem 1. There exists an equivalence condition from entity DB1.A to entity DBn+1.B 

as follows: 

(DB1.A.KeyAttr = DB2.CAT2.KeyAttr) AND  

(DB2.CAT2.KeyAttr = DB3.CAT3.KeyAttr) AND 

…. 

(DBk.CATk.KeyAttr = DBk+1.CATk+1.KeyAttr) AND 

 …. 



 49

(DBn.CATn.KeyAttr = DBn+1.B.KeyAttr) 

where DBk.CATk sem_rel DBk+1.CATk+1 such that sem_rel ∈{ SEM_EQ, SEM_SUB}   

and DBk.CATk.KeyAttr = DBk+1.CATk+1.KeyAttr represents the equivalence condition 

between  entities DBk.CATk and DBk+1.CATk+1. 

 

Proof Sketch: Since DBk.CATk and DBk+1.CATk+1 are related by SEM_EQ or 

SEM_SUB, joining the objects of DBk.CATk and DBk+1.CATk+1 by the equivalence 

condition does not result in any loss of objects in DBk.CATk. Thus by continuing on the 

path joining iteratively we gain attributes until finally, we gain an attribute which match 

the key attribute of DBn+1.B.  

 

Theorem 2: If there exists an equivalence condition from entity DB1.A to entity DBn+1.B 

as follows: 

(DB1.A.KeyAttr = DB2.CAT2.KeyAttr) AND  

(DB2.CAT2.KeyAttr = DB3.CAT3.KeyAttr) AND 

…. 

(DBk.CATk.KeyAttr = DBk+1.CATk+1.KeyAttr) AND 

 …. 

(DBn.CATn.KeyAttr = DBn+1.B.KeyAttr) 

where DBk.CATk sem_rel DBk+1.CATk+1 such that sem_rel ∈{ SEM_EQ, SEM_SUB}   

and DBk.CATk.KeyAttr = DBk+1.CATk+1.KeyAttr represents the equivalence condition 

between  entities DBk.CATk and DBk+1.CATk+1. 



 50

Then, the reverse traversal generates an equivalence condition from DBn+1.B to entity 

DB1.A.  

 

Proof Sketch: Proof idea for theorem 1 says that traversing from entity A to B does not 

result in any loss of common objects. Although, reverse traversal of joins may loose some 

objects in DBn+1.B, it does not loose common objects (by previous proof). Thus common 

objects can be identified by reverse traversal.  

   

3.2.1.3 Boundary Conditions 

When either semantic relations, SEM_SUB or SUM_OVER relates two 

constructs, it is important to consider the boundary conditions on which the two 

constructs intersect. Considering these boundary conditions provides useful knowledge 

similar to object equivalence which otherwise is not explicit. The boundary conditions 

are rarely given importance (for instance, in [46] where only intersection classes are 

considered and not boundary classes). However, considering boundary conditions 

provide significant semantics which otherwise is lost. The example below illustrated this 

issue: 

Example 6. Let us consider the scenario presented in example 3. Since category 

PERSON contains all the employees currently working for company A and category 

RESEARCHER contains all the persons who worked or are working in lab L of company 

A, by considering the extents, we can infer that PERSON SEM_OVER RESEARCHER.  

The persons currently working at lab L who are also employees of company A consists of 

EXT(PERSON) ∩ EXT(RESEARCHER). Current employees of company A not working 



 51

in lab L are in { EXT(PERSON) – EXT(RESEARCHER)} . Researchers who used to work 

at lab L, but are not presently employees of company A are in { EXT(RESEARCHER) – 

EXT(PERSON)} . This semantic knowledge allows us to extract more information as 

shown below. 

 

For instance, we can now answer the query that asks for social security numbers 

of researchers who worked in lab L but have left company A (not currently working for 

company A) as follows: 

SELECT  DISTINCT DB2.RESEARCHER.ssn  

FROM   DB2.RESEARCHER 

WHERE  DB2.RESEARCHER.ssn NOT IN   

(SELECT DB1.PERSON.ssn 

  FROM  DB1.PERSON) 

This information could not be obtained by accessing the databases individually or without 

considering the extents. Note that in example 3, EXT(RESEARCHER) was considered a 

subset of EXT(PERSON) using previous methods. Thus, query mentioned above could 

not be posed or it would result in an empty result (i.e. incorrect answer). This example 

illustrates a simple case, but can be generalized for complex schemas. In addition 

boundary conditions is used for optimizing queries which is discussed further in chapter 

5. 

 

In our schema integration methodology, we consider semantic relations, object 

equivalences and boundary conditions.  This will result in complete, correct and 



 52

unambiguous integration and querying of heterogeneous data sources. These aspects will 

be discussed in detail in section 3.3. Next, section discusses a methodology for automated 

identification of semantic relations. 

 

3.2.2 Identification of Semantic Relations 

Even though our approach provides complete, correct and unambiguous 

integration and querying, we have not discussed an easy way to identify the semantic 

relations discussed in the previous section. This becomes a bottleneck in the use of such 

knowledge during integration of a large number of schemas. Thus, this section 

investigates into this issue and provides a semi-automated methodology for identifying 

semantic relations. Our methodology is not based on heuristics, unlike previous attempts, 

and thus is guaranteed to provide correct results.  

 

The main problem in resolving semantic heterogeneity and identifying semantic 

relations alike is the lack of appropriate knowledge and a need for automated 

identification of semantic knowledge. Usually, the intended extents are in the original 

database designer’s mind, represented partially in conceptual models and to a lesser 

extent in the schemas. However, in most application domains, the only high-level 

knowledge available to the integrator is schema-level descriptions of legacy databases. 

The direct method of comparing extents is incorrect and impossible. In this section, we 

propose a stepwise methodology for identification of semantic relations without looking 

into all the possible combinations of attributes or the extent of classes. This methodology 

borrows many concepts from a variety of computer science research areas. Concepts 



 53

from ontology-based research, artificial intelligence (AI) and heterogeneous database 

research are incorporated. Section 3.2.2.1 outlines some of the relevant work from the 

different disciplines. Section 3.2.2.2 describes the methodology for semantic relations 

identification providing detailed discussion of each step.  

 

3.2.2.1 Relevant Work 

We have incorporated concepts from a number of disciplines including ontology 

(philosophy), semantic networks and classification techniques (artificial intelligence and 

biology) and databases. In this section, we describe these concepts prior to illustrating 

how they have been incorporated into our methodology for clarity. Section 3.2.2.1.1 

discusses the ontological aspects. Section 3.2.2.1.2 discusses the semantic networks and 

classification of concepts.  

 

3.2.2.1.1 Ontological Foundations 

In this section, we describe some concepts from Bunge’s ontological model ([21], 

[22]). His model articulates a set of high-level, abstract constructs that are intended to be 

means of representing all real-world phenomena. Bunge’s ontological framework is well 

known and used by others ([118], [119], [120]) to analyze phenomena within computer 

science and information systems domains. Hence, we feel it is a good candidate for our 

work as well. In this section, we re-state some of the definitions and postulates of 

Bunge’s ontology for completeness and clarity of our discussion. We also refer to some 

concepts from [118] in this section. A “* ”  (star) is placed to represent concepts of 

Bunge’s ontological model. 



 54

 

Postulate 1*: The world is made of things that possess properties. 

In OO modeling methodology, a thing is equivalent to an object. Thus, in a conceptual 

model it is an instance. 

Rule 1: An instance in a conceptual model is a representation of a thing in the ontological 

model [118]. 

 

Postulate 2*: There are no things without properties. Moreover, properties are attached 

to things. 

A property can depend on one or more things. A distinction is made between: 

• intrinsic properties – properties that depend only on one thing only; and 

• mutual or relational properties – properties that depend on two or more things. 

For instance, the weight of a person is an intrinsic property, because it depends only on 

the existence of the person. The property of being an employee is a mutual property, 

because it depends upon the existence of both a person and a tertiary institution. 

 

Rule 2: All attributes and relationships in an instance in conceptual model are 

representative of properties of things in ontological model [118]. 

“The properties of a thing exist, whether or not humans are aware of them. Humans 

conceive of things, however, in terms of models of things. Attributes are characteristics 

assigned to (model of) things according to human perceptions. Depending upon 

circumstances, humans may use different models of the same thing and therefore assign 

different sets of attributes to the same thing”  [118]. For instance, let us consider a 



 55

database in a university registrar office that model students records, including level of 

study of a student, transcript information and tuition payment information. Another 

database at a department in the university may model information regarding students’  

projects, papers published and other related information. The same student things are 

assigned different attributes and relationships since they model different perspectives. 

 

Rule 3*: Properties themselves cannot have properties.  

For instance, at first glance, the height of a person may seem to have a property 

associated with the time at which the height was measured. The “ real”  meaning here is 

that the person has a variable height (the property is not just height but height at time t). 

“The possibility of properties having properties is only contemplated when we have not 

fully specified  (or properly understood) a property in the first place”  [118]. 

 

Postulate 3: Humans conceive of properties of things in terms of the attributes of their 

conceptual models, and properties are known to humans only as attributes [118].  

 

Postulate 4*: Every property in general can be represented by a prepositional (attribute) 

function: A: T1 × … × Tn × V1 × … × Vm �  Statement regarding A; and every specific 

property can be represented as an attribute function of the form: A(t1, …, tn, v1, …, vm) 

where ti ∈ Ti, vj ∈ V j, Ti (i = 1, … , n) represent the set of things and V j (j = 1, … , m) 

represents the set of values. 

For instance, the property “a student in a university”  can be represented as S: T1 × T2 × D 

�
 P, where T1 is the set of students, T2 is the set of universities, D is a set of dates, and P 



 56

is a set of statements of the form: “p (from set T1) is a student of c (from set T2) at d 

(from the set D)” . We can represent this statement as an attribute function Student-of(p, 

c, d) meaning student p, is a student of university c, at date d. 

 

Definition 1*: The scope of a property is the set of things that possess the property. That 

is, if θ is the set of things and P is the set of all properties, the scope function S is the 

mapping A: P �  2θ. 

 

Definition 2*: A subset of things, X, is called a class if and only if a property exists such 

that the subset is the scope of that property. That is, a subset X of the set of things θ is 

called a class of things iff ∃p ∈ P such that X = S(p) ∈ 2θ. 

 

Definition 3*: Let R be a set of properties. An R-kind is the intersection of all scopes of 

properties in R. 

 

Definition 4: Any restriction on the set of properties of an R-kind is termed law. 

 

Let R be a finite set of properties with possible laws on the values of its properties. Then, 

we term R-kind to be a generic class.  

 

We can now map, a general class in conceptual model to a generic class in the 

ontological model.  



 57

Rule 5: A class in the conceptual model is representative of generic class in the 

ontological model.  

 

The following definition formalizes the concept of inheritance. 

Definition 4: A subset of things, X, is a subclass of another set of things, Y, if and only if 

X is a proper subset of Y. Conversely, Y is a superclass of X [118]. 

 

Corollary: If S(p1) = X and S(p2) = Y, p1, p2 ∈ P, then X is a subclass of Y if and only if 

S(p1) ⊂ S(p2) [118]. 

Let us consider a set of properties P1 = { p11, p12, … , p1n}  and a set of properties P2 = 

{ p21, … , p2m} . Let X be the class consisting of things S(P1) and Y be the class consisting 

of things S(P2). If P2 ⊆ P1, then we can represent Y as a subclass of X. This is generally 

true in conceptual modeling where subclasses contain specializing attributes and 

relationships (i.e. properties) than superclasses and superclasses generalize the concepts 

of subclasses. 

 

Composition of things is outlined in Postulate 5. 

Postulate 5*: Two things may associate to form another. 

Based on this postulate, a thing is a composite if and only if at least two concrete things 

combine to form it. The reason for assembling these things to form composite things is 

the possibility to obtain emergent properties of the composite that is interesting, which is 

not a property of any of its component things [118]. 



 58

 

Definition 5*: A property of a composite thing is inherited if and only if it is a property 

of any of its components; otherwise, it is emergent.  

For instance, a computer is a composite thing since it is composed of main memory, 

processor, etc. Thus, the size of main memory is an inherited property because it is a 

property of main memory. However, the processing power of a computer is an emergent 

property because it is not a property of any of the individual components [118]. 

 

Ontology postulates that humans view an aggregation of things as a composite 

thing only if they are interested in at least one emergent characteristic of the composite: 

Postulate 6*: Every composite thing possesses emergent properties. 

 

In the next, section we discuss some concepts of classification techniques used in 

databases, AI and biology. 

 

3.2.2.1.2 Classification Techniques 

Classification techniques have been used in artificial intelligence as a means of 

knowledge representation and also in biological sciences to classify different types of 

plants and animals. An example of a classic AI technique that can be utilized for 

classification is the semantic network [87], originally developed as a way of representing 

human memory and language understanding.  

 



 59

The structure of a semantic network is shown graphically in terms of nodes and 

the arcs (links) connecting them. The nodes are generally used to represent physical 

objects, concepts, or situations. The links are used to express relationships. Two types of 

commonly used links are IS-A and A-KIND-OF, which are sometimes written as ISA and 

AKO [123]. IS-A means “an instance of”  while A-KIND-OF means 

“specialization/generalization”  relationship. Figure 11 depicts a semantic network with 

ISA and AKO links. For instance, in figure 11, node University represents the set of all 

universities and node UniversityA represents an instance of university called UniversityA. 

We revisit this figure in subsequent discussions. 

 

 

 

 

 

 

 

 

 

The extents of the different nodes (i.e. for non-instance nodes) are considered disjoint 

unless otherwise specified. 

  

University ISA 

Figure 11. A Semantic Net with ISA and AKO Links  
 

UniversityA 

Student 

has_students 

Graduate 
Student 

Undergrad 
Student 

Special 
Student 

Department 

AKO 

AKO AKO 

has_departments 

Project 
 

has_projects 

Departm-
entA 
 

ISA 

major-in (m:m) 

work-in (m:m) 



 60

Having discussed some of the relevant work that is useful to our approach, let us 

now discuss the methodology for identifying semantically related items of different 

schemas. Identifying semantic relations between classes of different database schema is 

the basis for successful resolution of semantic heterogeneity during integrating. We focus 

on this issue in the next section. 

 

3.2.2.2 Methodology 

A significant impediment to identifying semantic relations in a definitive manner 

is the difficulty in obtaining knowledge of the extent of classes of database schema. 

Usually, the intended extents are in the original database designer’s mind, represented 

partially in conceptual models and to a lesser extent in the schemas. However, in most 

application domains the only high-level knowledge available to the integrator is schema-

level descriptions of legacy databases.  

 

It is obvious that without the appropriate knowledge of the extents of classes, it is 

impossible to make a reliable decision as to the types of semantic relations that are 

present. Hence, our approach takes a stepwise process to obtain this information.  

 

Before discussion of the steps of the proposed methodology, we present some 

obvious techniques for identifying semantic related classes and discuss why these 

techniques are infeasible. Discussing and comparing these techniques provides us with 

insights as to some problems related to semantic heterogeneity resolution and also 

provide justifications for the methodology we propose. 



 61

 

Technique 1: A brute force and obvious algorithm is to determine if two classes are 

SEM_EQ, SEM_SUB, SEM_OVER or SEM_DIS is to compare the extents for each 

class. This is practically impossible and theoretically incorrect. It is practically 

impossible because the sheer number of possible comparisons. It is theoretically 

incorrect, because we need to check for every database instance at time t and thus for 

instance, extents of class A and extents of class B being equal at the current moment do 

not necessarily mean that they will do so in future. Hence, this algorithm is impractical 

and incorrect. 

 

Technique 2: Another approach would be to enumerate all the possible properties 

(discussed in section 2.1) for each class in the schema. Then comparison of matching 

properties of different classes enables to determine the semantic relationship between 

classes of different database schema. In terms of efficiency compared to technique 1, this 

approach is significantly efficient and may be practically possible for a small number of 

schemas. However, a main obstacle to this approach is the inability to verify if the set of 

all possible properties are generated for a particular class or whether to determine if this 

set is finite at all. Another technical hurdle is to find the matching properties in different 

classes.  

  

The following sections describe our approach to identifying semantic relations. 

 

3.2.2.2.1 Step 1: Conversion to Sem-ODM 



 62

The first step of an integration process is to reduce the heterogeneities that may 

occur due to different data models in which the schemas are represented. A generally 

accepted framework is to transform these schemas of different data models to a canonical 

data model (CDM) [105]. In the architecture presented in chapter 2, we convert the 

schemas to Sem-ODM through wrappers ([74], [96], [97]) for non-Sem-ODB data 

sources. The algorithm for automated translation from relational schema to semantic 

schema  (by the Schema Transformer module of SemWrap [96]) is given below: 

Algorithm: 

- For each table in the relational schema 

o Create a category in the semantic schema with same name as in table. 

o For each field in the table 

� Create an attribute corresponding in the respective category 

with same name of field 

- For each functional dependency (i.e. foreign key, primary key relationship) 

except when the primary key is composite (i.e. multiple fields make up the 

primary key field) and there are more than one functional dependency from 

foreign table to primary table. 

o Create a relation with cardinality m:1 from category corresponding to 

foreign table to category corresponding to primary table. The name of 

relation is “DomainCategoryName”_“RangeCategoryName”_# where 

# represents a number which is unique for relations between Domain 

and Range categories 



 63

Note that we avoided creating relations when there exists ambiguity in identifying the 

participating fields of primary and foreign tables due to composite primary key fields and 

multiple functional dependencies between the two tables. 

 

3.2.2.2.2 Step 2: Obtaining Property Functions 

 The next step in the methodology is to obtain context information incorporated 

into the component schemas and have a common framework for sharing the semantic 

meaning of schemas. This step focuses on obtaining context information. The following 

example illustrates context information in detail: 

Example 7: Let us consider a database containing information on students and major 

departments in a university. Figure 12 illustrates such a schema in Sem-ODM.  

 

 

 

 

 
An important aspect that can be noticed from the schema is the lack of context 

information. Context information is the knowledge within the application domain that is 

not generally explicitly stated. However, when we bring out these schemas into the 

domains of other application areas for schema integration, specifying the context 

information is important.  Context information is a generalized property which is 

common to every class within a database schema. For instance, schema in figure 12 

describe a particular university A. This context information is not shown in the schema 

STUDENT 
id: String  key 
lname: String 
fname: String 

birth-date: Date 
 

DEPARTMENT 
dept-code: String key 

name: String 
building: String 
campus: String 

 

majors-in (m:m) 

Figure 12. Schema in Sem-ODM 



 64

but when comparing this schema with other schemas in a multidatabase environment this 

context information is significant. 

  

We now extent some of the definitions from Bunge’s ontological model in order 

to gain a formalism for defining the semantics of schema constructs.  

Postulate 7: For every class C in conceptual model, there exists an abstract concept, C′ 

(called general class of C), such that EXT(C) ⊆ EXT(C′)  

Hence for every class, C, in Sem-ODM, there exists a general class for C′ that consists of 

at least the set of items represented by C. 

 

Postulate 8: The extent of every class C can be defined unambiguously using a property 

function P. P (M, { f1, … , fn} ) 	  Extent of C, where M (called primary mapping) is a 

mapping from C to one of its general classes C′, and f i: C′ × A (i = 1, … , n) where A is 

an abstract concept. 

Ontologically, this means that S(M) ∩ S(f1) ∩ S(f2) ∩ … ∩ S(fn) = EXT(C) where f i (i = 

1, … , n) represent a property. 

 

 An example of a property function is shown below: 

Example 8: Let us consider the schema in example 2. We have the following property 

functions for categories STUDENT and DEPARTMENT. 

1. STUDENT: 

Property Function: (M, F) such that  

M : STUDENT 
  S 



 65

F  : { Is-student-of(S × UA), At-time(S × TS)}    

where STUDENT : {  set of current students in UniversityA }  

  S   : { set of students of all universities at any instance of time}  

  UA : { UniversityA}  

  TS  : { Current}  

Therefore (M, F) represents “Set of current (TS) students (S) in UniversityA (UA)” . 

(M, F) unambiguously defines the EXT(STUDENT). That is, S(S) ∩ S(Is-student-of) 

∩ S(At-time) = EXT(STUDENT) where S is the scope function. 

 

2. DEPARTMENT: 

Property Function: (M, F) such that 

M : DEPARTMENT �  D 

F  : { Department-of(D × UA), At-time(D × TS)}    

where DEPARTMENT: { Set of departments in UniversityA}    

D: { set of all departments of all universities at any instance of time}  

  UA: { UniversityA}  

  TS: { Current}  

Therefore (M,F) represents “Set of current (TS) departments (D) of UniversityA (UA). 

(M, F) unambiguously defines EXT(DEPARTMENT). That is, S(D) ∩ 

S(Department-of) ∩ S(At-time) = EXT(DEPARTMENT) where S is the scope 

function. 

 



 66

The next step in the methodology is to map the property function to a shared 

ontology representing the application domain, which is discussed in the following 

section. 

 

3.2.2.2.2 Step 3: Mapping To Shared Ontology 

 This step tries to achieve a common language for sharing semantics between a set 

of component schemas so as to determine the semantically related constructs of the 

schema. The common medium for exchanging semantics is the use of a shared ontology 

represented by a semantic network (example shown in section 3.2.2.1.2). Let us now look 

at some previous work that provides justification for our claim (i.e. it is possible to build 

an ontology using a semantic network for a general application domain for which a 

database schema is designed). Previous work, such as in [101], uses a shared ontology for 

semantic interoperability. Thus, this is shown to be feasible. Our assumption that general 

conceptual models can be built for a general application domain is justified by previously 

demonstrated work such as in [111] which discusses a tool to automatically design 

schemas based user requirements. In [111], generalized schemas are stored in the 

Application Domain Base (ADB) and learning takes place when schemas from 

Application Case Base (ACB) are moved to the Application Domain Base. Empirical 

testing of the system provides favorable results. In [43], we have seen the use of ontology 

to describe information on Web pages. We postulate that similar techniques can be used 

to generate classification graphs for different domains. We feel that semantic network is a 

powerful expressive technique for representing shared ontology. This is justified by 

previous work such as [14] which argues that semantic network is powerful than OO 



 67

models. Also, we have seen in [112], the design of ontologies for general applications 

based on semantic networks. 

    

This section describes a technique to map the property functions of the classes of 

each schema to shared ontologies of the application domains. These mappings enable to 

determine semantic relations between classes of different schemas (see step 4 below). 

Our technique is best illustrated by an example. 

Example 9: Let us consider the schema in figure 12. The property functions for 

categories STUDENT and DEPARTMENT are given in example 8. Let us say that 

schema in figure 12 corresponds to DB1 and the following schema (i.e. figure 13) 

corresponds to DB2. 

 
 
 
 
 

 
 

 

The property functions for DB2 are as follows: 

STUDENT: 

Property Function: (M, F) such that  

M : STUDENT �  S 

F  : {  Is-student-of(S × UA), Work-in(S × DA), At-time(S × TS)}  

where STUDENT : { set of students in UniversityA who work in DepartmentA of 

UniversityA}  

  S   : { set of students of all universities at any instance of time}  

STUDENT 
ssn: String  (key) 

name: String 
phone: Number 

PROJECT 
project-id: String (key) 

name: String 
description: String 

funding-agency: String 
 

works-in (m:m)  

Figure 13. Schema for Database DB2 in Example 1 



 68

  UA : { UniversityA}  

  DA : { DepartmentA of UniversityA}  

  TS  : { Current}  

Therefore (M, F) represents “Set of current (TS) students (S) in UniversityA who work 

in DepartmentA (DA) of UniversityA” .  

