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error in classification is of course further influenced in the negative 
when performing the more realistic multiclass classification (assuming 
all groups as it should be) rather than a presumed binary classification 
(when only two classes are considered at a time). Moreover, when 
dealing with multimodal and multiclass classification, researchers often 
contend with the missing data challenge, especially when longitudinal 
studies are considered. Lack of sufficient data with complete samples for 
all the subjects considered in a study whether cross-sectional or longi-
tudinal is an inherent problem of any clinical trial. This challenge of 
missing data continues to hinder the needed progress for understanding 
this challenging and complex brain disorder (Jagust, 2013). 

In the medical field, incomplete samples in longitudinal studies are 
frequent. This is largely due to patients who miss taking some of the tests 
at some different timepoints of a study. Generally, missing values occur 
for a variety of reasons, including subjects that miss appointments, 
subjects that completely drop out from the study, budget limitation or 
when dealing with data with insufficient or incompatible resolutions or 
experience image corruption, etc. Troyanskaya et al. (2001); Lo and 
Jagust (2012). Many algorithms simply discard subjects with missing 
modalities from further consideration or, in the simplest case, they just 
replace the missing data with zero values or with a mean average of the 
attribute, which still results in a loss of valuable information. Accuracy 
in AD diagnosis and prognosis could be improved if the missing pa-
rameters can be more precisely estimated from the rest of the available 
data through reliable machine learning techniques, rather than through 
standard substitution techniques (Belger et al., 2016). Added attention is 
needed when different data modalities often have nonlinear and 
complicated correlations, which impedes the prospects for correct 
estimation. 

These challenging issues have led to a new line of research that fo-
cuses on developing more realistic and more sophisticated techniques to 
resolve experimental issues involving incomplete samples. This line of 
research is generally divided into two main approaches: the first 
approach attempts to synthesize missing modalities from the remaining 
ones with the help of various techniques that include maximum mean 
discrepancy based multiple kernel learning (Zhu et al., 2017), cascaded 
residual autoencoder (Tran et al., 2017), 3D convolutional neural net-
works (Payan and Montana, 2015) and generative adversarial networks 
(GAN) (Nie et al., 2017; Xiang et al., 2018). Regarding the application of 
GAN in medical imaging, Cohen and his colleagues have pointed out that 
synthesized medical images may result in misdiagnosis due to the dis-
tribution matching losses that arise from the process of matching an 
image in the input domain to an image in the target domain while 
preserving the source distribution (Cohen et al., 2018). The second 
approach attempts to impute missing values by applying various nu-
merical techniques such as simple Mean substitution,1 Mode and 
K-Nearest Neighbor (KNN) impute (Campos et al., 2015; Luengo et al., 
2012; Huang et al., 2016). Authors in (Xiang et al., 2018; Ritter et al., 
2015) extracted a complete subset of features from the actual dataset 
and synthesized the missing values randomly to analyze the power of 
some imputation methods, but they have not tested the algorithms on 
different patterns of missing values in real incomplete datasets, which 
may actually have completely different patterns from those that were 
randomly synthesized. They also overlooked the fact that some of the 
proposed imputation methods assume that the data have a Gaussian 
distribution, which may not be the case for every dataset. Moreover, 
some of these approaches do not address the block-wise missing patterns 
of data in the relatively small dataset size of the AD group. When the 
data is multimodal in nature acquired through MRI, PET, CSF, and 
cognitive scores, to name a few, each modality creates multiple features 
in each sample. When a modality is missing for a subject then none of 
those features from that single modality will be available for that sample 

leading to a missing block of information called block-wise missing 
pattern. 

Therefore, to the best of our knowledge, none of the research studies 
so far have done a comparative study on effects of existing imputation 
techniques on a block-wise missing dataset of Alzheimer while incor-
porating a huge sample size from various modalities to check the effects 
of large size data on imputation tasks. As an additional task, we have 
also considered the challenging multiclass classification of the ADNI 
dataset in the presence of a high number of missing points. Moreover, 
there are several new imputation techniques which have never been 
deeply studied within this scope of work. 

