
qo-?E...

Databases and Parallel Architectures

Proceedings

PARBASE-90
Intern-ational Conference on
Databases, Parallel Architectures,
and Their Applications
Edited by N. Rishe, S. Navathe, and D. Tal

~

I
~----~/

~

Sponsored by
Florida International University
in cooperation with IEEE and Euromicro

March 7-9, 1990

Miami Beach, Florida

~ IEEE Computer Society Press + Institute of Electrical and Electronics Engineers, Inc.

L
t

PERFORMANCE EVALUATION OF A NEW OPTIMISTIC CONCURRENCY CONTROL ALGORITHM

Jonathan Addess• Ehud Gudes• Doron Tal.. Naphtali Rishe••

• Deparunent of Computer Science, Ben-Gurion University, Beer Sheva 84105, Israel
•• School of Computer Science, Florida International University , Miami, FL. 33199

ABSTRACT communication and synchronization primitives. The algorithm maps

A new optimistic concurrency control algorithm for a parallel multi- very naturally into FCP since the concepts of processes and messages

processor database machine is presented. The algorithm is simulated map directly into FCP constructs . FCP proved itself as a very useful tool

using Flat Concurrent Prolog and it' s performance is discussed. for simulating concurrency control algorithms. Other uses of FCP for

simulating parallel database algorithms were reponed in [5,6].

THE TRANSACTIONS MODEL
INTRODUCTION

A transaction is a set of interrelated update requests to be performed as
Concurrency contrOl algorithms have received considerable attention

one unit [7]. In our model we employ the deferred update scheme. Upon
since the 1970s when the need for fast and high performance database

completion of the transaction the DBMS checks its integrity and then
machines became critical. The traditional approach of locking entails

physically performs the update. A two-phase commit protocol is used to
high overhead, especially in highly parallel database machines and there-

insure that all updates will be performed at all nodes.
for optimistic algorithms [1,2] seem more suitable in that environmenL

We use here the term programmatic transaction to denote the program
In this repon we focus on a modification of the classic Kung & Robinson

fragment comprising a transaction. During its execution. a programmatic
time-stamp based concurrency control algorithm, proposed in (3]. The

transaction may issue database queries. Queries which are performed
algorithm is based primarily on two innovative techniques: query killing

fro m within a programmatic transaction are called transactional queries.

notes and wealc serializability of transac tions. In particular, it prefers
The immediate outcome of a programmatic transaction is an accumulaud

long transactions over shon queries and thus reduces considerably the
transaction, which is composed of a set of facts to be deleted from the

number of transaction rollbacks required.
database. a set of facts to be inserted into the database and additional

In order to test the validity and evaluate the performance of the proposed
information needed to verify that there is no interference between con-

algorithm a simulation program was written and run using a realistic set
current transactions. If the verification produces a positive result, then

of transactions. This paper first brieHy reviews the transactions model
the new instantaneous database is: ((the-old-instantaneous-databasl!)

and concurrency algorithm presented in [3], and then presents and
(the-set-of-facts-to-be-deleted)) U (the-set -of-facts-to-be-inserted) .

discusses the simulation results.

The simulation has been performed at the Ben-Gurion University using

Flat Concurrent Prolog (FCP) [4] . The advantages of FCP for specifying

and implementing parallel algorithms include its refined granularity of

parallelism, its declaretiveness and conciseness and it 's powerful

CH2728-4/90/0000/0522$01 .00 © 1990 IEEE 522

The execution of a transaction statement is composed of four stages:

I) transaction accumulation - The results of the updating instruc­

tions are accumulated in the sets D (the set of facts to be deleted

from the database), I (the set of facts to be inserted into the data­

base.) and V (the results of the transactional queries which need to

be verified) . The result of the transaction accumulation, i.e. the

outcome (V.D.D of the run of the program segment, is called the

accumulated transaction.

2) Integrity validation - at this time the system checks if the result­

ing database would not violate the integrity constraints.

3) Concurrency validation - using the algorithm below, it is

checked that the set V is still consistent, and that this transaction

does not interfere with other concurrent accumulated transactions

and queries .