 

PROJECT: 

Property Function: (M, F) such that  

M : PROJECT   P 

F  : { Project-of(P × DA), At-time(P × TS)}    

where PROJECT : { set of current projects in DepartmentA of UniversityA}  

P   : { set of all projects in all departments of all universities at any instance 

of time}  

  DA : { DepartmentA of UniversityA}  

  TS  : { Current}  

Therefore (M, F) represents “Set of current (TS) projects (P) in DepartmentA  of 

UniversityA (DA)” .  

 

We will map the property functions to semantic network given in figure 11. Note 

that node Time has been omitted in the semantic network. All nodes of the semantic 

network have relationship to Time node called At-time. The property At-time of every 

class is mapped to this relationship and is omitted from discussion below. TS: { Current}  

is mapped to a node called Current which is an instance of Time (related by ISA).  



 69

Matching property Matched node of Semantic Net 

DB1.STUDENT  S   �    Student 

DB1.STUDENT  UA  �   UniversityA 

DB1.STUDENT   Is-student-of  �   has-students 

DB1.DEPARTMENT  D  �   Department 

DB1.DEPARTMENT  UA  �   UniversityA 

DB1.DEPARTMENT Department-of  �   has-departments 

DB2.STUDENT  S  �   Student 

DB2.STUDENT  UA  �   UniversityA 

DB2.STUDENT  DA  �   DepartmentA 

DB2.STUDENT   Is-student-of  �   has-students 

DB2.STUDENT         works-in  �   work-in 

DB2.PROJECT  P  �   Project 

DB2.PROJECT  DA  �   DepartmentA 

DB2.PROJECT        Project-of  �   has-projects 

 

Having mapped to a common ontology presented in figure 11, let us now consider the 

derivation of semantic relations, which is the focus in the next section. 

 

3.2.2.2.2 Step 4: Discovering Semantic Relations 

This section discusses some rules that utilize the mapping information illustrated 

above to derive semantic relations. Application of these rules produce semantic relations. 

 



 70

Let A be a construct in schema 1 while B is a construct of schema 2.  

Rule I: If the primary mapping of class A map to the same node as primary mapping of 

class B and all other properties of classes A and B map to the same set of nodes and links 

in the semantic network, then A SEM_EQ B (i.e. EXT(A) = EXT(B) at any given time t). 

 

Proof Sketch:  In postulate 8, we claimed that a concept is unambiguously defined using 

a property function. In step 3, we mapped the property function onto a shared ontology. 

Thus, if the mappings of two constructs correspond, then these concepts are describing 

the same concept. Hence, the extents are identical at any given instance. 

 

Rule II: If the primary mapping of class A map to node in the semantic network which is 

disjoint with node in the semantic network to which the primary mapping of class B maps 

to, then A SEM_DIS B (i.e. EXT(A) ∩ EXT(B) = ∅ for all instances of time t) 

 

Proof Sketch: Let A′ be the primary mapping of class A and B′ be the primary mapping 

of B. Since A′ and B′ are disjoint EXT(A′) ∩ EXT(B′) = ∅ for all instances of time t. By 

postulate 7, EXT(A) ⊆ EXT(A′) and EXT(B) ⊆ EXT(B′) for all instances of time t. 

Hence, EXT(A) ∩ EXT(B) = ∅ for all instances of time t. 

 

For instance, if we consider node “Department”  is disjoint with node “Student”  in 

figure 1, then we can conclude that DB2.STUDENT SEM_DIS DB1.DEPARTMENT by 

Rule II. 

 



 71

Rule III: Let NodesA represent the set of nodes and links in the semantic network for 

which there is a mapping from a property of class A. Similarly, let NodesB represent the 

set of nodes and links in the semantic network for which there is a mapping from class B.  

 

If either the primary mapping of class A map to the same node as primary mapping of 

class B or if there is a path from the primary mapping of class B to primary mapping of 

class A using only AKO links and NodesA ⊆ NodesB, then B SEM_SUB A. 

 

Proof Sketch: Let A′ be the primary mapping of class A and B′ be the primary mapping 

of B. Let NodesA = { n1, n2, …, nk}  and NodesB = { n1, n2, …, nk, …, nn} . Note that AKO 

represents a “specialization/generalization”  relationship. Thus, if there exists a path from 

B′ to A′, then EXT(B′) ⊆ EXT (A′). By postulate 8, EXT(A) = S(A′) ∩ S(n1) ∩ … ∩ 

S(nk) and EXT(B) = S(B′) ∩ S(n1) ∩ … ∩ S(nk) ∩ S(nk+1) ∩ … ∩ S(nn). Hence, EXT(B) 

⊆ EXT (A).  

 

For instance, in example 4, NodesDB1.STUDENT = { Student, UniversityA, has-students}  and 

NodesDB2.STUDENT = { Student, UniversityA, has-students, DepartmentA, work-in} .  

Primary mapping of classes DB1.STUDENT and DB2.STUDENT is “Student”  node. 

Hence by Rule III, DB2.STUDENT SEM_SUB DB1.STUDENT (i.e. 

EXT(DB2.STUDENT) ⊆ EXT(DB1.STUDENT)). This is true since DB1.STUDENT 

represents students of university A, while DB2.STUDENT represents student of 

university A who work for department A. 



 72

 

 The rules presented by no means provide set of all semantic relations between 

constructs of database schema. However, these rules combined with rules presented in 

section 3.2.2.1 provide a basis for automated discovery of many semantic rules. Usually 

step 1 is automated with the domain expert customizing the automatically generated 

schemas. Steps 2-3 are performed at the component site with the interaction from domain 

expert. Step 4, combined with rules discussed in section 3.2.2.1 are executed at the global 

site by the Integrator and Knowledge Reconciliator (see chapter 2) automatically. This 

module further interacts with global DBA to identify further semantic knowledge and to 

create global views.  

 

3.3 Summary 

In this chapter, we introduced the problem of semantic heterogeneity. We 

discussed some of the existing approaches that address this issue. Almost all of the 

approaches use heuristic means to acquire knowledge and resolve semantic 

heterogeneity. These approaches can result in incorrect results during integration (such as 

incomplete answers to queries). We incorporate many techniques mentioned in previous 

approaches and propose a methodology for semantic heterogeneity resolution. Our 

methodology is based on the acquisition of semantic knowledge for resolving semantic 

heterogeneity. The basis for acquiring semantic knowledge is determining semantic 

relations between entities of different component schemas. The completeness and 

correctness of these relations are outlined. We extend the semantic knowledge by 

acquiring object equivalences and boundary conditions for certain types of semantically 



 73

related entities. This methodology resolves semantic heterogeneity and provides correct, 

complete and unambiguous integration (will not result in incomplete query results). The 

acquired semantic knowledge can be exploited during the creation of global schemas (see 

chapter 4) and for optimizing queries posed on the global schema (see chapter 5). An 

automated methodology for identifying semantically related entities is highly desirable. 

We investigate into ontological research and knowledge representation techniques in 

designing a semi-automated step-wise methodology for identifying semantic relations. 

Investigating into techniques for easy specification of property functions and discovering 

rules for identifying semantic relations are future research directions we consider for 

improving our methodology. 



 74

4. SCHEMATIC HETEROGENEITY RESOLUTION 

As mentioned in chapter 1, the ideal situation is to provide an interface similar to 

a centralized database system to the multidatabase users. This requires the definition of 

global schemas/views from a set of component database schemas. An issue that needs to 

be addressed when creating a global schema/view is the resolution schema-level conflicts 

(known as schematic heterogeneity). Schematic heterogeneity occurs when semantically 

related (in our case SEM_EQ, SEM_SUB, SEM_OVER) schema constructs are 

represented differently in different component schemas. For instance, the address of a 

person may be represented by a category in one schema and as an attribute in another. 

The price of an item may be represented in ‘US Dollars’  in one schema while the price of 

the same item may be represented in ‘British Pounds’  in another schema. During global 

schema/view definition, a single representation schema for data items must be decided 

and a conversion from different representations of the component schemas to the 

representation of the global schema must be defined. This chapter focuses on the 

resolution of schematic heterogeneity and global view definition including knowledge 

management issues for database integration. 

  

In section 4.1, a brief discussion into related work regarding schema-level 

heterogeneity resolution and database integration is presented. Section 4.2 discusses our 

approach to global schema definition and schema integration. Benefits of our approach to 

database integration when compared with previous approaches are outlined in section 4.3. 

 

4.1 Related Work 



 75

Early research into multidatabase systems has focused on the schema-level 

heterogeneities. A plethora of approaches for resolving schema level conflicts are 

presented in literature ([9], [17], [31], [33], [53], [54], [55], [59], [83], [105] and others). 

Many broad classes of schema-level conflicts have been identified and resolved. Almost 

all of these methodologies have focused on the relational and object-oriented data 

models. In [55], an exhaustive enumeration of schematic conflict types and their 

resolutions for integrating relational and object-oriented schemas has been presented. 

However, we have not found any previous work regarding schema-level heterogeneity 

resolution taking Semantic Data Models into consideration. We focus on this issue in the 

subsequent sections. 

 

4.2 Our Work 

This section outlines our schematic heterogeneity resolution including knowledge 

management for database integration as a whole. The organization of this section is as 

follows. Firstly, a language, called SemOSQL/M, for defining global Sem-ODM views 

over component Sem-ODM schemas is introduced. In section 4.2.2, the use of 

SemOSQL/M to resolve each type of schema-level conflict resolution during global view 

definition is illustrated. A desirable and advantageous goal is to store and manage the 

semantic knowledge and schema-resolution knowledge in a centralized manner for global 

schema definition and query processing. In section 4.2.4.1, schemas designed for 

Knowledge Bases to store and manage such information are presented. Next, a tool that 

assists the process of global view definition using the existing knowledge in the 



 76

Knowledge Base is presented. Finally, section 4.3 discusses the benefits of our approach 

to existing approaches. 

 

4.2.1 SemOSQL/M 

This section introduces SemOSQL/M which is a language used in the creation of 

SemODM global views over a set of component SemODM schemas. SemOSQL/M is 

similar to SQL but extended in certain aspects to incorporate features of multidatabase 

systems.  

 

In SemOSQL/M, the definition of a category in the global schema has two 

components. The first component is the signature of the global category. The second 

component is a list of SQL like statements that specify a methodology to derive 

information for the categories from component schemas. The second component includes 

one query for each of the component database (CDB) entities being integrated. 

Following is the syntax for the category definition: 

CREATE CATEGORY category_name  

  [SUPERCATEGORY super_category { ,super_category} * ] 

attr_def_list 

AS SELECT selection_list 

   FROM   entity_spec_list 

   [WHERE  search_conditions] 

      [GROUP BY selection_list] 

[HAVING search_conditions], 



 77

………… 

   SELECT selection_list 

   FROM   entity_spec_list 

   [WHERE  search_conditions] 

      [GROUP BY selection_list] 

[HAVING search_conditions], 

 

entity_spec_list ::= cdb_entity_name [ variable ] 

   { , cdb_entity_name [ variable ] }  

cdb_entity_name  ::= [cdb_name.]entity_name   

The attr_def_list consists of attributes and their domains, along with methods and 

relations. A comma separates each component query. The selection_list is an extension to 

SQL to handle schematic and data heterogeneities. The entity_spec_list determines the 

various entities from different CDBs against which the query is to be evaluated. The 

search_conditions are identical to those in SQL. The super_category defines name of the 

super category in the inheritance hierarchy.  

 

The syntax for the definition of a relation in SemOSQL/M is as follows: 

CREATE RELATION relation-name  

 (DOMAIN domain-category RANGE range-category  

[CARD cardinality][TOTAL]) 

AS  FROM  selection-list  

    WHERE join-conditions 



 78

    ………………. 

    FROM  selection-list  

    WHERE join-conditions 

The relation-name contains the name of the relation in the global schema. The domain-

category denotes the category name of the domain of the relation. The range-category 

denotes the category name of the range of the relation. The DBA can specify the freest 

(freest is described below) cardinality in cardinality as m:1, 1:m, 1:1 or m:m. If the 

cardinality is not specified, then it is assumed to the default (m:m). The totality of a 

relation is specified by TOTAL. If not specified, it is assumed to be not total by default. 

The selection-list, in the case of a semantic schema as the CDB schema, will contain a 

relation on the schema. In the case of relation spanning across component schemas, 

selection-list will contain two category names in different schema with the join-

conditions specifying a condition to satisfy in order for the objects to be considered 

related in the domain and range categories. 

  

 The schema-level conflicts and their resolutions specified using SemOSQL/M 

statements are illustrated in the next section. 

 

4.2.2 Schema-level Conflicts and Resolutions 

A number of efforts to resolve schema-level conflicts in object-oriented schemas 

and relational schemas have been discussed previously in literature. However, schema 

conflicts among a set of Sem-ODM schemas are lacking. In this section, we present 

resolutions for different types of schema-level conflict among Sem-ODM schemas. Note 



 79

that in our presentation, there is an overlap of certain ideas with previous work (such as 

in [55]), however we included them for clarity and completeness of our discussion.  

 

This section describes the different types of schema conflicts and their 

resolutions. Each conflict type will be illustrated with an example and its resolution will 

be specified using SemOSQL/M. Note that in all of the examples, we assume that the 

categories represented are semantically equivalent (i.e. SEM_EQ) and we create a 

semantically equivalent global category for the presented component schemas’  categories 

unless stated otherwise. This assumption simplifies our presentation and does not restrict 

in any aspect. The ideas presented can be easily extended to SEM_SUB and SEM_OVER 

without any loss of generality. The only difference is that we may need to specify the 

boundary conditions in the WHERE clause for category definitions appropriately. 

 

4.2.2.1 Naming Conflicts 

Conflict: Semantically equivalent categories and attributes may have different names in 

the component database schema 

Resolution: Renaming entities and attributes in the global schema and mapping them to 

their corresponding entities and attributes in CDBs. 

 
 
Example 10: Let us consider the following schemas: 
 
cdb1:     cdb2:   
 
 
 
 

STUDENT 
ssn : INTEGER 
address : STRING 

GRAD_STUDENT 
SocalSec:INTEGER 
address : STRING 

Figure 14. Schemas with Naming Conflicts 



 80

 
The SemOSQL/M statement looks as follows: 

 CREATE CATEGORY STUDENT 

    (SocialSecurity:INTEGER, address:STRING) 

 AS SELECT ssn, address  

  FROM   cdb1.STUDENT 

  SELECT SocialSec, address  

  FROM   cdb2.GRAD_STUDENT 

The extension of category STUDENT in the global schema can be obtained by visiting 

either categories, cdb1.STUDENT or cdb2.GRAD_STUDENT (since STUDENT, 

cdb1.STUDENT and cdb2.GRAD_STUDENT are related by SEM_EQ relation). 

However, our system encourages the global DBA to define all the semantically related 

entities of data sources in deriving the global construct as this information can be used in 

deriving intelligent query optimization strategies (discussed in chapter 5).  

 

4.2.2.2 Data Conflicts 

Conflict: Data conflicts occur, when semantically equivalent data are represented 

differently.  

Resolution: Homogenizing the representations. In the global schema, the data are 

represented in one form (same expression, same unit, same precision). This may lead to 

loss of accuracy/precision. For instance, converting marks from 1-100 scale to grade 

’A’,’B’,’C’,’D’ and ’F’. Homogenizing representations are allowed in SemOSQL/M using 



 81

arithmetic operators and DBA defined functions (Note that DBA defined functions are 

preceded by “dba.”  string). 

 

Example 11: Let us consider the following schema of two semantically related (i.e. 

SEM_EQ) entities: 

cdb1:           cdb2: 

             

 

 

Let us assume that weight is specified in kg (by wt_in_kg attribute) in cdb1.PERSON and 

height is specified in inches (by ht_in_inch attribute). Also, weight is specified in lbs (by 

wt_in_lb attribute) and height in centimeters (by ht_in_cm attribute). 

 

Following is a SemOSQL/M statement that resolves the data conflicts: 

 CREATE CATEGORY PERSON 

   (ssn:INTEGER, wt_in_lb:INTEGER, ht_in_in:INTEGER) 

 AS SELECT ssn, dba.change_lb(wt_in_kg), ht_in_inch  

  FROM   cdb1.PERSON 

  SELECT ssn, wt_in_lb:INTEGER, ht_in_cm/2.54  

FROM   cdb2.STUDENT 

In the above definition, to convert to lbs in the first SELECT statement, we use a DBA 

defined function (i.e. dba.change_lb()). In the second SELECT statement, the division (/) 

operator is used. Note that there is a loss of precision when converting from cm to inch. 

Figure 15. Schemas with Data Conflicts 

PERSON 
ssn        : INTEGER 
wt_in_kg     : INTEGER 
ht_in_inch   : INTEGER 

STUDENT 
ssn:Integer 

wt_in_lb:Integer 
ht_in_cm:Integer 



 82

An important aspect to note that is not explicitly stated is that, in defining conversion 

functions to resolve conflicts, we also need to specify reverse functions to perform the 

opposite conversion. For instance, for the dba.change_lb(), we need to specify a function 

dba.change_kg() which takes as input a field in lbs and outputs the value in kg. This 

function is used during query processing to translate the queries to the format of 

component database. For instance, let consider the following query: 

SELECT ssn  

FROM  PERSON 

WHERE wt_in_lb > 100 

In order to translate this query into a query of cdb1, we need to first convert value ‘100’  

mentioned in the WHERE clause of the global query to units in kgs for which the query 

processor utilizes function dba.change_kg(). 

 

4.2.2.3 Attribute Type Conflicts 

Conflict: Semantically equivalent attributes may have different types. 

Resolution: Type coercion. Most of the types may be coerced. Type coercion is allowed 

in SemOSQL/M with the keyword AS or by DBA defined functions.  

 

Example 12: Assume that for above example attribute ssn is represented as a STRING in 

cdb1.  

 CREATE CATEGORY PERSON 

  (ssn:INTEGER, wt_in_lb:INTEGER, ht_in_in:INTEGER) 

 AS SELECT ssn AS INTEGER, dba.change_lb(wt_in_kg),  



 83

  ht_in_inch  

  FROM   cdb1.PERSON 

  SELECT ssn, wt_in_lb:INTEGER, ht_in_cm/2.54  

  FROM   cdb2.STUDENT 

The above SemOSQL/M statement using AS keyword to convert the type from STRING 

to INTEGER. 

 

4.2.2.4 Attribute Granularity Conflicts 

Conflict: A single attribute in a CDB is equivalent to a group of attributes in another 

CDB. 

Resolution: There are two alternatives for this conflict type. (i.) Concatenate the attributes 

and represent it as a single attribute in the global entity. (ii.) Simplify the complex 

attribute to multiple attributes, and represent it as a group of attributes. In SemOSLQ/M, 

square brackets ([]) are used for attribute concatenation of strings; arithmetic operators 

for defined operand types and DBA defined methods for attribute simplification. 

 

Example 13: In the following schemas, cdb1.PERSON.name contains both last name and 

first name.  

 cdb1:  PERSON(name:STRING, ssn:INTEGER) 

 cdb2:  EMPLOYEE(lastname:STRING, firstname:STRING,  

ssn:INTEGER) 

Alternative 1: Concatenating the attributes for strings. 

CREATE CATEGORY PERSON 



 84

   (ssn:INTEGER, fullname:STRING) 

AS SELECT ssn, name  

 FROM   cdb1.PERSON 

 SELECT ssn, [lastname,firstname]  

 FROM   cdb2.EMPLOYEE 

 

Alternative 2: Simplifying the attributes 

CREATE CATEGORY PERSON 

   (ssn:INTEGER, firstname:STRING lastname:STRING) 

AS SELECT ssn, dba.extractFirst(name),  

  dba.extractlast(name)  

 FROM   cdb1.PERSON 

 SELECT ssn, lastname, firstname  

 FROM   cdb2.EMPLOYEE 

  

4.2.2.5 Missing Attribute Conflicts 

Conflict: There may be attributes missing in the entities of CDB schemas. 

Resolution: There are 3 ways to resolve this type of conflict. (i) Coerce non-existent 

attributes with NULL ("values not known").  Note that having a NULL value does not 

mean that every object in the CDB entity will obtain a NULL value for the missing 

attribute. If there exists a non-NULL value for an attribute of a semantically equivalent 

object from a different CDB entity, these values will be replaced instead of NULL values. 

(ii.) Exclude the extra attributes from the selection list of the component query for the 



 85

CDB entity, which has more attributes than other CDB entities with which it is being 

integrated. (iii) Model the entity with fewer attributes as the super-category of the others, 

provided that all entities being integrated are related by the inclusion relationship (that is, 

every object in the subcategory must also be an object in the super category). 

 

Examples of the first and third resolutions are given below. 

cdb1:         cdb2:   

 

 

 

Alternative 1: Using NULL values. 

 CREATE CATEGORY PERSON 

    (name:STRING, ssn:INTEGER, sex:char) 

 AS SELECT name, ssn, sex  

  FROM   cdb1.PERSON 

  SELECT name, ssn, NULL  

  FROM   cdb2.STUDENT 

 

Alternative 3: Using super/sub categories. 

 CREATE CATEGORY PERSON 

    (name:STRING, ssn:INTEGER) 

 AS SELECT name, ssn  

  FROM   cdb1.PERSON 

PERSON 
name : STRING 
ssn    : INTEGER 
sex    : CHAR 

STUDENT 
ssn:INTEGER 
name:STRING 

Figure 16. Schemas with Missing Attribute Conflicts 



 86

  SELECT name, ssn  

  FROM   cdb2.STUDENT 

 

 CREATE CATEGORY PERSON_1 SUBCATEGORY PERSON 

    (sex:CHAR) 

 AS   SELECT sex 

  FROM   cdb1.PERSON 

 

4.2.2.6 Missing Attributes with Implicit Values 

Conflict: This type of conflict has entities with missing attributes which are implicit (such 

as context information); hence not included in the CDB schema.  

Resolution: An expression cdb_attr_name = value is included as an element of the 

selection_list of a component query in the definition of the global category, where 

cdb_attr_name is the name of the missing attribute in a CDB entity, and its value is the 

implicit default value. 

 

Example 14: Let us look at the following schemas. In this case, cdb1.STUDENT, 

student_type denotes whether a given student is an undergraduate or graduate student. 

cdb1:      cdb2: 

 

 

 

  

GRAD 
ssn               :INTEGER 
name            : STRING 
student_type:CHAR 

GRAD_STUDENT 
ssn      : INTEGER 

    Name : STRING 

Figure 17. Schemas having Missing Attributes with Implicit Value Conflicts 
 



 87

CREATE CATEGORY GRADUATE_STUDENT 

    (ssn:INTEGER, name:STRING, student_type:CHAR) 

 AS SELECT ssn, name, student_type  

  FROM   cdb1.GRAD 

  SELECT ssn, name, student_type = ’G’  

  FROM   cdb2.GRAD_STUDENT 

 

4.2.2.7 Basic Relations 

Conflict: Importing relations, between entities of component database schemas, to the 

global schema. 

Resolution: We can import relations between entities of same component database and 

represent them as a relation in the global schema. The totality of a relation and cardinality 

conflicts are resolved as follows.   

• Total: The relation defined in the global schema is total iff every sub-relation it is 

based on is total, otherwise it is not total.  

• Cardinality: The cardinality is determined as the freest possible case of the sub-

relations.  By freest, we mean that we take the largest value for the right hand and 

left hand of the cardinality from the set of cardinalities of the sub-relations. For 

instance, if we have the following cardinalities (m:1) and (1:1) then freest 

cardinality is (m:1) (that is m is largest on r.h.s. and 1 in l.h.s.).  

 

Example 15: Following are component schemas of cdb1 and cdb2. 