Considering the importance of the early detection of the prodromal 
stage of AD, the first objective of this paper is to analyze the classifica-
tion power of Gradient Boosting (GB) technique on a four-way classifi-
cation. The four groups included Cognitively Normal controls (CN), 
Early Mild Cognitive Impairment (EMCI), Late Mild Cognitive Impair-
ment (LMCI) and Alzheimer Disease (AD) acquired from a large multi-
modal heterogeneous dataset pulled from various cites with missing 
data, which include ADNI1, ADNIII and ADNIGO. The recent release of 
ADNI data which discriminate early, and late MCI patients motivated us 
to focus on multiclass classification between the four groups of subjects 
rather than using binary classification of two groups of subjects at a 
time. The assumption here is that binary classification lacks the gener-
alization power when introducing new sample data with no prior 
diagnosis label. The challenge of discriminating the EMCI group from 
LMCI has not yet been well studied due mainly to the absence of 
adequate data for those two classes. The second objective of this paper is 
to represent the classification potential of GB and its potential to handle 
incomplete data sets. Experimental evaluations show that SVM is unable 
to work with incomplete sample data, GB is capable of handling missing 
values with no need for any additional preprocessing. 

We also describe the performance dependency of the various state- 
of-the-art imputation techniques on the patterns of missing data. For 
this purpose, we investigated the performance of a group of imputation 
techniques on two separate sets of synthesized incomplete data with 
random-wise missing values and real incomplete data with block-wise 
missing values. Results reveal the shortcomings of imputation tech-
niques in the real case of block-wise missing data estimation. Despite 
few papers that attempted to proceed in this direction (Campos et al., 
2015; Jiang et al., 2016), to the best of our knowledge, this work is the 
first one that provides an extensive comparative study over real, 
incomplete heterogeneous multimodal dataset of Alzheimer with the 
four groups: CN, EMCI, LMCI, and AD. 

The remainder of this paper is organized as follows: Section II de-
scribes the dataset and the preprocessing steps that were undertaken. 
Section III defines the methods that have been investigated and imple-
mented in this study. Section IV provides the experimental results and 
related analyses. Finally, Section V closes with the discussion and 
conclusion. 

2. Dataset and preprocessing 

Data used in the preparation of this article were obtained from the 
Alzheimer Disease Neuroimaging Initiative (ADNI) database (adni.loni. 
usc.edu). ADNI was launched in 2003 as a public-private partnership led 
by Principal Investigator Michael W. Weiner, MD. The primary goal of 
ADNI has been to test whether serial magnetic resonance imaging (MRI), 
positron emission tomography (PET), other biological markers and 
clinical and neuropsychological assessments can be combined to mea-
sure the progression of mild cognitive impairment (MCI) and Alz-
heimer’s Disease (Landau et al., 2010). 

ADNI data is processed with a standard pipeline resulting in a large 
matrix of patients and their test measurements. Patients are arranged in 
rows and each test result is ordered as a column. In this paper, we used 
various groups of biomarkers including CSF, MRI, PET, DTI, Genetics, 
and neuropsychological tests, which are derived from ADNI database. 

1 Since data is normalized around the center in this study, mean substitution 
in this case is the same as zero fill. 
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EMCI, LMCI, AD) in a real comprehensive dataset. Among all, GB re-
cords the highest AUC for all the classes AUC = 0.89, 0.86, 0.84 and 
0.78 for AD, CN, EMCI and LMCI respectively while RF with AUC 
= 0.87, 0.84, 0.82, 0.74 has the second place and SVM with 0.84, 0.82, 
0.80, 0.74 shows a somewhat lower performance for all the classes. 
Fig. 3. reveals that EMCI and LMCI separation is the most difficult task 
for all the three classifiers. 