 



 88

cdb1: 

 

cdb2: 

 

 

Let us assume that the following categories have already been created in the global 

schema. 

 CREATE CATEGROY STUDENT 

    (ssn:INTEGER, address:STRING) 

 AS SELECT ssn, name  

  FROM   cdb1.STUDENT 

  SELECT ssn, name  

  FROM   cdb2.STUDENT 

  

CREATE CATEGROY DEPARTMENT 

    (name:STRING, bldg:STRING) 

 AS SELECT name, bldg  

  FROM   cdb1.DEPARTMENT 

  SELECT name, bldg  

  FROM   cdb2.DEPARTMENT 

 

Now let us consider how the "majors" relation is defined between category STUDENT 

and DEPARTMENT in the global schema. 

majors (m:1) STUDENT 
ssn:INTEGER 
address:STRING 

DEPARTMENT 
name : STRING 
bldg   : STRING 

majoring (m:m) STUDENT 
ssn:INTEGER 
address:STRING 

DEPARTMENT 
name : STRING 
bldg   : STRING 

Figure 18. Schemas with Basic Relations 
 



 89

 CREATE RELATION majors 

  (DOMAIN STUDENT RANGE DEPARTMENT) 

  (CARD m:m) 

 AS FROM  cdb1.STUDENT.majors 

  FROM  cdb2.majoring 

 

4.2.2.8  Composite Relations 

Conflict: Importing a composition of relations, between entities of component database 

schemas, to the global schema. 

Resolution: We can import a composition of relations between entities of same 

component database and represent them as a relation in the global schema. The totality of 

a relation and cardinality conflicts are resolved as follows:   

• Total: The relation defined in the global schema is total iff the direction of the relation 

is the same as the direction of every sub-relation in the composite relation and each 

sub-relation is total.  

• Cardinality: The highest value from the left hand side of cardinality of every sub-

relation is taken for the left-hand value of the cardinality for the composite relation. 

The highest value from the right-hand value is taken for the right-hand value of the 

cardinality for the composite relation assuming the same direction of composite 

relation as the global relation. For instance, if we have the following cardinalities 

(m:1) and (1:m) of two sub-relations which make a composite relation then we take 

cardinality as (m:m) for the cardinality of composite relation. Next we find the freest 

possible relation from all local relations as the cardinality of the global relation.  



 90

 

Example 16: Following is the schema of component database cdb1. 

cdb1: 

 

 

Let us assume that the following categories have already been created in the global 

schema. 

 CREATE CATEGROY STUDENT 

    (ssn:INTEGER, address:STRING) 

 AS SELECT ssn, name  

  FROM   cdb1.STUDENT 

  

CREATE CATEGROY INSTRUCTOR 

    (name:STRING, phone:STRING) 

 AS SELECT name, phone 

  FROM   cdb1.INSTRUCTOR 

 

Now let us consider how the "major-dept-inst" relation is defined between category 

STUDENT and INSTRUCTOR in the global schema. 

 CREATE RELATION major-dept-inst 

  (DOMAIN STUDENT RANGE INSTRUCTOR) 

  (CARD m:m) 

 AS FROM  cdb1.STUDENT.STUDENT__majors__works_in___ 

works-in (m:1) majors (m:1) DEPARTMENT 
name : STRING 
bldg   : STRING 

INSTRUCTOR 
name : STRING 
phone : STRING 

STUDENT 
ssn:INTEGER 
address:STRING 

Figure 19. Schemas with Composite Relations 
 



 91

Note that we have used a similar syntax as Semantic SQL where two underscores (i.e. 

‘__’ ) means direct relation (non-inverse) while three underscores (i.e. ‘___’ ) means 

inverse relation. It is also important to point out that the cardinality of ‘major-dept-inst’  is 

(m:m) since ‘majors__’  cardinality is (m:1) and ‘works-in___’  cardinality is (1:m).  

 

4.2.2.9 Inter-schema Relations 

Conflict: Defining relations between entities in different component database schemas. 

Resolution: When defining a relation between entities in different component databases, 

the relation cannot be declared as total. This is because the CDBs are autonomous and we 

cannot guarantee the existence of a RANGE object. Also, the relation has cardinality 

(m:m) due to the same reason. 

 

Example 17: Let us look at the following schemas. 

cdb1:     cdb2:  

 

 

Let us assume that the following categories have already been defined. 

CREATE CATEGROY STUDENT 

    (name:STRING) 

 AS SELECT name  

  FROM   cdb1.STUDENT   

 

CREATE CATEGROY DEPARTMENT 

DEPARTMENT 
name : STRING 
bldg   : STRING 

STUDENT 
name        : STRING 
major-dept   : STRING

Figure 20. Schemas with Inter-schema Relations 
 



 92

    (name:STRING, bldg:STRING) 

 AS SELECT name, bldg  

  FROM   cdb2.DEPARTMENT 

 

Now let us consider the inter-schema relation majors from category STUDENT to 

DEPARTMENT. 

  CREATE RELATION majors 

    (DOMAIN STUDENT RANGE DEPARTMENT) 

 AS FROM  cdb1.STUDENT s, cdb2.DEPARTMENT d 

       WHERE s.major-dept = d.name 

Note that, a join-condition (i.e. major-dept = name) needed to be specified for an inter-

schema relation. A similar methodology can be used to create a relation between 

categories of the same CDB schemas where a relation between the categories does not 

exist (called join-relation conflict). 

 

4.2.2.10 Category Inclusion Conflicts 

Conflict: A category in a CDB is semantically subset with a category in another 

component database. 

Resolution: Two categories are defined in the global schema with one category being a 

subcategory of the other. The DBA must ensure that the entity inclusion relationship is 

preserved (that is every object is in the subcategory is also a member of the super-

category). 

 



 93

Example 18: Let us look at the following schemas. 

cdb1:      cdb2:  

 

 

Let us assume that cdb2.GRAD_STUDENT is SEM_SUBSET of cdb1.STUDENT. 

Following are the SemOSQL/M statements that define these categories in the global 

schema. 

 CREATE CATEGORY STUDENT 

    (ssn:INTEGER, address:STRING) 

 AS SELECT ssn, address  

  FROM   cdb1.STUDENT 

  SELECT ssn, address  

  FROM   cdb2.GRAD_STUDENT 

 

 CREATE GRAD_STUDENT SUBCATEGORY STUDENT 

    (major:STRING) 

 AS  SELECT major 

  FROM   cdb2.GRAD_STUDENT 

 

4.2.2.11 Attribute Inclusion Conflicts 

Conflict: There is an inclusion relationship between attributes in semantically equivalent 

entities.   

Resolution: We use inheritance to resolve the conflict. 

GRAD_STUDENT 
ssn      :INTEGER 
address:STRING 
major  : STRING 

      STUDENT 
ssn      :INTEGER 
address:STRING 

Figure 21. Schemas with Category Inclusion Conflicts 
 



 94

 

Example 19: Let us look at the following schema. 

cdb1: PEOPLE(name:STRING, age:INTEGER, childname:STRING) 

cdb2: PERSON(name:STRING, age:INTEGER, son_name:STRING) 

 

The following SemOSQL/M statements define the inheritance hierarchy: 

 CREATE CATEGORY PARENTS 

    (name:STRING, age:INTEGER, child:STRING) 

 AS SELECT name, age, childname 

  FROM   cdb1.PEOPLE 

  SELECT name, age, son_name 

  FROM   cdb2.PERSON 

 

 CREATE CATEGORY PARENTS_OF_MEN SUBCATEGORY PARENTS () 

 AS   SELECT  *  

  FROM   cdb2.PERSON 

 

4.2.2.12 Category-versus-Attribute Conflicts 

Conflict: These conflicts arise when a concept is represented as a category in one CDB, 

however as a set of attributes (belonging to a semantically equivalent entity) in another 

CDB. 

Resolution: The category may be split into multiple parts, or two categories (or parts 

thereof) may be integrated into one. 



 95

 

Example 20: Let us look at the following schemas. 

cdb1:    cdb2:  

 

 

 

Following are the SemOSQL/M statements: 

Alternative 1: Splitting 

CREATE CATGEORY STUDENT 

    (name:STRING, ssn:INTEGER) 

AS  SELECT name, ssn  

  FROM   cdb1.STUDENT 

  SELECT name, ssn  

  FROM   cdb2.STUDENT 

 

CREATE CATEGORY ADDRESS 

    (address:STRING) 

AS   SELECT address 

  FROM   cdb1.STUDENT  

  SELECT [street, city, zip] 

 FROM   cdb2.ADDRESS 

 

CREATE  RELATION ADDRESS_OF 

has (m:1) 
STUDENT 

ssn     : INTEGER 
name : STRING 
 

ADDRESS 
street : STRING 
city    : STRING 
zip     : STRING 

STUDENT 
ssn     : INTEGER 
name : STRING 
address : STRING 

Figure 22. Schemas with Category-versus-Attribute Conflicts 
 



 96

      (DOMAIN STUDENT RANGE ADDRESS) 

AS  FROM    cdb1.STUDENT a, cdb1.STUDENT b 

 WHERE  a.STUDENT = b.STUDENT 

 FROM    cdb2.STUDENT__has__ 

Note that we used the surrogate (STUDENT attribute) to identify common objects in 

WHERE clause. 

 

Alternative 2: Integrating 

 CREATE CATEGORY STUDENT 

    (ssn:INTEGER, name:STRING, address:STRING) 

 AS  SELECT ssn, name, address  

  FROM   cdb1.STUDENT 

  SELECT ssn, name, [has__street, has__city, has__zip]  

  FROM   cdb2.STUDENT 

Note that in alternative 2, we use the relation has to query category cdb2.ADDRESS. 

 

Usually, when resolving schema-level conflicts a combination of the above 

resolutions may need to be applied. The DBA creating the global views firstly determines 

the semantic relation between global schema construct and one of the component 

database schema constructs. Next, Knowledge Base tool interacts with the DBA to assist 

in creating a semantically correct global view from the component database schemas. In 

the next sections, we will consider the methodologies of managing the meta-data and 



 97

knowledge gained in integration for intelligent design decisions and query processing 

strategies.   

 

4.2.3 Handling Inconsistent Data 

In previous discussions, we did not consider the issue of inconsistent data. That is, 

similar concepts in different component databases having different data values. For 

instance, let us consider a category EMPLOYEE derived from categories 

cdb1.EMPLOYEE and cdb2.EMP. Both categories contain an attribute called salary 

which represents the salary of an employee. Let us assume that the equivalence condition 

is cdb1.EMPLOYEE.social-sec = cdb2.EMP.ssn . It is possible that the attribute salary in 

categories cdb2.EMP and cdb1.EMPLOYEE may contain different values when 

cdb1.EMPLOYEE.social-sec = cdb2.EMP.ssn . That is, same employee may have 

different salary values. Until now, we choose either cdb1.EMPLOYEE.salary or 

cdb2.EMP.salary value even for equivalent objects assuming that they are consistent. 

Another resolution is to obtain the combined values of cdb1.EMPLOYEE.salary and 

cdb2.EMP.salary using some aggregate functions. Let us look at the SemOSQL/M 

statement for this case: 

CREATE CATEGORY EMPLOYEE 

    (ssn:INTEGER, name:STRING, salary:NUMBER) 

 AS  SELECT cdb1.EMPLOYEE.social-sec, cdb1.EMPLOYEE.name,  

    SUM(cdb1.EMPLOYEE.salary, cdb2.EMP.salary)  

  FROM    cdb1.EMPLOYEE, cdb2.EMP 

  WHERE cdb1.EMPLOYEE = cdb2.EMP BY EQ_COND 



 98

  SELECT social-sec, name, salary 

  FROM   cdb1.EMPLOYEE 

  WHERE cdb1.EMPLOYEE BY BOUNDARY  

   (cdb1.EMPLOYEE – cdb2.EMP) 

  SELECT ssn, name, salary 

  FROM   cdb2.EMP 

  WHERE cdb2.EMP BY BOUNDARY (cdb2.EMP – cdb1.EMPLOYEE) 

Note that in the above instance, we create a global category EMPLOYEE which is a 

union of objects of cdb1.EMPLOYEE and cdb2.EMP which themselves are related by 

SEM_OVER (i.e. cdb1.EMPLOYEE SEM_OVER cdb2.EMP). Hence, when considering 

objects in category EMPLOYEE which are common to both categories cdb1.EMP and 

cdb2.EMPLOYEE by object equivalence (presented in SemOSQL/M as EQ_COND), we 

take the SUM of  cdb1.EMPLOYEE.salary and cdb2.EMP.salary to obtain the salary of 

EMPLOYEE (i.e. handling inconsistencies). In other cases, we obtain either 

cdb1.EMPLOYEE.salary or cdb2.EMP.salary for the boundary cases. The equivalence 

and boundary cases are specified in the WHERE clause. 

  

4.2.4 Knowledge Management in Database Integration  

It is advantageous to store and manage the meta-data and knowledge mentioned 

earlier in a centralized manner. This will allow easily verifying the consistency of 

existing knowledge, acquiring new knowledge and maintaining the knowledge. The use 

of semantic dictionaries, global thesauruses and other techniques has been proposed in 

literature. We adopt Knowledge Bases for this purpose. The schemas for the storage 



 99

component of the Knowledge Bases are discussed in section 4.2.4.1. A tool that utilizes 

the knowledge in the knowledge base in creating the global views is outlined in section 

4.2.4.2. 

 

4.2.4.1 Knowledge Base 

A Knowledge Base (KB) is used as a means for storage and manipulation of 

meta-data and knowledge discussed previously. In the architecture (see chapter 2), 

Knowledge Bases act as the interface between integration/schema definition phase with 

query processing phase at the Global and Relational Sites. The knowledge acquired 

during the integration/schema definition processes is made available through the 

Knowledge Base for query processing. In our architecture (refer chapter 2), three 

Knowledge Bases can be identified.  Knowledge Bases used at the Relational and 

Semantic Sites and a Knowledge Base used at the Global Site. The Knowledge Bases 

store and manage different types of information at the different sites. Due to the fact that 

Sem-ODM is an expressive and powerful data model, it was natural to utilize a Sem-

ODB for the storage component for the Knowledge Bases. The semantic schema designs 

for each Knowledge Base are presented in appendices 1-5. In the following sections, we 

describe each KB schema. 

 

4.2.4.1.1 Knowledge Bases at Component Sites 

The KB at the Relational Site subsumes the information content captured by the 

KB at the component Semantic Site. Hence, we will discuss the Knowledge Base at the 

Relational Site and provide descriptions for the common portions with the knowledge 



 100 

base at Semantic Site. The knowledge base schema at the Relational Site captures the 

following information: (i.) relational database schema; (ii.) transformed Sem-ODM 

database schema; and (iii.) mapping information between the relational database schema 

and its transformed Sem-ODM schema. This information is crucial for both schema 

transformation and query translation. Also, semantic enrichment of the transformed 

schemas (which includes incorporating context information through ontology and 

property functions) is stored in the Knowledge Base. The Integration and Knowledge 

Reconciliator module uses this information for semantic heterogeneity resolution. The 

sub-schemas that make up the knowledge base schema of the Relational Site are 

presented in appendices 1 – 4. Each sub-schema is described below. 

 

Sem-ODM consists of category, which may be inherited and relation, which is a 

relationship between categories.  Appendix 1 presents the meta-schema of Sem-ODM. 

Note that this sub-schema covers only the main concepts of the Sem-ODM data model. A 

detailed meta-schema and its descriptions can be found in [117]. The primary constructs 

of Sem-ODM are CATEGORYs and RELATIONs. A CATEGORY can be either 

ABSTRACT or CONCRETE. ABSTRACT CATEGORYs represent objects that are 

explicitly created representing real-world concepts, ideas or objects. CONCRETE 

CATEGORYs represents printable values. CONCRETE CATEGORY captures the 

different types of datatypes present in Sem-ODM. These can be different number ranges 

(represented by NUMBERS RANGE), string ranges (represented by STRINGS RANGE), 

user enumerated types (represented by ENUMERATED TYPE) or binary range types 

(represented by BINARY). A RELATION is a mapping between objects in the domain to 



 101 

objects in the range. A RELATION having a range of a CONCRETE CATEGORY is 

termed an attribute of the domain. This subschema has the ability to store any semantic 

schema. 

 

The meta-schema of a relational database schema is shown in appendix 2. This 

sub-schema contains TABLEs, FIELDs which belong to tables and their respective 

DATATYPEs. Primary and foreign keys are represented by categories PRIMARY KEY 

FIELD and FOREIGN KEY FIELD respectively. The functional dependencies are 

represented by relation refers-to. It is evident how the relational schemas are stored in 

this sub-schema and hence not discussed further. 

 

 The subschema illustrated in appendix 3 represents the mapping information 

between the transformed Sem-ODM and component relational schemas. Categories 

META OBJECT and COMPONENT META OBJECT are the same categories represented 

in appendices 1 and 2 respectively. It is significant to note that category META OBJECT 

is not directly derived from COMPONENT META OBJECT, instead from category VIEW 

META OBJECT. VIEW META OBJECT is categorized to COMPONENT META OBJECT 

and VIEW SPECIFICATION, which is further categorized to categories VIRTUAL 

CATEGORY, VIRTUAL RELATION and VIRTUAL ATTRIBUTE. If the object in the 

Sem-ODM schema is directly derived from the relational schema object, then META 

OBJECT is derived from an object in category COMPONENT META OBJECT. 

However, it is quite possible to contain different types of schematic heterogeneities 

between Sem-ODM schema and relational schema similar to schematic heterogeneities 



 102 

between Sem-ODM component and global schemas (see section 4.2.2). Similar to the 

creating global Sem-ODM schemas from component schemas, the different types of 

schematic heterogeneities are specified in SemOSQL/M and translated and stored in the 

knowledge base schema. Note that we will not discuss schema level heterogeneity 

resolutions between Sem-ODM and relational schemas as the issue of schematic 

heterogeneity resolution between OO and relational data models have been discussed 

extensively in previous work and can be directly applied to Sem-ODM as described in 

[7]. 

  

The fact that we store the derivation information specified in SemOSQL/M in the 

knowledge base schema, allows to conveniently derive the semantics of the conflicts 

resolutions. The schematic heterogeneity resolutions are stored in the categories 

represented by VIEW SPECIFICATION. Category VIRTUAL CATEGORY captures 

schema level heterogeneities that may occur between a category in Sem-ODM schema 

and a set of tables in the relational schema. For instance, a category GRAD_STUDENT in 

Sem-ODM schema represents the graduate students. However, this is derived from table 

STUDENT which represents both graduate and undergraduate students. Hence, an object 

in VIRTUAL CATEGORY will represent the extraction of only graduate students from 

table STUDENT via the attribute VIRTUAL_CATEGORY::where clause (this example 

describes the boundary condition specification using the where clause). Similarly, a 

relation in the Sem-ODM schema is derived from a functional dependency in component 

relational schema. This is specified by category VIRTUAL RELATION. An attribute in 

the Sem-ODM schema may have schema level conflicts with fields of the relational 



 103 

schema (similar to conflicts between component Sem-ODM schemas and global Sem-

ODM schema specified in sections 4.2.2). This information is captured by category 

VIRTUAL ATTRIBUTE. Likewise, different types of heterogeneities are resolved with the 

addition of middle-level categories between transformed schema and component schema.  

 

For clarity and illustration purposes, we describe the following example. 

Example 21. Let us consider the following relational schema. 

STUDENT(soc-sec, last-name, first-name, birth-year, major-dept, minor-dept) 

INSTRUCTOR(soc-sec, last-name, first-name, birth-year) 

DEPARTMENT(dept-code) 

DEPARTMENT_NAMING(name-key, main-name) 

WORK(instructor-id-in-key, department-main-name-in-key) 

The names of tables are represented outside the brackets in capital letters and fields of 

each table are placed inside the appropriate brackets. The primary key fields of each table 

are underlined. The fields major-dept and minor-dept of table STUDENT are foreign keys 

referring to dept-code field of DEPARTMENT table representing the student’s majoring 

and minoring departments respectively. The dept-code field of table DEPARTMENT is a 

foreign key referring to the name-key field of table DEPARTMENT_NAMING. The field 

instructor-id-in-key of table WORK is a foreign key field referring to soc-sec field of 

table INSTRUCTOR and department-main-name-in-key is a foreign key field referring to 

field dept-code of table DEPARTMENT.  

 



 104 

Let us assume that the KDBTool and DBA at the component Relational Site 

generated the Sem-ODM schema shown in figure 23, which represents the transformed 

relational schema represented above. The storage of the relational schema and its 

transformed Sem-ODM schema in the meta-schemas presented in appendices 1 and 2 are 

self-explanatory and is omitted from discussion. We consider the mapping between 

relational and Sem-ODM schema which is captured by the sub-schema presented in 

appendix 3. This mapping information and the respective categories of sub-schemas 

shown in appendices 1-3 are given in table 1. 

 

 

 

 

 

 

 

 

 

Semantic Schema Entity  Relational Schema Entity Category in Knowledge Base   
                                                          (is-derived-from)  Schema 
 

PERSON   STUDENT   TABLE    
    INSTRUCTOR   TABLE 
PERSON.soc-sec   STUDENT.soc-sec  FIELD 
                                                          INSTRUCTOR.soc-sec  FIELD 
PERSON.last-name  STUDENT.last-name  FIELD 
                                                          INSTRUCTOR.last-name  FIELD  
PERSON.first-name  STUDENT.last-name  FIELD 
                                                          INSTRUCTOR.last-name  FIELD 
PERSON.birth-year  STUDENT.birth-year  FIELD 
                                                          INSTRUCTOR.birth-year  FIELD 
STUDENT   STUDENT   TABLE 

PERSON 
soc-sec:Number key 

last-name: String 
first-name: String 
birth-year: Date 

STUDENT 
 

INSTRUCTOR 
 

DEPARTMENT 
dept-code: Number key 

name:String 1:m 

major (m:1) 

minor (m:1) 
works-in (m:m) 

Figure 23. Semantic Schema Created By Transforming a Relational Schema 



 105 

INSTRUCTOR   INSTRUCTOR   TABLE 
DEPARTMENT    DEPARTMENT   TABLE 
DEPARTMENT.name  DEPARTMENT_NAMING. VIRTUAL_ATTRIBUTE 
                                                          main-name 
                                                          from: DEPARTMENT,  (represented by VIRTUAL_ 
                                                                    DEPARTMENT_  RELATION which is joined by 
                                                                    NAMING   VIRTUAL_ATTRIBUTE::has 
    where: DEPARTMENT.dept- relation) 
                                                                    code = DEPARTMENT 
                                                                    _NAMING.name-key  
STUDENT::major  from: STUDENT,   VIRTUAL_ RELATION 
                                                                   DEPARTMENT   
                                                         where: STUDENT.major-dept = 
                                                                   DEPARTMENT.dept-code 
STUDENT::minor  from: STUDENT,   VIRTUAL_ RELATION 
                                                                   DEPARTMENT   
                                                         where: STUDENT.minor-dept = 
                                                                   DEPARTMENT.dept-code 
INSTRUCTOR::work  from: INSTRUCTOR,   VIRTUAL_ RELATION 
                                                                   WORK, DEPARTMENT  
                                                         where: (INSTRUCTOR.soc-sec = 
                                                                   WORK.instructor-id-in-key) 
                                                                   AND (WORK.department- 
                                                                   main-name-in-key =  
                                                                   DEPARTMENT.dept-code) 
 

 

The above example illustrates the use of middle-layer categories in the mapping 

schema (Appendix 3) for resolving conflicts. The attribute DEPARTMENT.name has 

cardinality 1:m which is not possible to be represented directly by a relational schema. 

Thus, VIRTUAL_ATTRIBUTE category is used for resolving this conflict. Similarly, 

relations in semantic schema cannot be directly mapped to relational schema constructs 

and hence we introduce the category VIRTUAL_RELATION.  

 

Appendix 4 depicts sub-schema capturing ontology information and mappings 

from Sem-ODM schema to the ontology. The ontology is composed of a set of META 

CONCEPTs which are either CONCEPTs or RELATIONSHIPs between concepts. 

According to the discussion in chapter 3, a semantic network is used as a representation 

Table 1. Mappings between Sem-ODM and relational schema 



 106 

scheme for ontologies. Thus, in sub-schema of appendix 4, the category CONCEPT maps 

to the node of the semantic network while category RELATIONSHIP maps to the links 

between the nodes. A meta-object of Sem-ODM schema maps to the ontology via a 

property function represented by category PROPERTY FUNCTION. In the general case, 

attributes and categories in Sem-ODM are mapped to a CONCEPT while relations in 

Sem-ODM are mapped to an OTHER relationship. Property functions have a primary 

mapping and a set of restrictions which is captured by relation restricted-by. The 

mapping from a Sem-ODM schema to ontology is discussed in chapter 3 and hence not 

explained further. The current implementation of SemWrap [96] does not support 

ontology mappings, however plans to include ontology concepts in the future versions. 

 

Knowledge Base at Semantic Site is similar to Knowledge Base schema at 

relational site. However, it contains only sub-schemas shown in appendices 1 and 4 as it 

does not need to contain relational schemas similar to the KB at Relational Site. 

However, similar to Relational Site’s Knowledge Base, it contains mappings to the 

ontological concepts. The next section describes the Knowledge Base at the Global Site 

that stores integration information from a set of Sem-ODM schemas. 

 

4.2.4.1.2 Knowledge Base at Global Site 

The heterogeneities between a set of Sem-ODM schemas are resolved at the 

Global Site. This process requires (i.) identification of semantic relations between 

constructs of component schemas; (ii.) acquiring means for determining object 

equivalences for related constructs; (iii.) determining boundary conditions of related 



 107 

entities; and (iv.) resolving schematic heterogeneities. The KB at Global Site focuses on 

the storage of these types of knowledge. The concepts mentioned in (i.)-(iii.) have been 

discussed in chapter 3 and (iv.) in the previous sections of this chapter. 

 

A sub-schema of the KB schema at Global Site is presented in appendix 5. The 

category META OBJECT is part of a sub-schema similar to appendix 1 (not shown due to 

redundancy). Category VIEW SPECIFICATION has subcategories VIRTUAL RELATION, 

VIRTUAL CATEGORY and VIRTUAL ATTRIBUTE similar to sub-schema in appendix 3. 

These categories are not shown in this schema to avoid complexity and redundancy. 

Attributes of each category are omitted as well from discussion to avoid complexity and 

ease of discussion. Category SEMANTIC RELATION captures the different types of 

semantically related entities. Semantic relation “semantically disjoint”  (i.e. SEM_DIS) is 

not represented and assumed by default. Object equivalences (described in section 3.2) 

are represented by category OBJECT EQUIVALENCE PATH. The boundary conditions 

(discussed in section 3.2) are specified in category BOUNDARY CONDITION and are 

represented by an object of INTEGRATED META OBJECT (using relation represented 

_by). Similar to appendix 4, INTEGRATED META OBJECT is mapped to ontology. This 

sub-schema is omitted since it is discussed in appendix 4. The INTEGRATED META 

OBJECT category contains all the concepts of component databases as well as global 

views. A META OBJECT belongs to (represented by belongs-to relation) either a global 

view (represented by categories GLOBAL) or component database schema (represented 

by categories COMPONENT DATABASE). A global meta object is derived from an 

INTEGRATED META OBJECT category (via relation is-derived-from) similar to META 



 108 

OBJECTs being derived from VIEW META OBJECT of subschema of appendix 3. Most 

of the discussions on previous schemas in the above sections overlap with this schema 

and hence we avoid further discussion of this schema. A pre-cursor to the work presented 

in this section can be found in [93].  

 

For illustration purposes, we describe the following example that describes the 

different types of semantic knowledge stored at the KB of Global Site. 

Example 22. Consider two schemas from different component databases, DB1 and DB2. 

Let us assume that schema of DB1 has the Sem-ODB schema presented in figure 23 of 

universityA. Let DB2 have the Sem-ODM schema of universityA shown in figure 24. We 

have the following semantic relations from schemas of DB1 and DB2. The semantic 

relation, SEM_DIS, is assumed by default: 

DB1: 

[1] DB1.STUDENT SEM_SUB DB1.PERSON   (ISA relationship) 

[2] DB1.INSTRUCTOR SEM_SUB DB1.PERSON (ISA relationship) 

DB2: 

EMPLOYEE 
social-security:Number key 

first-name: String 
last-name: String 
position : String 
salary : Number 

FACULTY STAFF 

DEPT 
code: Number key 
name: String 1:m 
description: String 

works-for (m:m) 

Figure 24. Sem-ODM Schema of DB2 



 109 

[3] DB2.STAFF SEM_SUB DB2.EMPLOYEE   (ISA relationship) 

[4] DB2.FACULTY SEM_SUB DB2. EMPLOYEE (ISA relationship) 

Semantic relations between DB1 and DB2: 

[5] DB1.PERSON SEM_OVER DB2.EMPLOYEE (since category 

PERSON contains the faculty and students of universityA while category 

EMPLOYEE contains faculty and staff of universityA).  

We will not enumerate all the possible semantic relations between entities of DB1 and 

DB2 due to space limitations. These semantic relations are obtained using rules described 

in chapter 3. Also, the global DBA can identify them as well. For this example, object 

equivalence conditions and boundary conditions for relation [5] are illustrated below.  

 

Assuming that key attributes social-security of DB2.EMPLOYEE match key attribute soc-

sec of DB1.PERSON are both referring to the social security numbers of a person, we can 

directly obtain the following equivalence condition: 

  DB1.PERSON.soc-sec = DB2.EMPLOYEE.social-security 

Hence, the same real world persons in both DB1.PERSON and DB2.EMPLOYEE can be 

determined by comparing their social-security numbers. 

 

The boundary conditions for [5] include the following. Note that in the following 

rules, we have assumed that all objects of category DB2.EMPLOYEE are either objects of 

category DB2.FACULTY or DB2.STAFF which are disjoint categories. 



 110 

1. EXT(DB1.PERSON) ∩ EXT(DB2.EMPLOYEE): contains the set of 

instructors/faculty at universityA, which is represented by entities DB2.FACULTY and 

DB1.INSTRUCTOR which are related by semantic relation SEM_EQ. 

2. EXT(DB1.PERSON) – EXT(DB2.EMPLOYEE): contains the set of students of 

universityA, which is represented by entity DB1.STUDENT. 

3. EXT(DB2.EMPLOYEE) – EXT(DB1.PERSON): contains the set of staff members of 

universityA, which is represented by entity DB2.STAFF 

This information will be stored in the Knowledge Base of Global Site and used in the 

creation of global schemas/views and query processing. The creation of global views 

with the assistance of a tool is discussed in the next section. 

 

4.2.4.2 A Tool used for Global View Definition 

A major overhead in the global schema approach is the need for creating and 

maintaining a global schema over the component heterogeneous databases. In our 

approach, we feel that a single global schema is not required. This is because of the large 

number of component schemas are integrated into the system and hence it is usually the 

case that a single user/user group may not require access to all of such information. 

Hence, we propose the creation of global views for different groups of users meeting 

their requirements. This reduces the complexity of creating and maintaining a global 

schema significantly. Also, a tool to semi-automatically create the global views is 

described in this section, thus reducing the complexity and overhead further. This tool 

uses the semantic knowledge, stored in the Knowledge Base, to provide intelligent design 

decisions in creating global views.  



 111 

 

Similar to creating a Sem-ODM schema for an application, we first proceed 

creating the constructs (i.e. categories and relations) for the global view. Once, we have 

defined the global view for the particular user group or application, the next step is to 

define the meaning for each construct of the global schema. This is performed, by 

mapping each construct onto the ontology. The knowledge base tool, then obtains all the 

semantically related constructs (i.e. SEM_EQ, SEM_SUB, SEM_OVER) from the 

component database schemas by referring to the knowledge base. Also, it provides with 

information as to the degree of completeness of information in the component database 

constructs (since the semantic relations are based on extents of schema constructs). This 

provides the global DBA to express the extents for each construct in the global schema. 

 

For instance, in the scenario of example 22, we create a category TEACHER in 

the global schema which represents the set of instructors in UniversityA. Then, the tool by 

referring the Knowledge Base will present categories INSTRUCTOR and PERSON of 

DB1 with the appropriate boundary conditions and means to create object equivalences.  

Also, it will present the DBA with categories STAFF and EMPLOYEE with the relevant 

information. The DBA need not learn any semantics of the component database schema 

or specific information about the component schemas. The DBA does not require 

searching all the constructs of the component database schemas to find schema 

constructs, which contain relevant information. Basically, the problem of semantic 

heterogeneity is resolved. This is one of the major obstacles for ubiquitous use of 

multidatabase technology and this factor is resolved. Next, the DBA defines the global 



 112 

view resolving schema-level heterogeneities. The tool makes important suggestion at this 

stage as well. By considering the different types of schematic heterogeneities present in 

the Knowledge Base, the tool is capable of suggesting intelligent design choices for 

schema definition. 

 

Another limitation of the global schema approach is that the necessity for all 

semantic knowledge before-hand in creating a global schema. Our approach allows 

incremental acquisition of knowledge about component schemas as they progress and 

learn about the component database schema. For instance, certain component schema 

may not be mapped to ontologies initially due to lack of information. They may be 

represented as semantically disjoint entities from semantically related entities. When 

knowledge is acquired incrementally over a period of time, these new semantic relations 

are identified. Note that this process is transparent to the users’  global schema which is 

designed in top-down methodology similar to centralized database design. As new 

semantically related entities are gained they are mapped to constructs of the global views, 

hence made available to global users without the need to change their applications. 

 

There are many other advantages of using our approach. It is quite probable that 

the schemas of the underlying databases may change. In our approach, the changes have a 

minimal effect of the global users with the least overhead to the global DBA. When the 

semantics of a component schema construct change, say a construct is deleted, the 

changes are reflected in the property functions and ontology mappings, which are 

transmitted to the global site. This change may result in a change of semantic relations 



 113 

between component schema construct and global schema construct. Then this mapping is 

deleted or altered as necessary and informed to the DBA. The users of global view do not 

see any effect. A query on the global construct will obtain results from a different 

component database. Also, the completeness of the query results can be viewed notified 

to the user if the system is unable to provide complete answers due to the change in 

semantics. For instance, in the previous example, it is learnt that DB1.INSTRUCTOR 

category represents instructors of UniversityB rather than UniversityA. This change is 

noted in the ontology mapping and transmitted to the global site. At the global site, there 

will be change from global category TEACHER being related by SEM_EQ to 

DB1.INSTRUCTOR to TEACHER SEM_DIS DB1.INSTRUCTOR assuming that 

instructors in UniversityA cannot be instructors of UniversityB. This change is propagated 

within the Knowledge Base using rules described in chapter 3 to make the knowledge 

consistent. The mapping from global category STUDENT to DB1.INSTRUCTOR is 

deleted automatically. Hence, now a query to obtain instructor information will be 

directed to only component database DB2. This change is transparent to the user and 

minimal work by the DBA. The DBA is informed of the change by the tool. 

 

The next section summarizes this chapter with a description of the advantages of 

the discussed approach to database integration when compared with other approaches. 

 

4.3 Summary 

In this chapter, we introduced a language called SemOSQL/M to define global 

views over a set of Sem-ODM component schemas. An exhaustive list of the different 



 114 

types of schematic heterogeneities that may occur during integration of a set of 

component Sem-ODM schemas is discussed and their resolutions are presented. 

Knowledge management in our architecture is discussed. Knowledge Base schemas for 

global and component sites are extensively discussed. Finally, a tool that assists in 

creating global views is described. 

 

Our approach to integration is unique from other approaches as it combines the 

semantic conflict resolution techniques (described in chapter 3) with schema-level 

conflict resolution. We have seen a similar approach in [51] which combines context 

information to schema level heterogeneity resolution. However, our approach to semantic 

heterogeneity resolution is based on semantic relations (similar to [83]) in contrast to 

[51]. 

 

As we mentioned in the first chapter, the ideal situation is to provide an interface 

similar to a centralized database system to the multidatabase users. Similar to a 

centralized database system, this requires the creation of global schemas/views. A major 

disadvantage in global schema multidatabase approach, which the critics of this approach 

have pointed out, is the significant overhead in the creating and maintaining of a single 

global schema. This factor is significantly reduced in our approach by allowing different 

views to be created for different user groups. This factor avoids the creation of a single 

global schema. Also, the need for complete semantic knowledge of all schemas is 

avoided. The methodology allows step-wise incremental approach to gain knowledge 

about the component schemas, which minimizes the effect to the global users whose 



 115 

global views are designed in a top-down manner to meet their requirements. Also, an 

intelligent tool, utilizing the semantic knowledge acquired during integration process is 

outlined which automates a significant portion of creating a global view. This tool 

resolves the semantic heterogeneity problem.  

 

Also, in today’s dynamically changing environments, efficient means for 

incorporating changes must be considered. Since our integration is based on semantic 

knowledge, the changes in semantics are easily propagated without affecting the global 

users or applications of the global views. Also, it is possible to guarantee the 

completeness of user’s query results, since our semantic knowledge is based on extents. 

When complete answers are impossible, the degree of completeness can be efficiently 

measured. 

 

In summary, the benefits of our approach include (i.) ideal solution to 

heterogeneous data access problem by providing global views for users’  accessing 

multiple heterogeneous data sources in an expressive data model and query language 

(similar to centralized database systems); (ii.) our methodology avoids the overhead of 

creating and maintaining a single global schema by allowing the creation of multiple 

global views for each user group; (iii.) global view definition is performed in a top-down 

manner similar to database design methodologies of a centralized system, meeting the 

requirements of each user group. Next, these schemas are mapped to ontologies from 

which automatic semantic heterogeneity resolution takes place. This is significant 

improvement from existing approaches; (iv.) the ability of our methodology to gain 



 116 

semantic knowledge in a step-wise, incremental manner without affecting the global 

users is beneficial. This has significant advantages from previous attempts, which require 

all semantic knowledge before creating a global schema. Obtaining such knowledge 

before-hand may be impossible and impractical for legacy database system due to the un-

availability of domain experts; and (v.) our approach can handle dynamic changes of 

component database schemas in a very graceful manner (in contrast to most previous 

approaches). 

 

The above-mentioned factors are significant improvements from the existing 

approaches. Hence, our approach to database integration provides an ideal situation for 

distributed, heterogeneous database access reducing the overhead incurred previously.  

The next chapter focuses on the query processing aspects of the Heterogeneous 

Distributed Database System. Query optimization algorithms try to exploit the semantic 

knowledge for efficient query processing providing results that adhere to data quality 

attributes such as completeness.  



 117 

5. QUERY PROCESSING 

We have seen extensive work on query processing and optimization in database 

systems, centralized and distributed alike, in the past two-three decades. This has resulted 

in important and well-understood principles and approaches to query processing in 

general. Query processing in multidatabase systems include several steps. Firstly, a query 

based on a global view is decomposed into a set of subqueries, along with a query 

execution plan (postquery processing [79]) to combine the results of the subqueries. Next, 

the translation and optimizing of subqueries at the local sites takes place. Query 

processing in multidatabase systems borrows concepts and techniques used in query 

processing of centralized and distributed database systems. However, certain unique 

features of multidatabase systems require developing innovative techniques for query 

processing and optimizing.  

 

In this chapter, we will focus on Semantic SQL query processing in the 

Heterogeneous Distributed Database System introduced in the previous chapters. Our 

approach to Semantic SQL query processing and optimizing incorporates many existing 

techniques discussed in literature related to centralized database query processing, 

distributed database query processing and multidatabase query processing. We discuss 

some related work in section 5.1. In section 5.2, we discuss our approach to Semantic 

SQL query processing in a multidatabase environment. The adoption of techniques 

initially developed for relational SQL query processing to Semantic SQL query 

processing is described. A unique feature of our integration process (see chapters 3-4) is 

the acquisition of semantic knowledge. Such semantic knowledge can be exploited for 



 118 

optimization of Semantic SQL queries. We present some techniques that utilize the 

semantic knowledge for query optimization. Finally, concluding remarks for the chapter 

is presented. 

 

5.1 Related Work 

The relational model was introduced by Codd in [26] (extended later in [27]). 

There onwards we have seen relational algebra being used to query a relational schema. 

Next, we have seen the development of declarative query languages for the relational 

model and finally the standard query language SQL [110] which has been extended from 

time to time (SQL-89, SQL-92, SQL-99). Optimization of such queries specified in these 

query languages has taken shape in a centralized environment. Usually, a SQL query 

statement is broken into blocks of SQL statements (each block containing SELECT-

FROM-WHERE-GROUP BY clause). Next, each query block is transformed into a set of 

relational algebra operators specifying the query. Logical optimization takes place at this 

level (rule-based optimization – such as pushing down selects). Physical optimization is 

performed (considering index structures, access paths, etc.) to reduce data retrieval costs. 

Many database textbooks (such as  [32], [40], [45], [88], [116] and others) discuss this 

process in detail.  

 

Distributed database query processing considers the data distribution costs, 

transmission costs and horizontally and vertically partitioned relations. Many approaches 

for distributed database query processing and optimization (such as semi-joins [11]) are 

described in literature [124]. Some of these techniques can be directly applied for query 



 119 

processing and optimizing in multidatabase systems as well. However, distinctive 

features of multidatabase systems give rise to unique issues which do not arise in query 

optimization for homogeneous distributed database systems. Some unique features of 

multidatabase systems from distributed database systems include [73]: 

(i.) Site autonomy: Component database retains complete control over local data and 

processing. This fact has many implications such as communication autonomy 

which means that component sites independently determines what information it 

will share with the global system, what global requests it will service, when it will 

participate in the multidatabase system, and also when it will stop participating. 

This adds complexity to the query processing due to dynamical changes of the 

data sources. Another implication is design autonomy which means that 

component databases are free to optimize access paths and query processing 

methods without any obligation to the multidatabase system. Also, statistical and 

relevant information may not be available for the global query optimizer. Thirdly, 

execution autonomy where the global system is considered as another user and no 

cooperation between global query processing and component database query 

processing modules to correlate optimizing procedures similar to distributed 

database query processing. 

(ii.) System heterogeneity: System heterogeneity occurs at several different levels. 

Component databases may reside on computer systems with different 

architectures, connected via different types of networks, use different types of 

communication protocols and support different types of data models. Hence, the 



 120 

assumption in distributed databases that the local sites equal in terms of the 

processing capability no longer holds. 

(iii.) Semantic heterogeneity: Same real-world object may be stored in different 

component databases. This situation is avoided in the homogeneous distributed 

database approach. 

Query processing in multidatabase systems needs to address these issues. 

 

 The issues of system and semantic heterogeneity in multidatabase systems have 

been discussed extensively in previous chapters. We discuss some related work in query 

processing and optimizing in multidatabase systems. Due to the different data models of 

the component databases, a global query after decomposing into a set of subqueries needs 

to be translated into the appropriate query language supported by the component 

database. Query translation between different query languages have been studied 

extensively by many researchers ([25], [64], [80], [126], and others). Most of the work is 

in translation from either object-oriented databases to relational databases or relational 

queries to queries against hierarchical and network databases. Translation of Semantic 

SQL queries to relational queries in SemWrap [96] has been detailed in [74]. Due to site 

autonomy, obtaining statistics from component database systems is difficult for query 

optimization. Different approaches to acquire cost parameters for accessing component 

databases have been discussed in [38], [128] and others. Query optimization utilizing 

different operations (such as semi-joins, outer joins) to obtain inexpensive query 

execution plans (QEPs) have been discussed in [24], [34], [35], [39]. Exploiting 

parallelism for query processing optimization is discussed in [113]. Due to the schema 



 121 

conflicts, it is possible for query answers to be partial (i.e. not certain). A methodology 

for understanding uncertain answer tuples for global queries is presented in [115]. Query 

optimization in multidatabase systems taking into consideration the different schema 

conflicts is discussed in [66]. These methodologies take into consideration different 

aspects for optimizing queries in a multidatabase system. In the next section, we will 

discuss query processing of Semantic SQL queries in the Heterogeneous Distributed 

Database System and consider optimization techniques utilizing semantic knowledge.   

  

5.2 Our Work 

This section discusses the steps involved in processing a Semantic SQL query 

statement posed on a global Sem-ODM view. The steps in Semantic SQL query 

processing include the following: (i.) A Semantic SQL query statement is firstly scanned, 

parsed and checked for semantic errors. The semantic checking phase un-abbreviates the 

abbreviated Semantic SQL query. This un-abbreviation process produces the virtual 

tables on which the Semantic SQL query is posed. This step is discussed in section 5.2.1. 

(ii.) Next, the Semantic SQL statement is transformed to a relational algebra expression 

based on the virtual tables. Consequently, relational algebra expression is optimized 

based on logical optimization techniques (rule-based optimization). This step is described 

in section 5.2.2. (iii.) Thirdly, an internal representation of the virtual table is presented 

and further simplification of virtual tables is discussed. Logical optimization of QEP is 

carried out further. This step is described in section 5.2.3. (iv.) Next, the constructs of the 

global schema are replaced by component database constructs. At this step, optimization 

strategies are considered to efficiently acquire the query result. Application of existing 



 122 

techniques for query optimization is presented. Also, innovative query optimization 

strategies based on semantic knowledge are discussed. Section 5.2.4 discusses these 

issues. (iv.) Finally, generation of subqueries from the QEP and query execution plans for 

integrating the results of subqueries at different sites are discussed. 

 

5.2.1 Step 1: Scanning, Parsing and Semantic Checking 

Similar to standard query processing, error checking, scanning, parsing and 

semantic checking procedures takes place in processing of Semantic SQL queries. A 

distinction between Semantic SQL query processing and relational SQL query processing 

is that semantic checking phase un-abbreviates the abbreviated Semantic SQL statement, 

in addition to checking the correctness of the query. That is, this process determines the 

size and the attributes of each virtual table that the query references. An algorithm that 

produces the virtual tables and the un-abbreviated Semantic SQL query statement is 

given below: 

Algorithm:  

Input - Abbreviated Semantic SQL query (AbbSemSQLQuery) and a Sem-ODM 

view (SemanticSchema) on which the query is posed 

Output - Unabbreviated Semantic SQL query (UnAbbSemSQLQuery) and a set of 

virtual tables (VirtualTables) on which the query is posed.  

1. UnAbbSemSQLQuery �  AlgorithmA(AbbSemSQLQuery, SemanticSchema) 

2. if UnAbbSemSQLQuery ≠ NULL then 

VirtualTables �  AlgorithmB(UnAbbSemSQLQuery, SemanticSchema) 

  else 



 123 

  return NULL, NULL 

 

To achieve its goal the algorithm uses two sub-modules, namely AlgorithmA and 

AlgorithmB which are described below.  

 

AlgorithmA: The function of AlgorithmA is to un-abbreviate the abbreviated attribute 

names in the original Semantic SQL query. AlgorithmA outputs NULL for an erroneous 

Semantic SQL query, hence it is checked for NULL in step 2 of the algorithm given 

above. The high-level pseudo-code of AlgorithmA is provided below: 

1. Scan, parse and semantic check for any errors in AbbSemSQLQuery. If Error, 

return NULL 

2. For each abbreviated attribute, n, in AbbSemSQLQuery 

- Find the shortest path, p, from the starting category C to n in the 

SemanticSchema, where C is a category or alias name in the FROM clause 

of AbbSemSQLQuery.  