Based on the missing data patterns and quantity of the missing data, 
imputation-classification pairing can perform better than simple mean 
value substitution, but this improvement highly depends on the distri-
bution of the data. Hence, these investigations reveal that none of the 
state-of-the-art imputation techniques could address block-wise missing 
data. 

To emphasize the difficulty of multiclass classification, the accuracy 
of binary classification, which has been a focus of AD related research 
for many years (Xiang et al., 2013; Gray et al., 2013), is provided in 
Tables 3–7. These results highlight that even though classification of 
subjects between two classes at a time provides higher accuracy, F-score, 
precision and recall in almost all the cases (AD vs CN, CN vs EMCI, EMCI 
vs LMCI, and LMCI vs AD), these types of classification lack as expected 
the generalization ability for real-world scenarios when an unseen 
sample data could belong to any of the four groups of (AD, LMCI, EMCI, 

CN). Four-way or multiclass classification is hence more desirable and 
more realistic, but much more challenging especially when dealing with 
heterogeneous multimodal dataset as the one considered here. 

From the results summarized in Tables 3–7, it can be observed that 
gradient boosting (GB) consistently outperformed the other two algo-
rithms of RF and SVM by at least a 2% improvement in accuracy, while 
maintaining the highest precision and recall scores. Moreover, it is 
observed that RF and SVM methods could not reach similar performance 
even if augmented with the most advanced imputation methods. The GB 
performance also does not change noticeably when paired with these 
imputation techniques, given that the GB method is designed to address 
this issue innately. 

In our study, although GB performed only slightly better than other 
methods (2% higher accuracy), it holds perhaps the greatest promise 
because of its versatility, allowing it to assume simpler, and more 
interpretable forms, such as component-wise boosting and the ability to 
incorporate automatic predictor selection. This study also provides ev-
idence that imputation cost in terms of computational overhead is more 
realistic when the percentage of missing values is under 40% with the 
pattern of missing data assumed random. 

All algorithms evaluated in this study are robust and successful when 
considering large feature sets. However, SVM works well for smaller 

Table 4 
Binary Classification of the Control Normal vs Early Mild Cognitive Impairment (CN vs EMCI) * .  

Classifier Gradient Boosting Support Vector Machine Random Forest 

Imputation tech Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall 

KNN 70.28 70.54 67.20 78.18 77.39 77.01 72.01 70.14 70.11 
Soft Impute 79.07 76.79 76.27 76.91 75.19 75.15 73.71 72.39 72.47 
Matrix Factorization 80.23 77.21 77.21 76.54 73.45 73.44 75.85 73.54 73.28 
SVD 80.19 79.00 79.51 76.08 74.54 72.88 74.97 73.72 73.94 
Mean 80.93 79.67 79.9 76.96 75.93 76.22 75.56 73.91 74.33  

Table 5 
Binary Classification of the Early vs Late Mild Cognitive Impairment (EMCI vs LMCI) * .  

Classifier Gradient Boosting Support Vector Machine Random Forest 

Imputation tech Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall 

KNN 83.19 81.32 81.98 83.13 79.11 80.34 79.98 78.45 79.28 
Soft Impute 82.75 79.53 80.71 82.42 81.72 82.34 83.56 80.67 81.63 
Matrix Factorization 85.12 81.14 82.16 77.35 76.66 77.44 81.55 79.73 79.54 
SVD 85.81 81.12 82.33 79.12 77.65 79.29 81.61 80.13 80.26 
Mean 85.84 82.22 82.40 81.38 81.20 82.4 83.24 80.74 81.74  

Table 6 
Binary Classification of the Late Cognitive Impairment Vs Alzheimer (LMCI vs AD) * .  

Classifier Gradient Boosting Support Vector Machine Random Forest 

Imputation tech Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall 

KNN 73.05 67.24 69.53 65.55 46.44 64.07 73.92 70.78 72.2 
Soft Impute 74.84 71.08 72.42 69.92 47.79 68.40 73.45 69.98 71.4 
Matrix Factorization 73.84 70.87 71.81 66.25 43.58 63.97 72.32 68.31 70.2 
SVD 74.23 70.42 71.34 69.32 46.75 69.47 74.63 72.46 72.6 
Mean 75.23 73.16 73.35 70.12 44.35 66.87 74.59 71.67 72.29  

Table 7 
Binary Classification of the Control Normal Vs Alzheimer (CN vs AD) * .  