- Concatenate p to n to obtain the full name of n 

3. Return the unabbreviated query 

Note that the abbreviated attribute, n, discussed in step 2 above is identified as follows. 

Let us consider an attribute, m, mentioned in AbbSemSQLQuery after step 1. 

- Firstly, we check if attribute, m, begins with a category/alias name mentioned in 

the FROM clause of corresponding SQL statement  

- If yes, then we determine m to be un-abbreviated.   

- If not, we determine m to be abbreviated 



 124 

 

Finding the shortest path to an abbreviated attribute, m, is processed as follows: 

- For every category/alias name in the corresponding FROM clause of m  

We first calculate the shortest path (via relations) to a prefix of m, say 

s, where s is either a relation or attribute name. This is processed using 

a modified version of Dijkstra’s shortest path algorithm. 

- Next, we check if there exists more than one shortest path to attribute m 

- If there exists more than one shortest path to m, then return NULL 

- If there exists only one shortest path then p ← shortest path 

- If there is no path, then return NULL 

 
AlgorithmB: The unabbreviated Semantic SQL query (UnAbbSemSQLQuery) and 

Semantic Schema (SemanticSchema) are the input parameters for AlgorithmB, which 

outputs a set of virtual tables. The pseudo-code for AlgorithmB is given below: 

1. VirtualTables �  φ 

2. For each category or alias of category, C, in the FROM clause of 

UnAbbSemSQLQuery 

a. Create a virtual table named C  

b. For each attribute m in UnAbbSemSQLQuery  

Create a column named m in C if m begins with C (i.e. attribute of 

virtual category C) 

c. VirtualTables �  VirtualTables ∪ { virtual table C}   

3. Return VirtualTables 



 125 

 
 

Example 24: For instance, let us consider the following abbreviated Semantic SQL query 

posed on the Sem-ODM schema presented in figure 24 of chapter 4. 

SELECT  first-name, salary, name  

FROM  EMPLOYEE 

The un-abbreviated query is as follows: 

SELECT  EMPLOYEE.first-name, EMPLOYEE.salary, 

EMPLOYEE.works-for__name 

 FROM  EMPLOYEE 

where EMPLOYEE is the virtual table which is given below: 

 EMPLOYEE(first-name: String; salary: Number; works-for__name: String) 

 

At the end of this step, we obtain an unabbreviated Semantic SQL query (output 

of AlgorithmA) and a set of virtual tables (output of AlgorithmB).  The set of virtual tables 

can be interpreted as a relational schema and the unabbreviated Semantic SQL statement 

can be interpreted as a relational query on the relational schema defined by the set of 

virtual tables. The interpretation of the original Semantic SQL statement over the 

Semantic Schema is equivalent to the interpretation of the un-abbreviated Semantic SQL 

statement over the set of virtual tables. Thus, this step has converted the Semantic SQL 

query to an equivalent relational SQL query based on a set of virtual tables. This 

conversion process enables us to apply the existing relational algorithms/knowledge to 

process this query. These aspects are discussed in the following sections. 



 126 

 

5.2.2 Step 2: Relational Algebra and Logical Optimization 

The previous section converted the Semantic SQL statement into an equivalent 

SQL query based on the virtual tables. This has enabled us to apply the existing 

approaches of SQL query processing to the un-abbreviated query. Similar to query 

processing in a relational database, we convert the Semantic SQL statement into an 

extended relational algebra expression. We discuss this process briefly for completeness. 

Further details of this process can be found in database textbooks (such as [32], [40], 

[45], [88], [116] and others). 

 

Firstly, the Semantic SQL query is parsed into a collection of query blocks. A 

query block is an SQL query with no nesting and exactly one SELECT clause and one 

FROM clause and at most one WHERE clause (in conjunctive form), GROUP BY 

clause, HAVING clause and ORDER BY clause.  

 

Secondly, each block is expressed as a relational expression. We consider an 

extended set of relational algebra operators (which include DISTINCT, GROUP BY, 

HAVING, ORDER BY operators) in addition to the basic relational algebra operators 

(i.e. union – “∪” , intersection – “∩” , difference - “ -” , selection - “σ” , projection – “π” , 

product – “×”  and joins “  "! , …”). The meanings of extended relational algebra are 

similar to the respective clauses of SQL which the name specifies and hence not 

explained further. Every SQL query block can be expressed using extended algebra 

expression. For instance, let us consider the following query: 



 127 

SELECT  a1, min(a2), … , an 

FROM  T1, T2, …, Tn 

WHERE  Condition1 

GROUP BY  g1, g2, …, gm 

HAVING Condition2 

ORDER BY s1, s2, …, sk 

This SQL query can be represented by the following extended relational algebra 

expression: 

π a1, min(a2), … , an (ORDER BYs1, s2, …, sk (HAVINGCondition2  

(GROUP BY g1, g2, …, gm (σ Condition1(T1 × T2 × …× Tn))))) 

For instance, the query statement discussed in example 24 can be written directly as: 

 π first-name, salary, works-for__name(EMPLOYEE) 

The relational algebra expression can be used interchangeably as a query execution plan 

(QEP) that specifies the operations in obtaining the result of the query. 

 

The next step is to optimize the extended relational algebra expression (i.e. QEP 

represented by the relational algebra expression). This is usually processed using pre-

defined rules. Some rules that are applied for optimizing the extended relational algebra 

expression include [88]: 

Rule 1:  σc1 ∧ c2 ∧ … cn (R) ≡ σc1 (σc2 ( … (σcn (R))…))  Cascading selections 

Rule 2:  σc1 (σc2 (R)) ≡ σc2 (σc1 (R))    Commutative 

Rule 3:  πa1 (R) ≡ πa1 (πa2 ( … (πan(R))…))   Cascading projections 



 128 

Rule 4:  R × S ≡ S × R     Commutative 

Rule 5:  R #"$  S ≡ S %"&  R    Commutative 

Rule 6:  R × (S × T) ≡ (R × S) × T   Associative 

Rule 7:  R '"(  (S )"*  T) ≡ (R +",  S) -/.  T  Associative 

Rule 8:  πa (σc (R)) ≡ σc (πa (R))     if selection operation  

involves only attributes that are retained by the projection  

Rule 9:  R 0"1 c S ≡ σc (R × S)     Combine 

Rule 10:  σc (R × S) ≡ σc (R) × S    if attributes mentioned in c 

  appears only in R and not in S 

Rule 11:  σc (R 2"3  S) ≡ σc (R) 4"5  S    if attributes mentioned in c 

appears only in R and not in S 

Rule 12:  πa (R × S) ≡ πa1 (R) × πa2 (S)    where ‘a1’  is the subset of  

attributes in ‘a’  that appear in R, and ‘a2’  is the subset of attributes in ‘a’  

that appear in S 

Rule 13:  πa (R 6"7 c S) ≡ πa1 (R) 8"9 c πa2 (S)    where ‘a1’  is the  

subset of attributes in ‘a’  that appear in R, and ‘a2’  is the subset of 

attributes in ‘a’  that appear in S 

There are many other rules that are not enumerated above that preserve equality (see 

database textbooks). These rules can be utilized for optimizing the logical query 

execution plan. Rule-based logical query optimization has been extensively discussed in 

database textbooks and hence not discussed any further. 

 



 129 

This section briefly discussed the translation of Semantic SQL queries to 

extended relational algebra expressions and logical optimizing using rules. This is the 

same approach taken by standard relational query optimizers. The fact that we were able 

to convert the Semantic SQL query to an equivalent relational SQL query based on 

virtual tables enabled to utilize the existing knowledge and techniques (for relational 

databases’  SQL query processing) in Semantic SQL query processing.  

 

5.2.3 Step 3: Expanding the Virtual Tables  

During optimization in the previous section, we assumed that the virtual table is a 

single entity (i.e. one table). We can represent the virtual table as a tree structure where 

nodes represent categories in the global Sem-ODM schema and links from parent to child 

nodes represent the relations traversed to reach the categories containing attributes in the 

virtual table. In such a representation the root node is the starting category (refer chapter 

2) of the virtual table. For illustration purposes, we provide the following example. 

Example 25: Let us consider following Semantic SQL query statement over the Sem-

ODM schema given in figure 23 of chapter 4: 

 SELECT name, major___last-name 

 FROM  DEPARTMENT 

 WHERE  works-in___last-name = ‘Kim’  

The virtual table, DEPARTMENT for the above query is as follows: 

DEPARTMENT (name:String; major___last-name:String; works-in___last-name:String) 



 130 

We can represent this virtual table as a tree structure as follows (see figure 25). A similar 

tree representation of a virtual table used in translating from Semantic SQL queries to 

relational SQL queries is discussed in [74].   

 

 

 

 

 

 

 

 

Considering each node in the tree as a table, we can replace each link by an 

(left/right) outer join operation according to the semantics of extension of a virtual table. 

Using this procedure, we replace every instance of virtual table in the optimized extended 

relational algebra expression by a set of tables that are joined through outer join 

operations. For instance, the query in example 25 is represented as shown below using 

relational algebra operators: 

πname, major___last-name (σworks-in___last-name = ‘Kim’  (DEPARTMENT)) 

After replacing the virtual table with outer-joins, the following relational algebra 

expression is obtained: 

πDEPARTMENT.name, STUDENT.last-name (σINSTRUCTOR.last-name = ‘Kim’  ((DEPARTMENT 

LOJmajors___ STUDENT) LOJworks-in___ INSTRUCTOR)) 

where LOJ means left-outer-join and relation names are used as the join conditions. 

DEPARTMENT 

   
name 

STUDENT 

   last-name 

major___ 

INSTRUCTOR 

   

works-in___ 

last_name 

Figure 25. Tree Representation of a Virtual Table 



 131 

This procedure has further simplified the extended relational algebra expression. Further 

optimization on this simplified expression can be performed (using rules) and also 

considering outer-join optimization techniques (such as techniques discussed in [67]). 

 

At the end of step 3, we have obtained a simplified, logically optimized extended 

relational algebra expression. This expression moreover represents a query execution 

plan (QEP) to obtain the results for the global query. However, all of the above-

mentioned optimizations were posed assuming that the global view was a single 

centralized database. Next section focuses on the decomposition of this QEP to a set of 

subqueries, based on component databases, and efficient integration of subquery results 

(postquery processing plans) to generate the results for the global query.  

 

5.2.4 Step 4: Global Query Optimization 

Previous sections have discussed the methodologies to include current relational 

database query processing techniques to process and optimize QEPs for Semantic SQL 

queries. This approach enabled us to exploit existing well-known and tested 

methodologies for Semantic SQL query processing. An important consideration during 

this optimization phase was that the global view is a centralized database system. 

However, this is not the case in Heterogeneous Distributed Database System.  In this 

section, we focus on query decomposition and the generation of a QEP for postquery 

processing of subquery results to acquire the global query result. 

 



 132 

It is important to comprehend the total cost of processing a global query, before 

trying to optimize it. The following equation is generally regarded as the formula for 

calculating the cost of processing a global query: 

Total Cost of Global Query = Σ Cost (Subqueryi) + Cost(Data Transmission)   

+ Cost(Postquery Processing)  

That is, the total cost of processing a global query is the sum of the costs of processing 

local queries, the costs of transmitting data across different databases, and the costs of 

postquery processing. 

 

 In order to estimate the cost of each subquery, certain cost parameters of the 

component databases are needed. Such information may not be available to the global 

system due to autonomy of the component database. This complicates the process of the 

global query optimizer which chooses a good strategy for executing a global query. Three 

methodologies for obtaining local cost parameters by the global query optimizer have 

been outlined in [128]: 

• Performing some testing queries to test the black box; 

• Guessing necessary information subjectively based on external characteristics of and 

previous knowledge about the black box; 

• Monitoring the behavior of the black box at run time and dynamically collecting 

necessary information. 

We can find discussion using the third approach in [73]. Techniques belonging to the first 

approach are explained in [38]. In [127], a query sampling method, belonging to the first 

group is presented (extended in [128]). For our purposes, we feel that using such 

i 



 133 

techniques outlined in literature and also developing a technique following the second 

approach is possible. Currently, our architecture integrates relational and Sem-ODM 

component data sources. If the global query optimizer is provided with information about 

the type of data source (i.e. relational database or Sem-ODM database), this information 

can be exploited for obtaining local cost parameters.  Access methods used for Sem-ODB 

and relational databases are well-known. Hence, we feel that a technique to acquire local 

cost parameters, using the second approach is plausible. However, this is out of scope of 

this research, and in our discussion below, we assume that local cost parameters have 

already been acquired. 

 

 Reducing data transmission and postquery processing costs have been extensively 

discussed in distributed database query optimization techniques [124] and multidatabase 

query processing techniques. Optimizing through parallel execution of queries [113], 

considering schema conflicts of queries [66], optimizing through improved execution 

strategies and simplification of operators [24] are some existing methodologies. 

Incorporating these optimization techniques is beneficial for Semantic SQL query 

processing. However, none of these methodologies try to optimize queries based on 

semantic knowledge obtained during integration. To the best of our knowledge, we have 

not come across methodologies that use semantic knowledge (such as extents of 

constructs) for multidatabase query optimization.  

 

In this section, we discuss some query optimization techniques, based on semantic 

knowledge acquired during integration (see chapter 3), for optimizing global Semantic 



 134 

SQL queries. These techniques can be applied for optimizing relational SQL 

multidatabase queries without loss of generality. 

 

Technique 1: During the integration process, semantic relations between constructs were 

distinguished. This information can be utilized in querying the minimum and most 

efficient set of component databases. To illustrate this technique, an example is 

presented: 

Example 26: Let us consider the following scenario.  

Global view:   STUDENT(ssn:Integer, name:String) 

Component Databases (DB1, DB2): DB1.PUPIL(ssn:Integer, key; name:String) 

     DB2.PERSON(ssn:Integer, key; name:Sting;  

isStudent:Bool) 

We have the following semantic relations: 

  STUDENT SEM_EQ DB1.PUPIL  (i.e. EXT(STUDENT) = EXT(PUPIL)) 

  STUDENT SEM_SUB DB2.PERSON (i.e. EXT(STUDENT) ⊆ EXT(PERSON)) 

Let us assume that category STUDENT is derived from categories DB1.PUPIL and 

DB2.PERSON (with condition isStudent = TRUE) and attribute STUDENT.name is 

derived from DB1.PUPIL.name and DB2.PERSON.name. Likewise for attribute ssn. 

 

 Let us consider the following query posed on the global view: 



 135 

   SELECT name FROM STUDENT  

By considering the semantic relations, it is evident that querying either DB1.PUPIL or 

DB2.PERSON is sufficient to obtain the results for this query (by their extents). Hence, 

the more efficient component database is queried.  

 

 Assuming that accessing DB1.PUPIL is efficient than DB2.PERSON (estimated 

through local cost parameters), the above query is transformed into the following 

subquery to obtain the result for the global query:  

   SELECT DB1.PUPIL.name FROM  DB1.PUPIL 

However, if we do not consider the semantic relations (similar to previous approaches), it 

is not possible to determine if all objects of STUDENT are in DB1.PUPIL or 

DB2.PERSON. Hence, the query decomposition algorithm queries both component 

databases. The query execution plan not considering semantic relations is shown in figure 

26. 

 

 

 

 

 

 

 

 

 

SELECT ssn, name 
FROM    DB1.PUPIL 

SELECT ssn, name 
FROM    DB2.PERSON 
WHERE  IsStudent = TRUE 

OJQ1.ssn = Q2.ssn 

πname 

Q1 Q2 

Figure 26. Query Execution Plan Without Considering Semantic Relations 



 136 

In the above QEP, the subqueries obtaining information from component databases, DB1 

and DB2, are shown as Q1 and Q2 respectively.  At the next level, the common objects 

are eliminated using an outer-join operation. Finally (at the root), the attribute name is 

projected.  

  

 It is obvious that the improvement in query processing execution is significant 

due to the consideration of semantic relations. The above-example is a simple case. These 

improvements are applicable directly to the more general and complex queries. The fact 

that semantic relations provide information as to what objects of the global schema are 

present in which component databases allows intelligent decisions as to which 

information sources to query. A minimal and most efficient number of component data 

sources are queried. Another advantage is that the quality of the query results is 

improved. If the global query processor is unable to provide complete answers to global 

queries (say due to some component data sources withdrawing from participating in the 

global database system), it is possible to specify the missing data utilizing semantic 

relations and boundary conditions. This is not the case with other approaches.  

 

Technique 2: In this technique, we transform complicated operations (such as NOT IN, 

EXIST, ALL, ANY, SOME, etc.) into simpler operations utilizing semantic knowledge. 

We illustrate transformation of NOT IN operation in the following example.  

Example 27: Let us consider the following scenario. 

Global schema:  STUDENT(ssn:Number, key; name:String) 

    GRAD_STUDENT(ssn:Number, key)  



 137 

Component database (DB1):  DB1.PUPIL(ssn:Number, key; name:String) 

     DB1.UNDERGRAD() subcategory of DB1.PUPIL 

     DB1.GRAD() subcategory of DB1.PUPIL 

Assume the following semantic relations: 

   STUDENT SEM_EQ DB1.PUPIL   

   GRAD_STUDENT SEM_EQ DB1.GRAD  

   DB1.GRAD SEM_SUB DB1.PUPIL  (by subcategory relation) 

   DB1.UNDERGRAD SEM_SUB DB1.PUPIL (by subcategory relation) 

Assume the following boundary conditions (where all objects of PUPIL are either objects 

of UNDERGRAD or GRAD): 

Boundary condition1: DB1.PUPIL - DB1.GRAD: is represented by DB1.UNDERGRAD 

in the Knowledge Base 

Boundary condition2: DB1.PUPIL - DB1.UNDERGRAD: is represented by DB1.GRAD 

in the Knowledge Base 

 

Let us consider the following global query: 

  SELECT name  

  FROM     STUDENT 

  WHERE  ssn NOT IN (SELECT ssn FROM GRAD) 

Direct conversion of this query (without considering boundary conditions) will result in 

the following subquery:    

  SELECT name  

  FROM     DB1.PUPIL 



 138 

  WHERE  ssn NOT IN (SELECT ssn FROM DB1.GRAD) 

Considering the boundary conditions, we can obtain the same result by the following 

subquery: 

  SELECT name FROM DB1.UNDERGRAD 

This was possible because the global query aims to obtain the names of STUDENTs who 

are not GRAD_STUDENTs. These objects are represented by boundary condition1. It is 

well known that processing operator NOT IN is significantly less efficient than 

processing a projection. Hence, the second option is a superior solution.  

 

Technique 3: This technique optimizes processing of aggregate functions (in a 

multidatabase environment) utilizing semantic knowledge. The following example 

demonstrates the processing of count aggregate function. This methodology can be 

directly applied for other aggregate functions such as avg, min, max, sum etc. 

Example 28: Let us consider the following scenario. 

Global schema: STUDENT(StID:Number, key; name:String; GPA:Number) 

    GRADUATE(ThesisTitle:String) subcategory of STUDENT 

    UNDERGRAD() subcategory of STUDENT 

Component databases (DB1, DB2):  

    DB1.GRAD_STUDENT(StID:Number, key; name:String;  

       GPA:Number; ThesisTitle:String) 

    DB2.UNDERGRADUATE(StID:Number, key; name:String;  

       GPA:Number) 

Assume the following semantic relations: 



 139 

  I DB1.GRAD_STUDENT SEM_SUB STUDENT 

  II. DB2.UNDERGRADUATE SEM_SUB STUDENT 

  III. DB1.GRAD_STUDENT SEM_DIS DB2.UNDERGRADUATE 

Let us assume that there exists an INTEGRATED META OBJECT in the knowledge base, 

which contains the union of objects of DB1.GRAD_STUDENT and 

DB2.UNDERGRADUATE, called X. Also, assume that STUDENT SEM_EQ X.  

 

Let us assume that 

(i.) STUDENT :  { DB1.GRAD_STUDENT, DB2.UNDERGRADUATE}  

(ii.) GRADUATE ;  { DB1.GRAD_STUDENT}  

(iii.) UNDERGRAD <  { DB2.UNDERGRADUATE}  

where =  means “ is derived from”. 

 

Now, we will consider the following global query: 

 SELECT  count(last-name) 

 FROM  STUDENT 

 

If we directly translate this query, without considering semantic relations above, we 

obtain the following QEP (see figure 27): 

 

 

 

 



 140 

 

 

 

 

 

 

 

 

 

 

 

Considering the semantic relations, we obtain the following QEP: 

 

 

 

 

 

 

Note that by considering that semantic relation III, it is provided that there are no 

common objects between DB1.GRAD_STUDENT and DB2.UNDERGRADUATE. This 

enables us to directly add the result of Q1 and Q2. This methodology has significantly 

reduced the postquery processing efforts and reduced cost of data transmission. This 

SELECT last-name, StID 
FROM    DB1.GRAD_STUDENT 

SELECT last-name, StID 
FROM  DB2.UNDERGRADUATE 

OJQ1.StID = Q2.StID 

πcount(last-name) 

Q1 Q2 

Figure 27. Query Execution Plan Without Considering Semantic Relations 

SELECT count(last-name) 
FROM    DB1.GRAD_STUDENT 

SELECT count(last-name) 
FROM  DB2.UNDERGRADUATE 

Q1 + Q2 

Q1 Q2 

Figure 28. Query Execution Plan Considering Semantic Relations 



 141 

method can be applied for other aggregate operators (such as SUM, AVG, MIN, MAX) 

without loss of generality. 

 

 The use of semantic knowledge for query optimizing in a multidatabase 

environment has significant potential for improving query performance. This aspect is not 

exploited in current multidatabase systems. It is possible to generate more optimization 

strategies for global queries in a multidatabase environment using semantic knowledge 

discussed in chapter 3. However, in this section we do not enumerate all the possible 

techniques, but will consider these factors in our future work. The next section discusses 

the query decomposition and creation of subqueries. 

 

5.2.5 Step 5: Generating Subqueries 

The final step in global query processing is to generate the subqueries in Semantic 

SQL from the query execution plan. The previous step obtained an optimized query 

execution plan (as an extended relational algebra expression) for the global query based 

on the component database constructs. The leaves of QEP refer to categories of the 

component database schema. The simplest methodology is to obtain the tables from 

database via select statements and allow the processing of the query at the Subquery 

Processor (see chapter 2). However, it is more efficient to incorporate the maximal 

number of operations into a single query of a component database which will be executed 

by the local query processor in the database engine (as this will allow physical 

optimization of queries according to internal representations and access paths by the local 

query optimizer) and process inter-database operations at the Subquery Processor. In 



 142 

order to achieve this goal, we obtain the largest sub-tree in the QEP which references 

only categories in one component database and try to generate Semantic SQL 

statement(s) equivalent to the operations specified in the subtree (similar to the reverse of 

translation from SQL to algebra). It is possible that the subtree may not be converted to 

exactly one Semantic SQL query in which case a QEP to combine the results of the set of 

subqueries is generated. A minimal number of Semantic SQL queries are obtained for the 

QEP subtree. These queries along with the QEP for the subtree are combined into a single 

transaction before transmitting to the Subquery Processor of the component site. QEPs 

passed to the component sites may contain interdatabase operations which are processed 

by the Subquery Processor module of the component site. A goal in generating the 

subqueries is to place as many operations within one component database into Semantic 

SQL queries so as to minimize the postquery processing of the query results from a single 

component database at the Subquery Processor. 

  

5.3 Summary 

In this chapter, we first discussed some of the existing work in SQL query 

processing in a centralized database, query processing and optimizing in distributed 

databases, and existing work on query optimizing in multidatabase systems. Secondly, we 

discussed the different steps taken to process and optimize Semantic SQL queries. In the 

first step (section 5.2.1), the Semantic SQL query based on a global Sem-ODM schema 

was translated into an SQL statement over a set of virtual tables. This transformation 

allowed applying the existing approaches for SQL query processing to process and 

optimize Semantic SQL queries. In section 5.2.2, similar to SQL query processing in a 



 143 

centralized relational DBMS, we first decompose the query statement into blocks. Next, 

each block is transformed into an extended relational algebra expression which is then 

optimized using well known logical rule-based optimizing techniques. In section 5.2.3, 

the virtual tables in the relational expression are further simplified. This allows further 

logical optimization. The optimized relational algebra expression (which corresponds to a 

QEP as well) still assumes the global view as a centralized database. The next step 

(section 5.2.4) is to decompose the query using derivation information in the Knowledge 

Base. Multiple query execution paths are possible. Hence, the application of the existing 

optimization strategies to select the optimal QEP is incorporated. An important aspect is 

the acquisition of cost parameters for component databases. Existing approaches and a 

proposal of a new approach for obtaining cost parameters in our architecture is suggested. 

The existing optimization techniques for multidatabases do not consider exploiting 

semantic knowledge for query optimizing. Techniques using semantic knowledge for 

multidatabase query optimizing are presented. Finally, generation of subqueries along 

with QEP for Subquery Processor module are discussed.  Proposed future work includes 

investigating into techniques for obtaining cost parameters for component databases and 

enumerating all possible query optimization techniques based on semantic knowledge. 



 144 

6. A FRAMEWORK FOR THE INTELLIGENT WEB 

In this chapter, we will consider a framework for Internet computing and 

communication. This framework applies some of the concepts developed in the previous 

chapters into a Web environment. Some discussions into techniques and technologies 

presented in this chapter require further research for incorporating into the framework. 

We decided to discuss this framework as a separate chapter rather than integrate it to the 

concluding chapter due to the significant impact the framework has on the issue of 

intelligent information access on the Internet. It is clear that the Web (note that we use 

the terms Web, Net and Internet interchangeably) is influencing every aspect of society 

and deploying the framework presented aims at achieving the Intelligent Web - providing 

ubiquitous, intelligent access to information and services on the Web – a highly coveted 

and desirable goal. 

  

Internet has become the chief medium of communication and interaction in the 

new economy. The Internet has driven all aspects of society to communicate and share 

information through its medium. We have seen business applications (e-commerce), 

communication channels (e-mail, newsgroups, etc.) and various other information and 

services moving on-line. The fact that it is accessible to a wide range of people 

worldwide and a convenient and cheaper means for communication have driven its 

exponential growth. It is quite probable that the Internet will affect almost all aspects of 

society worldwide in the near future. 

 



 145 

Internet provides access to large amounts of heterogeneous information sources. 

Traditionally, large amounts of data and information have been stored in database 

systems and accessed via query languages in either centralized DBMSs or distributed 

environments (distributed databases and multidatabases). The Internet also provides 

access to large amounts of heterogeneous data. Hence, it is logical for database 

researchers to investigate into approaches to store and access this information. There are 

some significant differences between data stored in database systems (whether 

centralized or distributed) from data and information present on the Internet: 

1. Structured vs. Unstructured: In general, databases systems provide a schema in a 

single data model. The schema describes the data content in a database. Also, it 

provides a structure to the stored data and information so as to easily access this 

information. In the Internet environment, no such schema exists. The information 

present in the Internet is not known. There exists little or no structure at all for 

information on the Web. Data and information are loosely coupled, distributed via 

links and change dynamically without prior notification. 

2. Access methods: In database systems, data is stored in a certain format and structure 

with indexes for fast retrieval. Also, easy-to-use query languages (such as SQL) are 

provided to the user to access data and information easily and efficiently. For 

information of the Web, there does not exist any query language and the only means 

of access is with the use of Web addresses (also called Uniform Resource Locators – 

URLs for short). Data is accessed either through links or directly inputting the 

address. 



 146 

3. Homogeneous vs. Heterogeneous: Data and information in a database system is 

uniform according to specification of the schema. That is, in general, data types, 

either system generated or user generated, are specified and query results conform to 

these types. Internet is a heterogeneous environment. Information is presented in 

different languages, formats, and contexts without any relations between them. 

4. Centralized vs. distributed: In database systems, there is some point of centralized 

control, either global site (in distributed and multidatabase systems) or system 

catalogs (in centralized databases), which contain schema and relevant information. 

The Web is a truly distributed environment. There is no centralized control.  

 

Intelligent ubiquitous access to data, information and services on the Web is a 

highly desirable goal. Recently, we have seen a number of approaches, addressing the 

issues mentioned above, in database and information retrieval community. We discuss 

some of the proposed approaches in section 6.1 including their benefits and limitations. 

In section 6.2, we discuss our approach. A framework that provides ubiquitous intelligent 

access to data and information on the Net is proposed. The advantages of the framework 

from proposed approaches are illustrated. A look into the future Internet applications 

based on this framework is provided. In section 6.2.3, we investigate into some future 

research issues and areas that need to be focused to achieve ubiquitous intelligent access 

to information sources on the Internet in the context of the framework presented. 

 

6.1 Related Work 



 147 

Recently, we have seen a surge of efforts in trying to access information and data 

from the Web. From these efforts, we have classified three major approaches which are 

detailed below: 

1. Wrapper Approach: This approach was introduced with the TSIMMIS project ([23] 

[44], [49], [86]) at Stanford University. In this approach, wrappers are built over data 

sources to provide structure to the data sources (in TSIMMIS the structure obtained is 

a schema in Object Exchange Model - OEM). Mediators are used to query different 

data sources via wrappers (in TSIMMIS, OEM-QL is a query language used to query 

the OEM schema).  Many efforts following a similar approach, proposing either 

manual ([8], [48]) or semi-automated/fully automated ([3], [5], [43], [60], [108]) 

wrapper generation has been discussed in literature. 

2. Query System Approach: This approach tries to provide high-level declarative query 

facilities to the Web. Adoption of SQL-like query language, with extension, for Web-

based queries is presented in [57]. Other efforts include [47], [61], [77], [78] and 

others. 

3. Keyword Searching: This is the most popular approach to retrieving information on 

the Web. Users use keywords as input parameters to search relevant items on the web. 

Search engines (such as Altavista [4], Lycos [75] and others) facilitate searches 

through maintaining indexes of interesting keywords. Usually, the indexes are 

constructed and maintained by robots that occasionally scan the Web. 

 

Some major issues that must be addressed by every approach for intelligent 

information retrieval and communication on the Web include: (i.) extendibility; (ii.) 



 148 

flexibility; (iii.) ability to handle dynamically changing data sources; (iv.) provide easy-

to-use query facility; and (v.) provide, preferably, semantically enhanced intelligent 

information extraction mechanisms.  

 

The first approach (i.e. Wrapper Approach) tries to provide a well-known 

database interface with a schema and query language to the Internet. Although, this 

would be a favorable goal, there are certain drawbacks of this architecture in a Web 

environment. Firstly, the wrapper approach is most certainly faces the limitations on the 

extendibility issue. Wrapping every Web data source, which is loosely structured, is 

impossible and impractical. Also, in most cases the data sources change dynamically 

which requires in some cases changes in wrappers’  mapping. Although certain 

methodologies that automate these processes have been described in literature, we feel 

that wrapper-based approach is not feasible as a general solution for providing ubiquitous 

intelligent access to any Web source available; rather, used in integrating and querying 

certain types of known Web data sources. 

 

The second approach (i.e. Query System Approach) has an advantage where the 

data sources need not be wrapped. Dynamic changes of Web pages are handled easily. 

Hence, arbitrary queries can be programmed on any Web page. However, a major 

limitation of this approach is that a “starting point”  (and complex programming) is 

usually required. For instance, given that the user needs information about company A 

and (s)he knows the company’s web address (i.e. URL), the user can program a query to 

obtain the required information from the Web site of the company. However, this 



 149 

approach lags in the fourth aspect (i.e. semantically enhanced intelligent information 

extraction mechanisms – semantic heterogeneity resolution), which means to find the 

initial Web page of the company (i.e. starting point) (such as which company’s sell 

product P, rather than find the products sold by company A given the homepage of 

company A). Thus, we feel that this approach also has limited scope in providing 

ubiquitous intelligent access to information on the Internet. 

 

The third approach (i.e. Keyword Searching) is the most promising and widely 

used approach for information extraction on the Internet today. However, it is well 

known that this approach is still naïve in terms of semantic and intelligent means of 

retrieving information from the Web. In this chapter, we provide a framework for 

ubiquitous, intelligent information extraction from the Web by applying some of 

techniques developed in the previous chapters. 

 

6.2 Our Work  

In order to provide ubiquitous intelligent access to information and services on the 

Internet, we propose a framework for the Web. This framework extends the current 

architecture of the Internet providing intelligent means of access to data and information. 

We discovered the problem of semantic heterogeneity recurring impeding intelligent 

access to heterogeneous data sources on the Web similar to integration of heterogeneous 

databases. Our proposal considers methods discussed previously in chapter 3, to the Web 

environment. The proposed framework is discussed in section 6.2.1. In addition, a 

communications paradigm (for e-commerce applications) using the framework is 



 150 

illustrated in this section. A retrospective look into future applications using our 

framework is presented in section 6.2.2. Finally, some future research issues to enable the 

proposed Intelligent Web are discussed in section 6.2.3. 

 

6.2.1 Framework for the Internet 

In this section, we present a framework for the Internet that enables intelligent 

ubiquitous data access on the Web. We try to extend the third approach (i.e. Keyword 

Searching) to provide intelligent access to data on the Web. This is because we feel that 

this approach is the only solution, among the three approaches, that can successfully 

overcome the extendibility problem. The overall view of the proposed framework is 

presented in figure 29. It is important to note that in this framework, the search engines 

are extended to become Information Brokers (IB) rather than just searching keywords. 

We apply our approach to resolving semantic heterogeneity (discussed in chapter 3) for 

storage of information at the Information Broker nodes. A Knowledge Base with the use 

of domain specific ontologies is proposed as a means of storing information. The 

keywords are mapped on to the ontologies. Of course, it is unreasonable to expect all 

information of the Web to be mapped into a single ontology. Hence, sets of Information 

Brokers considering different application domains for information on the Internet are 

proposed. Note that there may be overlap between different application domains. Thus, 

IBs collaborate within themselves to provide ubiquitous intelligent access to data and 

information. The architecture is extendable with the addition of different information 

brokers and domain ontologies. Also, the semantic heterogeneity is resolved through the 

use of ontologies. Robots, similar to indexing in a search engine scan and map 



 151 

information to the ontology. Humans may also intervene in the process. Also, 

information extraction methodologies [29] are used in populating the Knowledge Base 

and instance mappings of the ontology. An important aspect is that enterprises map their 

services to the ontology of the Information Brokers by themselves. Enterprises (such as 

governments’ , companies, etc.), which define the services they provide, would like to 

publish the existence of their services on the Web. Hence, a very desirable place to 

 

 

 

 

 

 

Information 
Broker 

Information 
Broker 

Information 
Broker 

Information 
Broker 

Information 
Broker 

End User 

End User 

End User 

Enterprise 

Enterprise 

INTERNET 

Figure 29. Overall View of Proposed Framework for the Internet 



 152 

publish their services would be Information Brokers where most of traffic on the Web is 

directed. This relieves the Information Brokers from the enormous task of mapping 

services to the ontology. These ontologies with their mappings provide a great resource 

for all users of the Internet. All information needs can be passed through these nodes 

providing intelligent data access. In the next part of this section, we propose a model for 

e-commerce applications using the framework described before. 

 

We define e-commerce applications broadly where a user requests for some 

service on the Internet. By service, we mean a well-defined requirement such as buying 

an airline ticket, transferring the title of car, renewing a passport, etc. rather than a 

general searching such as search on “cars”  keyword. The model for specifying and 

fulfilling services is provided in figure 30. The user’s request is translated into an 

ontological form of request (via the browser or client program at the user’s computer) and 

transmitted to an Information Broker. The Information Broker searches the ontology for 

relevant matches. The matched service providers are informed of the request, which in 

User 
request for service 

Information 
Broker 

Information 
Broker 

request directed to 
other IBs 

Service Provider 

Service Provider 
reply for 
service 

request directed to 
service providers 

Figure 30. A Model for E-Commerce Applications on the Web 



 153 

turn replies to the user of their service along with specifications for fulfilling the request. 

In addition, the Information Broker forwards the request to other Information Brokers 

that it feels contains relevant service provider information for the request.  

 

Now let us consider a simple example of an e-commerce application in this 

framework.  

Example 29: A user would like to buy an airline ticket to fly from ‘Miami’  to ‘Los 

Angeles’  on ‘July 14, 2000’ . This request is converted to the appropriate format and 

transmitted to an Information Broker.  The Information Broker contains services from 

different airlines that sell tickets within the US, say ‘American Airlines’  and ‘United 

Airlines’  in this example. The request to buy the ticket from ‘Miami’  to ‘Los Angeles’  on 

‘July 14, 2000’  is forwarded to American Airlines and United Airlines Web sites. Also, 

this request may be forwarded to other Information Brokers as deemed required. The 

American Airlines service provider and United Airlines service provider (i.e. Web sites) 

replies to the request to the user’s site. The reply may include the fares, flight numbers, 

information needed to buy the ticket such as (credit card etc.), encryption information 

(such as encryption keys for security purposes etc.) and other relevant information to the 

request. The users next can choose his/her preference to which airline (s)he would prefer 

and buy the airline ticket. Next, the user’s selected response is (if needed encrypted as 

specified) and transmitted to the service provider to purchase the ticket. If the user is a 

frequent flyer and purchases tickets frequently, (s)he can store the service provider 

information at the client so that the next time, (s)he needs a ticket, a request to the 

Information Broker can be avoided by directly contacting the Airline Service Provider. 



 154 

  

The above example is a simple e-commerce application, however, provides some 

significant insights into the framework and model proposed. This example illustrates the 

issue of (i.) extensibility – through the use of multiple Information Brokers; (ii.) 

flexibility – different service providers may require different customized responses to 

certain services (such as American Airlines requiring social-security number for ticket 

purchasing while this information is not required by United Airlines). These aspects are 

incorporated the response agents of every service provider enabling flexibility; (iii.) 

handle dynamic changes. For instance, a change of the service is easily incorporated at 

the service site, transparent to the user or IBs; (iv.) intelligent access – through the use of 

ontologies and their mappings; and (iv.) easier query facility. This is an area for future 

research, where techniques providing easier means to specify a user’s request and 

services in an ontological form are needed.  

 

In the general case, this framework has significant implications on intelligent 

access to services and information on the Web. The next section looks at a hypothetical 

scenario, which illustrates the model’s implications on future Internet applications. 

 

6.2.2 A Futuristic View of E-Commerce Applications 

 In this section, we describe an extended example of a scenario of future web 

applications on the Internet. Let us consider our Web Application (which may be an 

enhanced Web browser). The user has the following requests: 



 155 

1. Register for courses at Florida International University (FIU). The URL of FIU is 

known. 

2. Buy an airline ticket to travel from Miami to Seattle. This is a general request where 

the user tries to obtain the cheapest ticket. 

3. Renew the tag of user’s vehicle from Florida Department of Motor Vehicle (FDMV). 

The user does not know URL of Florida Department of Motor Vehicle. 

4. Buy automobile insurance for six months from AAA Auto Club South. 

The user specifies his/her requests using the Web Application, which translates the 

requests in terms of ontological format and transmits the request as described below. 

Each of the requests are integrated into a mobile agent and transmitted to the appropriate 

destinations.  

• Request 1: In request 1, the URL of FIU is known. Hence, the agent for request 1 will 

travel to the FIU’s web site. The service provider of FIU matches the request with the 

appropriate service which in turn spawns a reply agent that specifies the required 

information for registering to courses at FIU (such as student id, course reference 

numbers, pin of student, encryption information – keys etc.) and transmits it to the 

user. The user next inputs all the required information (in a pre-defined form of the 

reply agent) and re-transmits the agent to register for the courses. 

• Request 2: The second request agent is transmitted to an Information Broker (as this 

is a general request without prior knowledge by the user about airlines he/she prefers 

etc.). The request and its response will be directed to the Information Brokers similar 

to the method described in example 29. 



 156 

• Request 3: In this request the URL of the Florida Department of Motor Vehicle is not 

known but the user is aware that the service is provided by FDMV. This request is 

firstly transmitted to the Information Broker (to find the web site of FDMV) which 

either directs the request to FDMV’s web site or to another Information Broker 

capable of finding the FDMV web site. At the web site, the service provider of 

FDMV matches the request with the service required. Similar to request 1, the reply 

agent containing the necessary information (such as a form which requires VIN# of 

vehicle, payment information, etc.) to renew the tag is sent to the user. The user next 

fills the necessary information required for tag renewal and retransmits an agent to 

FDMV service provider to renew the user’s tag. 

• Request 4: Due to the fact that the user does not know URL of AAA Auto Club 

South, similar to request 3, the request agent is transmitted to an Information Broker. 

A similar communication and transmission pattern to request 3 occurs in fulfilling 

request 4. 

Note that once the requests are satisfied with responses, the user fills the required 

information and an agent is transmitted to the service provider directly to fulfill users 

requirements. The user is capable of saving the service information for later use (so as to 

not re-apply the effort in finding the services). 

 

The communication and transmission of requests and reply agents is transparent 

to the user, which is performed in an automated way (a highly desirable goal since many 

users’  spend much time and effort surfing the Web to find the required information and 

services manually in the current framework on the Internet. Usually, it is by serendipity 



 157 

that the user finds the required information). The proposed framework is an extension of 

the current search engines of the Internet, thus providing a smooth transition to the 

Information Broker framework. The framework and model for e-commerce applications 

is flexible, extendable and fulfills the requirements of intelligent ubiquitous information 

access and computing on the Internet. In summary, this proposal is a transition from the 

current Web to the Intelligent Web. As with any endeavor, there are certain technical 

hurdles to overcome, in order to achieve the Intelligent Web. However, we feel that if the 

focus of research and technology directions aims in achieving this goal (i.e. this 

framework), Intelligent Web is a near possibility. These research issues and technology 

directions are discussed briefly in the next section. 

 

6.2.3 Future Research Issues and Technology Directions 

A significant challenge to developing Information Brokers is to consider design 

and development of ontologies for general-domains on the Internet. We have seen a 

project named WebKB ([30], [121]) at Carnegie Mellon University which aims at 

developing such ontologies. However, we feel that further research projects and efforts 

are required in this direction. Methodologies to easily translate any user request into an 

ontological form are needed. Research into linguistics considers this issue. 

Standardization of interfaces among Information Brokers and between Service Providers 

needs to be evolved. Currently industry standards such as Extensible Markup Language 

(XML) for data transmitting, CORBA for distributed application development, agent 

communication languages (such as Knowledge Interchange Format  - KIF and 

Knowledge Query Manipulation Language - KQML) and Java as a preferable language 



 158 

for application development on the Web are emerging technologies that can be utilized in 

implementing the framework. These technologies need to be investigated in the context 

of the framework presented. In terms of technological advances supporting e-commerce 

applications, we have seen many directions: (i.) the concept of e-money for transactions 

of the Internet is being pursued in the industry; (ii.) new encryption and security 

mechanisms of transmission of data over the Net is a very active research area; (iii.) 

electronic signatures for e-commerce transactions have been legalized in the US recently; 

(iv.) emergence of XML-based frameworks such as eCo [114] for e-commerce; and 

others. We feel that it is important to view and utilize these emerging technologies and 

techniques within the context of the framework discussed in order to provide intelligent 

computing and communication paradigm over the Internet. This is certainly a fruitful 

endeavor for the future research projects. 

 

6.3 Summary  

A highly desirable goal of the Internet today is to have intelligent access to 

information and services on the Net. The currently proposed and existing approaches in 

the database area in terms of query languages and wrappers fail to accomplish ubiquitous, 

intelligent access to information on the Internet in certain areas such as extendibility and 

intelligent access. The most widely used approach for information access on the Web is 

keyword searching. This methodology is criticized for their failure to provide intelligent 

access to information. Hence, in this chapter, we extended the current Internet framework 

consisting of centralized search engines to a set of collaborating Information Brokers. 

Information Brokers contain a Knowledge Base and domain specific ontologies. 



 159 

Information and services on the Web are mapped to the ontologies. This brings about 

intelligent access to information on the Web. The service providers on the Internet map 

their services into the Information Brokers as a means of publishing the existence of their 

services. A model for e-commerce applications is proposed which utilizes the proposed 

framework. This method is flexible, extendable and provides intelligent access to 

information and services. A futuristic view of e-commerce applications using this model 

was described. Also, some research issues and technology directions that can be 

incorporated to achieve the goal of an Intelligent Web were briefly discussed.   



 160 

7. CONCLUSION  

In this chapter, we summarize the contributions of this thesis, including some 

future work. At the end of each chapter, a summary of contributions and future work has 

been discussed in detailed. Hence, in this chapter, we briefly mention the contributions 

and the chapters that discuss these areas. It is recommended for the reader to refer to the 

summary at the end of each chapter for detail discussion. 

 

The main contributions of this thesis work include: 

1. Architecture for multidatabase systems: A flexible, scalable, extendable and easy-to-

develop architecture for developing a multidatabase system, utilizing Semantic 

Binary Object-oriented Data Model (Sem-ODM) and Semantic SQL query language 

was presented in chapter 2. The use of Sem-ODM for accessing heterogeneous data 

sources provided expressive data modeling capabilities to heterogeneous distributed 

data sources capturing the meaning of the information integrated. Semantic SQL 

query language provided an easier well-known query facility for heterogeneous data 

access. 

• Semantic heterogeneity resolution methodology: A major impediment for the 

ubiquitous use of multidatabase technology is the difficulty in resolving semantic 

heterogeneity between data sources. Previous approaches to semantic heterogeneity 

based on heuristic approaches leads to incorrect integration and querying. A semi-

automated complete, correct and unambiguous methodology based on extents of 

meta-data constructs to resolve semantic heterogeneity of heterogeneous information 

systems was presented in chapter 3. 



 161 

•  Schematic heterogeneity resolution techniques: In resolving schema-level conflicts 

(see chapter 4), we provided the following contributions: (i.) developed a language 

called SemOSQL/M to define global Sem-ODM views over component schemas; (ii.) 

enumerated of all possible schema-level conflicts and their resolutions in defining 

global Sem-ODM views; (iii.) designed Knowledge Bases to store and retrieve 

semantic knowledge and meta-data; and (iv.) developed a tool that assists in creating 

global views.   

• A superior integration methodology: The integration methodology incorporates 

semantic knowledge used for semantic heterogeneity resolution with schema-level 

conflict resolutions. This approach has the following advantages: (i.) ideal solution to 

heterogeneous data access problem by providing global views for users’  accessing 

multiple heterogeneous data sources in an expressive data model and query language 

(similar to centralized database systems); (ii.) avoids the overhead in maintaining a 

single global schema; (iii.) completeness and correctness of the queries is preserved 

through non-heuristic approaches to semantic heterogeneity resolution; (iv.) 

automated semantic heterogeneity resolution and easier global view definition. This is 

a significant improvement from existing approaches; (v.) a step-wise process to 

acquire semantic knowledge rather than at the beginning of integration cycle and (vi.) 

ability to handle dynamic changes of the underlying data sources. This integration 

methodology is discussed in chapters 3 and 4.  