Classifier Gradient Boosting Support Vector Machine Random Forest 

Imputation tech Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall 

KNN 93.30 91.54 91.14 91.82 90.78 90.24 92.77 90.52 90.14 
Soft Impute 91.67 91.36 91.07 90.89 91.02 91.08 91.28 89.61 89.83 
Matrix Factorization 91.41 91.32 91.34 91.84 90.84 90.18 90.74 90.74 90.85 
SVD 90.90 90.88 90.29 90.57 90.61 90.75 89.81 89.15 89.18 
Mean 93.40 92.37 91.44 91.85 90.11 89.54 92.71 90.21 90.12  
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number of observations. RF, on the other hand, is preferable for large 
non-normalized datasets. SVD and KNN use the correlation structure of 
the data and KNN uses the Euclidean distance to measure similarity and 
profile most related observations to estimate the missing values. These 
approaches will fail to find the most similar profile when it comes to 
outliers. This flaw can be resolved with scaling or using log over ob-
servations. In addition, although the superiority of SVM against other 
machine learning algorithms in terms of accuracy has been reported in 
many studies, this study shows that GB achieved higher performance in 
ADNI dataset with its inherent capability of managing the missing 
values. RF and GB are also quite robust with respect to collinearity. 
However, SVM alleviates the multi collinearity problem via regulariza-
tion, where in RF, it is alleviated via choosing a random subset of fea-
tures for each tree. 

5. Conclusion 

In this paper, we presented a comparative study of several methods 
for the estimation of missing values in the largest heterogeneous dataset 
pulled from various longitudinal studies and cites. We discussed the 
difficulty of classification in the inherent presence of missing values in 
longitudinal studies especially when dealing with a multimodal het-
erogeneous dataset. Of the different state-of-the-art algorithms imple-
mented in this study, Gradient Boosting algorithm achieved the best 
performance when dealing with multiclass classification involving all 4 
groups (CN, EMCI, LMCI and AD). The GB method has outperformed 
SVM and Random Forest algorithms. All the classifiers have been 
coupled with four advanced imputation techniques including KNN 
impute, Matrix Factorization, SVD, and Soft Impute and they have been 
utilized to classify the different stages of AD. When coupled with 
imputation techniques, Random Forest was the most consistent for 
improving accuracy through all percentages of missing data, followed by 
SVM up to 60% missing data; but both failed at the 80% and more of 
missing data. Despite the contribution of the imputation techniques in 
missing value estimation in data with low percentage of the random 
missing data, all the algorithms fail to perform well in high levels of 
missing data. Moreover, in the presence of block-wise missing data 
patterns, where a particular modality is completely missing for so many 
subjects, these imputation methods are not as helpful. While many 
studies so far focused on binary classification of AD, we went further in 
performing multiclass classification while contending with the missing 
data challenge inherent to longitudinal studies. 

Moreover, we also provide results of the different binary classifica-
tions as well for comparative purposes and for estimating the effect of 
missing data on such binary classification in contrast to multiclass 
classification. The imbalanced dataset and insufficient samples in each 
group of subjects imposed a new constraint on the current classification 
problem. We tried to tackle this issue by incorporating the data samples 
from longitudinal studies and provided effective ways to augment the 
dataset. In future work, we are planning on improving the current 
multiclass classification accuracy with application of newer techniques 
such as the Optimal Margin Distribution (Zhang and Zhou, 2019) in 
incomplete datasets, even in the presence of block-wise missing data 
patterns, and applying new deep learning techniques such as Long Short 
Term Memory for handling missing data (Aghili et al., 2018; Li et al., 
2019). 
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