• Query processing and optimization: The plethora of well-defined existing 

methodologies to process and optimize relational SQL queries were exploited by 

transforming the Semantic SQL query based on Sem-ODM schema to a SQL query 



 162 

based on virtual tables (discussed in section 5.2.1). A strategy to obtain local cost 

parameters from component data sources is suggested. Techniques for optimizing 

Semantic SQL queries exploiting semantic knowledge acquired during integration 

were presented. Query processing and optimizing of Semantic SQL queries in a 

multidatabase environment are discussed in chapter 5.  

• A framework for intelligent computing and communication on the Web: A highly 

desirable goal of the current Web-based environment is intelligent access to 

information and services on the Web. A framework applying the semantic 

heterogeneity resolution techniques (developed in chapter 3) to provide a framework 

for the Internet in achieving intelligent ubiquitous computing and communication was 

presented in chapter 6. 

 

Future areas of work include: (i.) ontology development for general problem 

domains and application in heterogeneous database environments; (ii.) extended rules for 

identification of semantic relations; (iii.) deployment of query optimizing techniques 

based on semantic knowledge in multidatabase environments and empirical testing on 

performance gains; (iv.) investigation of different innovative techniques for query 

optimizing using semantic knowledge;  (v.) research into ontological based service-

specification and query techniques on the Internet; (vi.) investigation of application of 

current technologies in the framework proposed for intelligent access to information on 

the Web; and (vii.) development of easier human-computer interaction modes for easy 

specification of user’s requests (as well as services) in ontological formats – that is, 

capturing the meaning (semantics) of the user’s request in a flexible and easier manner. 



 163 

LIST OF REFERENCES 

[1] Abiteboul S. and Bonner A., “Objects and Views”. In Proceedings of the ACM 
International Conference of Management of Data (SIGMOD’91), 1991, pp.238-
247. 

 
[2]  Access web site: http://www.microsoft.com/office/access/default.htm 
 
[3] Adelberg B., “NoDoSE – A Tool for Semi-automatically Extracting Structured 

and Semistructured Data from Text Documents” . In Proceedings of the ACM 
International Conference of Management of Data (SIGMOD’98), 1998, pp.283-
294. 

 
[4] Altavista Search Engine: http://www.altavista.com 
 
[5] Ashish N. and Knoblock C., “Wrapper Generation for Semi-structured Internet 

Sources” . In SIGMOD Record, Vol. 26, No. 4, 1997, pp.8-15. 
 
[6] Aslan G. and McLeod D., “Semantic Heterogeneity Resolution in Federated 

Databases by Metadata Implantation and Stepwise Evolution” . In VLDB Journal, 
Vol. 8, No. 2, 1999, pp.120-132. 

 
[7]  Athauda R., “Heterogeneity Resolution in MSemODB”, Technical Report 2000-

02, School of Computer Science, Florida International University, 2000. 
 
[8] Atzeni P. and Mecca G., “Cut and Paste” . In Proceedings of the Symposium on 

Principles of Database Systems (PODS ’97), 1997, pp.144-153. 
 
[9]  Batini C., Lenzerini M. and Navathe S.B., “A Comparative Analysis of 

Methodologies for Database Schema Integration” . In ACM Computing Surveys, 
Vol.18, No.4, 1986, pp.323-364. 

 
[10] Bayardo R.J., Bohrer W., Brice R.,  Cichocki A., Fowler J., Helal A., Kashyap V., 

Ksiezyk T., Martin G., Nodine M., Rashid M., Rusinkiewicz M., Shea R., 
Unnikrishnan C., Unruh A. and Woelk D., “ InfoSleuth: Agent-Based Semantic 
Integration of Information in Open Dynamic Environments” . In Proceedings of 
the ACM International Conference on Management of Data (SIGMOD ‘97), 
1997, pp.195-206. 

 
[11] Bernstein P.A., Goodman N., Wong E., Reeve C.L. and Rothnie J.B., “Query 

Processing in a System for Distributed Databases (SDD-1)” . In ACM 
Transactions on Database Systems (TODS), Vol. 6, No. 4, 1981, pp.602-625. 

 
[12]  Beryoza D., “Dynamic Data Retrieval on the World Wide Web”. Unpublished 

Ph.D. Thesis, School of Computer Science, Florida International University. 



 164 

 
[13] Blakeley J., “OQL[C++]: Extending C++ with an Object Query Capability” . In 

Modern Database Systems: The Object Model, Interoperability, and Beyond, 
1995, ACM Press, pp.69-88. 

 
[14] Bouzeghoub M. and Métais E., “Semantic Modeling of Object Oriented 

Databases” . In Proceedings of the International Conference on Very Large Data 
Bases (VLDB ’91), 1991, pp.3-14. 

 
[15] Breitbart Y. and Reyes T., “Overview of ADDS System”. In Modern Database 

Systems: The Object Model, Interoperability and Beyond, ACM Press, 1995, 
pp.683-701. 

 
[16] Breitbart Y. and Tieman L., “ADDS – Heterogeneous Distributed Database 

System”. In Proceedings of the International Seminar on Distributed Data 
Sharing Systems, 1984, pp.7-24. 

 
[17] Breitbart Y., Olson P. and Thompson G., “Database Integration in a Distributed 

Heterogeneous Database System”. In Proceedings of the IEEE International 
Conference on Data Engineering (ICDE ’86), 1986, pp.301-310. 

 
[18] Bright M.W., Hurson A.R. and Pakzad S., “Automated Resolution of Semantic 

Heterogeneity in Multidatabases” . In ACM Transactions on Database Systems 
(TODS), Vol. 19, No. 2, 1994, pp.212-253. 

 
[19]  Brill D., Templeton M. and Yu C.T., “Distributed Query Processing Strategies in 

Mermaid, A Frontend to Data Management Systems”. In Proceeding of the IEEE 
International Conference on Data Engineering (ICDE ‘84), 1984, pp.211-218. 

 

[20] Brown P., “ Implementing the Spirit of SQL-99” . In Proceedings of the ACM 
International Conference of Management of Data (SIGMOD ’99), 1999, pp.515-
518. 

 
[21]  Bunge M. A., Treatise on Basic Philosophy: Vol. 3: Ontology I: The Furniture of 

the World, Reidel, Boston, 1977. 
 
[22] Bunge M.A., Treatise on Basic Philosphy: Vol. 4: Ontology II: A World of 

Systems, Reidel, Biston, 1979.  
 

[23] Chawathe S., Garcia-Molina H., Hammer J., Ireland K., Papakonstantinou Y., 
Ullman J. and Widom J., “The TSIMMIS Project: Integration of Heterogeneous 
Information Sources” . In Proceedings of IPSJ Conference, 1994, pp.7-18.  

 



 165 

[24] Chen A.L.P., “Outerjoin Optimization in Multidatabase Systems”. In Proceedings 
of the International Symposium on Databases in Parallel and Distributed Systems 
(DPDS ‘90), 1990, pp.211-218. 

 
[25] Chung C.W., “DATAPLEX: An Access to Heterogeneous Distributed 

Databases” . In Communications of the ACM (CACM), Vol. 33, No. 1, 1990, 
pp.70-80. 

 
[26] Codd E.F., “A Relational Data Model for Large Shared Data Banks” . In 

Communications of the ACM (CACM), Vol. 13, No. 6, 1970, pp.377-387. 
 
[27] Codd E.F., “Extending the Database Relational Model to Capture More 

Meaning” . In ACM Transactions on Database Systems (TODS), Vol. 4, No. 4, 
1979, pp.397-434. 

 
[28] Collet C., Huhns M.N. and Shen W.-M., “Resource Integration Using a Large 

Knowledge Base in Carnot” . In IEEE Computer, Vol. 24, No. 12, 1991, pp.55–62. 
 
[29]  Cowie J. and Lehnert W., “ Information Extraction” . In Communications of the 

ACM (CACM), Vol. 39, No. 1, 1996, pp.80-91. 
 
[30] Craven M., DiPasquo D., Freitag D., McCallum A., Mitchell T., Nigam K. and 

Slattery S., “Learning to Extract Symbolic Knowledge from the World Wide 
Web”. In Technical Report, CMU-CS-98-122, School of Computer Science, 
Carnegie Mellon University, 1998. 

 
[31] Czejdo B., Rusinkiewicz M. and Embley D., “An Approach to Schema 

Integration and Query Formulation in Federated Database Systems”. In 
Proceedings of the IEEE International Conference on Data Engineering (ICDE 
’87), 1987, pp.477-484. 

 
[32] Date C. J., An Introduction to Database Systems, 7th edition, Addison-Wesley, 

1999. 
 
[33]   Dayal U and Hwang H., “View Definition and Generalization for Database 

Integration in a Multidatabase System”. In IEEE Transactions on Software 
Engineering (TSE), Vol. 10, No. 6, pp.628-645. 

 
[34] Dayal U., “Processing Queries Over Generalization Hierarchies in a 

Multidatabase System”. In Proceedings of the International Conference on Very 
Large Data Bases (VLDB ’83), 1983, pp.342-353. 

 
[35] Dayal U., “Query Processing in Multidatabase System”. In Query Processing in 

Database Systems, Springer, 1985, pp.81-108. 
 



 166 

[36]  Dogac A., Dengu C., Kilic E., Ozhan G., Ozcan F., Nural S., Evrendilek C., 
Halici U., Arpinar B., Koksal P., Kesim N. and Mancuhan S., “METU 
Interoperable Database System”. In SIGMOD Record, Vol. 24, No. 3, 1995, 
pp.56-61. 

 
[37]  Dogac A., Halici U., Kilic E., Ozhan G., Ozcan F., Nural S., Dengu C., Mancuhan 

S., Arpinar B., Koksal and Evrendilek C., “METU Interoperable Database 
System”. In Proceedings of the ACM International Conference on Management of 
Data (SIGMOD ’96), 1995, pp.552-552. 

 
[38] Du W., Krishnamurthy R. and Shan M.-C., “Query Optimization in 

Heterogeneous DBMS”. In Proceedings of the International Conference on Very 
Large Databases (VLDB ‘92), 1992, pp.277-291. 

 
 
[39] Egyhazy C.J., Triantis K. P. and Bhasker B., “A Query Processing Algorithm for 

a System of Heterogeneous Distributed Databases” . In Distributed and Parallel 
Databases, Vol. 4, No. 1, 1996, pp.49-79. 

 
[40] Elmasri R. and Navathe S. B., Fundamentals of Database Systems, 2nd edition, 

Addison-Wesley, 1994. 
 
[41] Elmasri R. and Navathe, “Object Integration in Logical Database Design” . In 

Proceedings of the IEEE International Conference on Data Engineering (ICDE 
’84), 1984, pp.426-433. 

 
[42] Elmasri R., Hevner A. and Weeldreyer, “The Category Concept: An Extension to 

the Entity-Relationship Model” . In Data and Knowledge Engineering (DKE), 
Vol.1, No.1, 1985, pp.75-116. 

 
[43]  Embley D.W., Campbell D.M., Jiang Y. S., Liddle S.W., Ng Y.-K., Quass D. and 

Smith R.D., “Conceptual-Model-Based Data Extraction from Multiple-Record 
Web Pages” . In Data and Knowledge Engineering (DKE), Vol. 31, No. 3, 1999, 
pp.227-251. 

 

[44] Garcia-Molina H., Hammer J., Ireland K., Papakonstantinou Y., Ullman J., and 
Widom J., “ Integrating and Accessing Heterogeneous Information Sources in 
TSIMMIS”. In Proceedings of the AAAI Symposium on Information Gathering, 
1995, pp.61-64.  

 
[45] Garcia-Molina H., Ullman J. D. and Widom J., Database System Implementation, 

Prentice-Hall, 1999. 
 



 167 

[46] Gu H., Perl Y., Geller J., Halper M., Liu L.-M. and Cimino J.J., “Representing the 
UMLS as an Object-oriented Database: Modeling Issues and Advantages” . In 
Journal of the American Medical Informatics Association (JAMIA), Vol. 7, No. 1, 
2000, pp.66-80. 

 
[47] Guan T., Liu M. and Saxton L.V., “Structure-Based Queries over the World Wide 

Web”. In Proceedings of the International Conference on Conceptual Modeling 
(ER ‘98), 1998, pp.107-120. 

 
[48] Gupta A., Harinarayan V. and Rajaraman A., “Virtual Database Technology” . In 

SIGMOD Record, Vol. 26, No. 4, 1997, pp.57-61. 
 
[49] Hammer J., Garcia-Molina H., Ireland K., Papakonstantinou Y., Ullman J., and 

Widom J., “ Information Translation, Mediation, and Mosaic-Based Browsing in 
the TSIMMIS System”. In Proceedings of the ACM International Conference on 
Management of Data (SIGMOD ‘95), 1995, pp.483 - 483.  

 
[50] Hayne S. and Ram S., “Multi-User View Integration System (MUVIS): An Expert 

System for View Integration” . In Proceedings of the IEEE International 
Conference on Data Engineering (ICDE ‘88), 1988, pp.402-409. 

 
[51] Kashyap V. and Sheth A., “Semantic and Schematic Similarities Between 

Database Objects: A Context-Based Approach” . In VLDB Journal, Vol. 5, No. 4, 
1996, pp.276-304. 

 
[52] Kelley W., Gala S., Kim W., Reyes T. and Graham B., “Schema Architecture of 

the UniQSL/M Multidatabase System”. In Modern Database Systems: The Object 
Model, Interoperability and Beyond, ACM Press, 1995, pp.621-648. 

 
[53] Kent W., “Solving Domain Mismatch and Schema Mismatch Problems with an 

Object-Oriented Database Programming Language”. In Proceedings of the 
International Conference on Very Large Data Bases (VLDB ’91), 1991, pp.147-
160. 

 
[54] Kim W. and Seu J., “Classifying Schematic and Data Heterogeneity in 

Multidatabase Systems”. In IEEE Computer, Vol. 24, No. 12, 1991, pp.12-18. 
 
[55] Kim W., Choi I., Gala S.K., Scheevel M., “On Resolving Schematic 

Heterogeneity in Multidatabase Systems”. In Distributed and Parallel Databases, 
Vol.1, No. 3, 1993, pp.251-279. 

 
[56]  Koh, J.L. and Chen L.P., “ Integration of Heterogeneous Object Schemas”. In 

Proceedings of the International Conference on Entity Relationship Approach 
(ER ‘93), 1993, pp.297-314. 

 



 168 

[57] Konopnicki D. and Shmueli O., “W3QS: A Query System for the World-Wide 
Web”. In Proceedings of the International Conference on Very Large Databases 
(VLDB ‘95), 1995, pp.54-65. 

 
[58] Krieger D., T. Andrews, “C++ Bindings to an Object Database” . In Modern 

Database Systems: The Object Model, Interoperability, and Beyond, 1995, ACM 
Press, pp.89-107.  

 
[59] Krishnamurthy R., Litwin W. and Kent W., “Languages Features for 

Interoperable Databases with Schematic Discrepancies” . In Proceedings of the 
ACM International Conference on Management of Data (SIGMOD ’91), 1991, 
pp.40-49. 

 

[60] Kushmerick N., Weld D.S. and Doorenbos R.B., “Wrapper Induction for 
Information Extraction” . In Proceedings of the International Joint Conference on 
Artificial Intelligence (IJCAI ‘97), Vol. 1, 1997, pp.729-737.  

 
[61] Lakshmanan L.V.S., Sadri F. and Subramanian I.N., “A Declarative Language for 

Querying and Restructuring the Web”. In Proceedings of the International 
Workshop on Research Issues in Data Engineering (RIDE ‘96), 1996, pp.12-21. 

 
[62] Lakshmanan L.V.S., Sadri F. and Subramanian I.N., “SchemaSQL – A Language 

for Interoperability in Relational Multi-database Systems”. In Proceedings of the 
International Conference on Very Large Databases (VLDB ‘96), 1996, pp.239-
250. 

 
[63] Landers T. and Rosenberg R., “An Overview of Multibase” . In Proceedings of the 

International Symposium on Distributed Data Bases, 1982, pp.153-184.  
 
[64] Larson J.A., “Bridging the Gap Between Network and Relational Database 

Management Systems”. In IEEE Computer, Vol. 16, No. 9, 1983, pp. 82-92. 
 
[65] Larson J.A., Navathe S.B. and Elmasri R., “A Theory of Attribute Equivalence in 

Databases with Application to Schema Integration” . In IEEE Transactions on 
Software Engineering (TSE), Vol. 15, No. 4, 1989, pp.449-463. 

 
[66] Lee C. and Chen C.-J., “Query Optimization in Multidatabase Systems 

Considering Schema Conflicts” . In IEEE Transactions on Knowledge and Data 
Engineering (TKDE), Vol. 9, No. 6, 1997, pp.941-955. 

 
[67] Legaria C.G. and Rosenthal A., “Outerjoin Simplification and Reordering for 

Query Optimization” . In ACM Transactions on Database Systems (TODS), Vol. 
22, No. 1, 1997, pp.43-74. 

 



 169 

[68] Levy A.Y., “Obtaining Complete Answers from Incomplete Databases” . In 
Proceedings of the International Conference on Very Large Data Bases (VLDB 
‘96), 1996, pp.402-412. 

 
[69] Levy A.Y., Rajaraman A., Ordille J.J., “Querying Heterogeneous Information 

Sources Using Source Descriptions” . In Proceedings of the International 
Conference on Very Large Databases (VLDB ’96), 1996, pp.251-262. 

 
[70] Li W.-S. and Clifton C., “Semantic Integration in Heterogeneous Databases Using 

Neural Networks” . In Proceedings of the International Conference on Very Large 
Data Bases (VLDB ‘94), 1994, pp.1- 12. 

 
[71] Litwin W. and Abdellatif A., “Multidatabase Interoperability” . In IEEE 

Computer, Vol. 19, No. 12, 1986, pp.10-18. 
 
[72] Litwin W., Mark L. and Roussopoulos N., “ Interoperability of Multiple 

Autonomous Databases” . In ACM Computing Surveys, Vol.22, No.3, 1990, 
pp.267-293. 

 
[73] Lu H., Ooi B.-C. and Goh C.-H., “On Global Multidatabase Query Optimization” . 

In SIGMOD Record, Vol. 21, No. 4, 1992, pp.6-11. 
 
[74] Lu X., “A Semantic Wrapper Used in Heterogeneous Database Systems”. 

Master’s Thesis, School of Computer Science, Florida International University, 
2000. 

 
[75] Lycos Search Engine: http://www.lycos.com 
 
[76] McLoed D. and Si A., “The Design and Experimental Evaluation of an 

Information Discovery Mechanism for Networks of Autonomous Database 
Systems”. In Proceedings of the IEEE International Conference in Data 
Engineering (ICDE ‘95), 1995, pp.15-24. 

 
[77] Mendelzon A.O. and Milo T., “Formal Model of Web Queries” . In Proceedings 

of the Symposium on Principles of Database Systems (PODS ’97), 1997, pp.134-
143. 

 
[78] Mendelzon A.O., Mihaila G.A. and Milo T., “Querying the World Wide Web”. In 

Proceedings of the International Conference on Parallel and Distributed 
Information Systems  (PDIS ’96), 1996, pp.80-91. 

 
[79] Meng W. and Yu C., “Query Processing in Multidatabase Systems”. In Modern 

Database Systems: The Object Model, Interoperability and Beyond, ACM Press, 
1995, pp.551-572. 

 



 170 

[80] Meng W., Yu C.T. and Kim W., “A Theory of Translation From Relational 
Queries to Hierarchical Queries” . In IEEE Transactions on Knowledge and Data 
Engineering (TKDE), Vol. 7, No. 2, 1995, pp.228-245. 

 
[81]  Microsoft ODBC 2.0 Programmer’s Reference and SDK Guide, Microsoft Press, 

1994. 
 
[82] Motro A., “ Integrity = Validity + Completeness” . In ACM Transactions on 

Database Systems (TODS), Vol. 14, No. 4, 1989, pp.480-502. 
 
[83] Navathe S., Elmasri R. and Larson J., “ Integrating User Views in Database 

Design” . In IEEE Computer, Vol.19, No. 1, 1986, pp.50-62. 
 
[84]  OMG’s web site: http://www.omg.org/ 
 
[85]  Oracle database web site: http://www.oracle.com/database/ 
 

[86] Papakonstantinou Y., Garcia-Molina H. and Widom J., “Object Exchange Across 
Heterogeneous Information Sources” . In Proceedings of the IEEE International 
Conference on Data Engineering (ICDE ‘95), 1995, pp.251-260.  

 
[87] Quillian M.R., “Semantic Memory” . In Semantic Information Processing, ed. by, 

Marvin Minsky, MIT Press, 1968, pp.227-270. 
 
[88] Ramakrishnan R. and Gehrke J., Database Management Systems, Second Edition, 

McGraw-Hill, 2000. 
 

[89] Rishe N., “A File Structure for Semantic Databases''. In Information Systems, Vol. 
16, 1991, pp.375-385.  

 
[90]  Rishe N., “A Methodology and Tool for Top-down Relational Database Design” . 

In Data and Knowledge Engineering (DKE), Vol. 10, pp.259-291, 1993. 
 

[91] Rishe N., “ Interval-based approach to lexicographic representation and 
compression of numeric data''. In Data and Knowledge Engineering (DKE), Vol. 
8, 1992, pp.339-351. 

 

[92] Rishe N., A. Vaschillo, D. Vasilevsky, A. Shaposhnikov, S.-C. Chen, “A 
Benchmarking Technique for DBMS̀ s with Advanced Data Models” . To appear 
in the Symposium on Advances in Databases and Information Systems (ADBIS-
DASFAA 2000), September 5-8, 2000. 

  



 171 

[93] Rishe N., Athauda R., Yuan J. and Chen S.C., “Knowledge Management for 
Database Interoperability” . Submitted to the International Conference on 
Information Reuse and Integration (IRI 2000), November 1 - 3, 2000. 

 
[94]  Rishe N., Database Design: The Semantic Modeling Approach, McGraw-Hill, 

1992. 
 
 [95] Rishe N., Sun W., Barton D., Deng Y., Orji C., Alexopoulos M., Loureiro L., 

Ordonez C., Sanchez M. and Shaposhnikov A., “Florida International University 
High Performance Database Research Center” . In SIGMOD Record, Vol. 24, No. 
3, 1995, pp.71-76. 

 
[96] Rishe N., Yuan J., Athauda R., Lu X. and Ma X., “SemWrap: A Semantic 

Wrapper over Relational Databases, with Substantial Size Reduction of User's 
SQL Queries” . In Proceedings of the International Conference on Extending 
Database Technology - Software Demonstrations Track (EDBT 2000), 2000, 
pp.13-14. 

 
[97] Rishe N., Yuan J., Athauda R., Lu X., Ma X., Vaschillo A., Shaposhnikov A., 

Vasilevsky D. and Chen S.C., “SemanticAccess: Semantic Interface for Querying 
Databases”. To appear in the International Conference on Very Large Databases 
(VLDB 2000), September 10-14, 2000.  

 
[98] Rishe N., “Semantic SQL”. Internal Document, High-performance Database 

Research Center, School of Computer Science, Florida International University, 
1998. 

 

[99] Roantree M., Murphy J. and Hasselbring W., “The OASIS Multidatabase 
Prototype” . In SIGMOD Record, Vol. 28, No. 1, 1999, pp.97-103. 

 
[100] Roth M.T., Arya M., Haas L., Carey M., Cody W., Fagin R., Schwarz P., Thomas 

J. and Wimmers E., “The Garlic Project” . In Proceedings of the ACM 
International Conference on Management of Data (SIGMOD ’96), 1996, pp.557-
557. 

 
[101] Sciore E., Siegel M. and Rosenthal A., “Using Semantic Values to Facilitate 

Interoperability Among Heterogeneous Information Systems”. In ACM 
Transactions of Database Systems (TODS), Vol. 19, No. 2, 1994, pp.254-290. 

 
[102] Shan M., “Pegasus Architecture and Design Principles” . In Proceedings of the 

ACM International Conference on Management of Data (SIGMOD ’93), 1993, 
pp.422-425. 

 



 172 

[103] Shan M.-C., Ahmed R., Davis J., Du W. and Kent W., “Pegasus: A 
Heterogeneous Information Management System”. In Modern Database Systems: 
The Object Model, Interoperability and Beyond, ACM Press, 1995, pp.664-682. 

 
[104] Shaposhnikov A., “Algorithms for Efficient Transaction Management and 

Consistent Queries in Client-Server Semantic Object-oriented Parallel 
Databases” . Ph.D. Thesis, School of Computer Science, Florida International 
University, 1998. 

 
[105] Sheth A.P. and Larson J.A., “Federated Database Systems for Managing 

Heterogeneous and Autonomous Databases” . In ACM Computing Surveys, Vol. 
22, No. 3, 1990, pp.183-236. 

 
[106] Sheth A.P., Larson J.A. Cornelio A. and Navathe S., “A Tool for Integrating 

Conceptual Schemas and User Views”. In Proceedings of the IEEE International 
Conference on Data Engineering (ICDE ‘88), 1988, pp.176-183. 

 
[107] Shipman D. W., “The Functional Data Model and the Data Language DAPLEX”. 

In ACM Transactions on Database Systems (TODS), Vol. 6, No. 1, 1981, pp.140-
173. 

 
[108] Soderland S., “Learning to Extract Text-Based Information from the World Wide 

Web”. In Proceedings of the International Conference on Knowledge Discovery 
and Data Mining (KDD ‘97), 1997, pp.251-254. 

 
[109]  SQL Server web site: http://www.microsoft.com/sql/default.htm 
 
[110]  SQL-92. ANSI Standard SQL language, 1992. 
 
[111] Storey V.C., Chiang R.H.L., Dey D., Goldstein R.D. and Sundaresan S., 

“Database Design with Common Sense Business Reasoning and Learning” . In 
ACM Transactions on Database Systems (TODS), Vol. 22, No. 4, 1997, pp.471-
512. 

 
[112] Storey V.C., Ullrich H. and Sundaresan S., “An Ontology for Database Design 

Automation” . In Proceedings of the International Conference on Conceptual 
Modeling (ER ‘97), 1997, pp.2-15. 

 
[113] Subramanian D.K. and Subramanian K., “Query Optimization in Multidatabase 

Systems”. In Distributed and Parallel Databases, Vol. 6, No. 2, 1998, pp.183-
210. 

 
[114] Tanenbaum J., Chowdhry T. and Hughes K., “eCo System: An Internet 

Commerce Architecture” . In IEEE Computer, Vol. 30, No. 5, 1997, pp.48-55. 
 



 173 

[115] Tseng F.S.C., Chen A.L.P. and Yang W.-P., “Answering Heterogeneous Database 
Queries with Degrees of Uncertainty” . In Distributed and Parallel Databases, 
Vol. 1, No. 3, 1993, pp.281-302. 

 
[116] Ullman J. D. and Widom J., A First Course in Database Systems, Prentice-Hall, 

1997. 
 
[117] Vaschillo A., “A Semantic Paradigm for Intelligent Data Access” . Ph.D. Thesis, 

School of Computer Science, Florida International University, 2000. 
 
[118] Wand Y. and Storey V., “An Ontological Analysis of the Relationship Construct 

in Conceptual Modeling” . In ACM Transactions on Database Systems (TODS), 
Vol. 24, No. 4, 1999, pp.494-528. 

 
[119] Wand Y. and Wang R., “Anchoring Data Quality Dimensions in Ontological 

Foundations” . In Communications of the ACM (CACM), Vol. 39, No. 11, 1996, 
pp.86-95. 

 
[120] Wand Y. and Weber R., “An Ontological Model of an Information System”. In 

IEEE Transactions on Software Engineering (TSE), Vol. 16, No. 11, 1990, 
pp.1282-1292. 

 
[121] WebKB project’s homepage: http://www.cs.cmu.edu/~WebKB/ 
 
[122] Weeldreyer, “Structural Aspects of the Entity-Category-Relationship Model” . In 

Technical Report HR-80-250, Honeywell Computer Sciences Center, 1980, 
pp.17-38. 

 
[123] Winston P.H., Artificial Intelligence, Second Edition, Addison-Wesley, 1984. 
 
[124] Yu C.T. and Chang C.C., “Distributed Query Processing” . In ACM Computing 

Surveys, Vol.16, No.4, 1984, pp.399-433. 
 
[125] Yu C.T., Chang C.C., Templeton M., Brill D. and Lund E., “Query Processing in 

a Fragmented Relational Distributed System: Mermaid” . In IEEE Transactions on 
Software Engineering (TSE), Vol.11, No. 8, 1985, pp.795-810.  

 
[126] Yu C.T., Zhang Y., Meng W., Kim W., Wang G., Pham T. and Dao S., 

“Translation of Object-Oriented Queries to Relational Queries” . In Proceedings of 
the IEEE International Conference on Data Engineering (ICDE ‘95), 1995, 
pp.90-97. 

 
[127] Zhu Q. and Larson P.A., “A Query Sampling Method for Estimating Local Cost 

Parameters in a Multidatabase System”. In Proceedings of the IEEE International 
Conference on Data Engineering (ICDE ‘94), 1994, pp.144-153. 



 174 

 
[128] Zhu Q. and Larson P.-A., “Solving Local Cost Estimation Problem for Global 

Query Optimization in Multidatabase Systems”. In Distributed and Parallel 
Databases, Vol. 6, No. 4, 1998, pp.373-420. 



 175 

APPENDIX 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

META-OBJECT — category (A catalog of meta objects) 

 

 

Subschema representing Sem-ODM Meta-Schema 
 

 

META OBJECT 
 

comment:String  
 

 

BINARY  
 

 

ENUMERATED 
TYPE 

 
permitted-value:String  

 

 

STRINGS RANGE 
 

allowed-characters:String  
regular-expression:String  

max-length:String  
mime-type:String  

 

 

NUMBERS RANGE 
 

minimum:Number  
maximum:Number  

discrete-step:Number  
 

 

CONCRETE 
CATEGORY 

 
 

 

KEY RELATION 
 
 

 

ABSTRACT 
CATEGORY 

 
->subcategory  (m:m)-> 

 

 

CATEGORY 
 

name:String total 
 

 

RELATION 
 

name:String total 
cardinality:String  

total:Boolean  
 

domain 
(m:1,total) 

range 
(m:1,total) 



 176 

comment — attribute of META-OBJECT, range: String (m:1) (Comment about meta 

object) 

RELATION — subcategory of META-OBJECT (A catalog of relations) 

name — attribute of RELATION, range: String (m:1,total) (Name of relation) 

cardinality — attribute of RELATION, range: String (m:1) (Cardinality of relation) 

total — attribute of RELATION, range: Boolean (m:1) (Totality of relation) 

CATEGORY — subcategory of META-OBJECT (A catalog of categories) 

name — attribute of CATEGORY, range: String (m:1,total) (Name of category) 

ABSTRACT-CATEGORY — subcategory of CATEGORY 

KEY-RELATION — subcategory of RELATION (A catalog of key relations) 

CONCRETE-CATEGORY — subcategory of CATEGORY (A catalog of concrete 

categories) 

STRINGS-RANGE — subcategory of CONCRETE-CATEGORY (A catalog of strings) 

allowed-characters — attribute of STRINGS-RANGE, range: String (m:1) (Allowed 

characters of the strings range) 

regular-expression — attribute of STRINGS-RANGE, range: String (m:1) (Regular 

expression) 

max-length — attribute of STRINGS-RANGE, range: String (m:1) (Maximum length of 

strings range) 

mime-type — attribute of STRINGS-RANGE, range: String (m:1) (Mime type) 

NUMBERS-RANGE — subcategory of CONCRETE-CATEGORY (A catalog of number 

ranges) 

minimum — attribute of NUMBERS-RANGE, range: Number (m:1) (Minimum of 



 177 

numbers range) 

maximum — attribute of NUMBERS-RANGE, range: Number (m:1) (Maximum of 

numbers range) 

discrete-step — attribute of NUMBERS-RANGE, range: Number (m:1) (Discrete step in 

numbers range) 

ENUMERATED-TYPE — subcategory of CONCRETE-CATEGORY (A catalog of 

enumerated types) 

permitted-value — attribute of ENUMERATED-TYPE, range: String (m:1) (Permitted 

value) 

BINARY— subcategory of CONCRETE-CATEGORY (A catalog of binary types) 

subcategory — relation from ABSTRACT-CATEGORY to ABSTRACT-CATEGORY 

(m:m) (Subcategory relation) 

domain — relation from RELATION to ABSTRACT-CATEGORY (m:1,total) (Domain of 

relation) 

range — relation from RELATION to CATEGORY (m:1,total) (Range of relation) 



 178 

APPENDIX 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
COMPONENT-META-OBJECT — category (A catalog on component meta objects) 

comment — attribute of COMPONENT-META-OBJECT, range: String (m:1) (Comment 

on component meta object) 

TABLE — subcategory of COMPONENT-META-OBJECT (A catalog of tables) 

name — attribute of TABLE, range: String (m:1,total) (Name of table) 

FIELD — subcategory of COMPONENT-META-OBJECT (A catalog of fields) 

name — attribute of FIELD, range: String (m:1,total) (Name of field) 

 

Subschema representing relational meta-schema 
 

 

PRIMARY KEY 
FIELD 

 
 

 

DATATYPE 
 

type:String 1:1,total 
 

 

FIELD 
 

name:String total 
 

 

COMPONENT 
META OBJECT 

 
comment:String  

 

 

TABLE 
 

name:String total 
 

 

FOREIGN KEY 
FIELD 

 
 

belongs to 
(m:1,total) 

has 
(m:1,total) 

refers to 
(m:1,total) 



 179 

DATATYPE — subcategory of COMPONENT-META-OBJECT (A catalog of datatypes) 

type — attribute of DATATYPE, range: String (1:1,total) (Type of datatype) 

PRIMARY-KEY-FIELD — subcategory of FIELD (A catalog of primary key fields) 

FOREIGN-KEY-FIELD — subcategory of FIELD (A catalog of foreign key fields) 

belongs-to — relation from FIELD to TABLE (m:1,total) (Field belongs to a table) 

has — relation from FIELD to DATATYPE (m:1,total) (Field has a datatype) 

refers-to — relation from FOREIGN-KEY-FIELD to PRIMARY-KEY-FIELD (m:1,total) 

(Foreign key field refers to primary key field) 



 180 

APPENDIX 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
META-OBJECT — category (A catalog of meta objects) 

comment — attribute of META-OBJECT, range: String (m:1) (Comment about meta 

 

Subschema representing mapping between Sem-ODM and relational schemas 
 

 

VIRTUAL 
ATTRIBUTE 

 
spec:String total 
type:String total 

 

 

VIRTUAL 
RELATION 

 
->next  (m:1)-> 

domain-tbl-attributes:String  
range-tbl-attributes:String  

 

 

VIRTUAL 
CATEGORY 

 
from:String total 

where:String  
group-by:String  
having:String  

 

 

VIEW 
SPECIFICATION 

 
 

 

META OBJECT 
 

comment:String  
 

 

COMPONENT 
META OBJECT 

 
 

 

VIEW META 
OBJECT 

 
->range  (m:1)-> 

->domain  (m:1)-> 
 

is derived from 
(m:m,total) 

is based on 
(m:m,total) 

has 
(m:1) 



 181 

objects) 

VIEW-META-OBJECT — category (A catalog of view-meta-objects) 

COMPONENT-META-OBJECT — subcategory of VIEW-META-OBJECT (A catalog 

of component meta objects) 

VIEW-SPECIFICATION — subcategory of VIEW-META-OBJECT (A catalog of view 

specifications) 

VIRTUAL-CATEGORY — subcategory of VIEW-SPECIFICATION (A catalog of 

virtual categories) 

from — attribute of VIRTUAL-CATEGORY, range: String (m:1,total) (A catalog of from 

clauses) 

where — attribute of VIRTUAL-CATEGORY, range: String (m:1) (A catalog of where 

clauses) 

group-by — attribute of VIRTUAL-CATEGORY, range: String (m:1) (A catalog of group 

by clauses) 

having — attribute of VIRTUAL-CATEGORY, range: String (m:1) (A catalog of having 

clauses) 

VIRTUAL-RELATION — subcategory of VIEW-SPECIFICATION (A catalog of 

virtual relations) 

domain-tbl-attributes — attribute of VIRTUAL-RELATION, range: String (m:1) (A 

catalog of domain attributes (of join condition)) 

range-tbl-attributes — attribute of VIRTUAL-RELATION, range: String (m:1) (A 

catalog of range attributes (of join condition)) 

VIRTUAL-ATTRIBUTE — subcategory of VIEW-SPECIFICATION (A catalog of 



 182 

virtual attributes) 

spec — attribute of VIRTUAL-ATTRIBUTE, range: String (m:1,total) (A catalog of 

specifications for attributes) 

type — attribute of VIRTUAL-ATTRIBUTE, range: String (m:1,total) (A catalog of types 

of specifications) 

range — relation from VIEW-META-OBJECT to VIEW-META-OBJECT (m:1) (Range of 

view meta object) 

domain — relation from VIEW-META-OBJECT to VIEW-META-OBJECT (m:1) 

(Domain of view meta object) 

next — relation from VIRTUAL-RELATION to VIRTUAL-RELATION (m:1) 

is-derived-from — relation from META-OBJECT to VIEW-META-OBJECT (m:m,total) 

(Meta object is derived from view meta object) 

is-based-on — relation from VIEW-SPECIFICATION to COMPONENT-META-OBJECT 

(m:m,total) (View specification is based on component meta objects) 

has — relation from VIRTUAL-ATTRIBUTE to VIRTUAL-RELATION (m:1) (Virtual 

attribute may have a join condition (e.g. specifying multi-valued attributes)) 



 183 

APPENDIX 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
META-OBJECT — category (A catalog of meta objects) 

comment — attribute of META-OBJECT, range: String (m:1) (Comment about meta 

object) 

PROPERTY-FUNCTION — category 

 

Sub-schema representing ontologies and mapping to Sem-ODM schema 
 

 

ONTOLOGY 
 

name:String key 
application-domain:String 1:m 

 

 

OTHER 
 

name:String total 
semantics:String  
cardinality:String  

 

 

AKO 
 
 

 

ISA 
 
 

 

CONCEPT 
 

name:String key 
semantics:String  

 

 

META CONCEPT 
 

comment:String  
 

 

PROPERTY 
FUNCTION 

 
->restricted-by  (m:m)-> 
 

 

RELATIONSHIP 
 
 

 

META OBJECT 
 

comment:String  
 

is defined by 
(m:1) 

primary mapping 
(m:1,total) 

is composed of 
(m:m) 

domain 
(m:1) 

range 
(m:1) 



 184 

META-CONCEPT — category (A catalog of meta concepts) 

comment — attribute of META-CONCEPT, range: String (m:1) (Comment of meta 

concept) 

CONCEPT — subcategory of META-CONCEPT 

name — attribute of CONCEPT, range: String (key) (Name of concept) 

semantics — attribute of CONCEPT, range: String (m:1) (Meaning of concept in 

English) 

RELATIONSHIP — subcategory of META-CONCEPT (A catalog of relationships) 

domain — relation from RELATIONSHIP to CONCEPT (m:1, total) (A relationship has 

a domain concept) 

range — relation from RELATIONSHIP to CONCEPT (m:1, total) (A relationship has a 

range concept) 

ISA — subcategory of RELATIONSHIP (A catalog of ISA relationships) 

AKO — subcategory of RELATIONSHIP (A catalog of a-kind-of relationships) 

OTHER — subcategory of RELATIONSHIP (A catalog of other (not ISA or AKO) 

relationships) 

name — attribute of OTHER, range: String (m:1,total) (Name of relationship) 

semantics — attribute of OTHER, range: String (m:1) (Meaning of relationship) 

cardinality — attribute of OTHER, range: String (m:1) (Cardinality of relationship) 

ONTOLOGY — category (A catalog of ontologes)  

name — attribute of ONTOLOGY, range: String (key) (Name of ontology) 

application-domain — attribute of ONTOLOGY, range: String (1:m) (Application 

domains of ontology) 



 185 

restricted-by — relation from PROPERTY-FUNCTION to PROPERTY-FUNCTION 

(m:m) (Property function may have restrictions specified by other property functions) 

is-defined-by — relation from META-OBJECT to PROPERTY-FUNCTION (m:1) (Meta 

object is defined by property functions) 

primary-mapping — relation from PROPERTY-FUNCTION to META-CONCEPT 

(m:1,total) (Property function has a primary mapping to a meta concept) 

is-composed-of — relation from ONTOLOGY to META-CONCEPT (m:m) (Ontology is 

composed of a set of meta-concepts) 



 186 

APPENDIX 5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
INTEGRATED-META-OBJECT — category (A catalog of integrated meta objects) 

META-OBJECT — subcategory of INTEGRATED-META-OBJECT (A catalog of meta 

objects (global view or component database)) 

VIEW-SPECIFICATION — subcategory of INTEGRATED-META-OBJECT (A 

catalog of view specifications) 

 

Subschema of knowledge base at global site 

 

OBJECT 
EQUIVALENT PATH 

 
 

 

VIEW 
SPECIFICATION 

 
 

 

SEM SUB 
 
 

 

SEM EQ 
 
 

 

INTEGRATED 
META OBJECT 

 
->is-derived-from  (m:m)-> 

 

 

SEMANTIC 
RELATION 

 
 

 

BOUNDARY 
CONDITION 

 
 

 

SEM OVER 
 
 

 

GLOBAL 
 
 

 

VIEW 
 
 

 

COMPONENT 
DATABASE 

 
 

related by (1:1) 

related to 
(1:1,total) 

boundary 
(1:m) represented by 

(m:1) 

object eq by 
(1:m) 

belongs to 
(m:m,total) 

 

META OBJECT 
 
 



 187 

SEMANTIC-RELATION — category (A catalog of semantic relations) 

COMPONENT-DATABASE — subcategory of VIEW (A catalog of compoent 

databases) 

SEM-EQ — subcategory of SEMANTIC-RELATION (A catalog of semantically 

equivalent relations) 

SEM-OVER — subcategory of SEMANTIC-RELATION (A catalog of semantically 

overlapping relations) 

SEM-SUB — subcategory of SEMANTIC-RELATION (A catalog of semantically subset 

relations) 

BOUNDARY-CONDITION — category (A catalog of boundary conditions) 

OBJECT-EQUIVALENT-PATH — category (A catalog of object equivalent paths) 

VIEW — category (A catalog of views) 

GLOBAL — subcategory of VIEW (A catalog of global views) 

related-by — relation from INTEGRATED-META-OBJECT to SEMANTIC-RELATION 

(1:1) (Integrated meta object is related by semantic relation) 

related-to — relation from SEMANTIC-RELATION to INTEGRATED-META-OBJECT 

(1:1,total) (Semantic relation is related to an integrated meta object) 

boundary — relation from SEMANTIC-RELATION to BOUNDARY-CONDITION (1:m) 

(Semantic relation contains boundary conditions) 

represented-by — relation from BOUNDARY-CONDITION to INTEGRATED-META-

OBJECT (m:1) (Boundary condition is represented by an integrated meta object) 

object-eq-by — relation from SEMANTIC-RELATION to OBJECT-EQUIVALENT-

PATH (1:m) (Semantic relation contains object equivalent paths) 



 188 

is-derived-from — relation from INTEGRATED-META-OBJECT to INTEGRATED-

META-OBJECT (m:m) (Integrated meta object is derived from another integrated 

meta object) 

belongs-to — relation from META-OBJECT to VIEW (m:m,total) (Meta object belongs 

to a global or component view) 



 189 

VITA 

 

RUKSHAN INDIKA ATHAUDA 

 
 April 24, 1978   Born, Colombo, Sri Lanka 
 
 1994    Diploma in Computer Science 
      Institute of Technological Studies 
      Colombo, Sri Lanka 
 
 1996    B.S., Computer Science 
      Florida International University 
      Miami, Florida 
 
 1998    M.S., Computer Science 
      Florida International University 
      Miami, Florida 
 
 2000    Doctorate in Computer Science 
      Florida International University 
      Miami, Florida 
  

1996-2000    Undergraduate Research Assistant 
Department of Physics 
Florida International University 
Miami, Florida 

 
1996-1999    Lab Instructor 

School of Computer Science 
Florida International University 
Miami, Florida 

 
1996-2000 Graduate Research Assistant 

High-performance Database Research Center 
School of Computer Science 
Florida International University 
Miami, Florida 

 
2000    Graduate Teaching Certificate 

     The Academy for the Art of Teaching 
Florida International University 
Miami, Florida 



 190 

 
CONFERENCE PUBLICATIONS 
 
Rishe N., Athauda R., Yuan J. and Chen S.C., “Knowledge Management for Database 
Interoperability” . Submitted to the International Conference on Information Reuse and 
Integration, Honolulu, Hawaii, November 1 - 3, 2000. 
 
Rishe N., Athauda R.I., Yuan J. and Chen S.C., “Semantic relations: The key to 
integrating and query processing in heterogeneous databases” . To appear in The 4th 
World Multiconference on Systemics, Cybernetics and Informatics, Orlando, Florida, July 
23 – 26, 2000. 
 
Rishe N., Yuan J., Athauda R., Lu X., Ma X., Vaschillo A., Shaposhnikov A., Vasilevsky 
D. and Chen S.C., “SemanticAccess: Semantic Interface for Querying Databases”. To 
appear in The International Conference on Very Large Data Bases (VLDB 2000), 
September 10-14, 2000.  
 
Rishe N., Yuan J., Athauda R., Lu X. and Ma X., “SemWrap: A semantic wrapper over 
relational databases, with substantial size reduction of user's SQL queries” . In the 
Proceedings of the 7th Extending Database Technology (EDBT 2000) - Software 
Demonstrations Track, March 27-31, 2000.  
 
Athauda R., “Heterogeneity Resolution in MSemODB”, Technical Report 2000-02, 
School of Computer Science, Florida International University, 2000. 
 
Rishe N., Barton B., Prabakaran N., Gutierrez M., Martinez M.,  Athauda R., Gonzalez 
A. and Graham S., "Landsat Viewer: A Tool to create Color Composite Images of 
Landsat Thematic Mapper Data". In Proceedings of the International Conference on 
Geospatial Information in Agriculture and Forestry, June 1-3, 1998. 
 
Rishe N., Barton D., Prabakaran N., Gutierrez M., Alvarez E., Athauda R., Rodriguez J., 
Gonzalez A., "Landsat Data Visualizing via the Internet". In Proceedings of the 
International Symposium on Spectral Sensing Research, December 13-19, 1997. 
 
Prabakaran N., Rishe N. and Athauda R., "Tracking Hurricane Paths". In Proceedings of 
Image Registration Workshop, NASA GFSC, November 20-12, 1997. 
 
 
JOURNAL PUBLICATIONS 
 
Branly R.M., Athauda R.I., Fillingim M.O. and Van Hamme W.,"Light Curve Solutions 
for Eclipsing Binaries in NGC 188". In Astrophysics and Space Science 235 (1): 149-160, 
January 1996. 
      