4) Physical performance of the accumulated transaction - the new

instantaneous database is: ((the -old-instantaneous-database) - D)

U I.

The above model of transactions is mapped onto a parallel semantic data­

base machine described in [3]. Briefly, that machine is a multi -disk

multi-processor database machine where all the processors are identical,

have access to their own local disks, can process both transactions and

queries and may communicate via a high speed communication nerwork .

The database is divided among the local disks using a special storage

structure described in [3).

In the machine described above, any node may serve as the entry point

for transactions and queries, that node is called: the originator node.

Queries arrive at the originator node and are divided into sub-queries

which are sent to the appropriate processors. Transactional queries are

divided into sub-queries and distributed like any other queries.

Programmatic transactions are executed as pan of the host programs.

When the program reaches the "end transaction" statement, the accumu­

lated transaction is computed and sent to a transactions originator which

distributeS them between relevant processors as a set of sub-transactions

(Vl,Dl ,ll), (V2,D2,I2) The above sub-transactions are executed

using a rwo-plulse commit protocol [8). As soon as the sub-transaction

523

(Vi,Di,Ii) is examined by its processor i, its components are checked. 1f

verification is successful and there are no conflicts with concurrent accu­

mulated transactions, then a ready message is sent to the originator of the

accumulated transaction. When the commit message arrives, the updates

are performed atomically.

THE ALGORITHM

As in (1,2] the algorithm is based on Time-stamps. Time stamps for

queries are assigned at the time the query is distributed to the processors.

Time stamps for transactions are assigned at the time the accumulated

transaction is distributed . The algorithm uses three data structures at

each node: two queues and a log. One queue is the waiting queue which

contains the transactions or queries wh ich have not been processed yet by

this node. The other queue is the hold-queue which contains the sub­

transactions which were checked for conflict, found O.K., sent the ready

message, and are now waiting for a commit message. The log contains

information on all the sub-transactions and queries which were executed

locally during the last reasonable period of time. The log is used during

the verification process for checking whether any sub-transaction exists

on the log which conflicts with the current transaction or query, and has

an earlier time-stamp.

One unique propeny of the algorithm is the notion of lei/ling notes.

When a conflict is detected between a transaction and a query, the query

is selected to be a boned. However, instead of aborting the query, the

node discovering the conflict sends a killing note. If all other nodes have

already executed the query , then they may ignore the killing note, and as

will be discussed in the simulation pan. can save quite a few query

abons. The algorithm is presented in high-level only. See (3) for details.

- . . ~ . - '-. - . ~ . ' . .

(A) A sul>-transaction Tl=(Vl.D\Jl) of a transaction T=(V,DJ) arrives at

node Nl.
1. Perform the verification. If VI is not O.K. then kill the current

t:rallSllCtion and return.
2. If there is a sub-transaction in the hold queue that can interfere

with the current sub-transaction then kill the current sub-transaction

Tl and rerum.
3. If there is a younger su~K~uery Qi in the log which interferes

with Tl then send a killing note for Qi.
4. Put the sub-ttansaction on hold and send an ag,.• to perform
message 10 the cransaction origina10r.

(B) A transactional sub-query PI arrives at node Nl.
1. Execute Pl.

(C) A su~K~uery Ql arrives at node Nl or is popped from the hold queue.

1. If any sul>-transaction Tl with a later time-stamp than Ql which

interferes with Ql has been physically performed or any killing

message associated with some sub-transaction Tl has been left fc>r
sul>-query Q I and T1 interferes with Q I then lcill the current query

and rerum else: 2. Execute Q I, rerum the result 10 the originaror

and update the log.
(D) A commit message for a sul>-transaction Tl arrives at node Nl.

1. Remove sui>- transaction Tl from the hold queue.

2. If the message is associated with killing notes for sub-<jueries

then for each sub-<juery Ql to be killed perform sub-algorithm (C)

on it.
3. Perform the physical change in the database and updote the log.

Examples of several scenarios which can arise by this algorithm were

presented in [3]. We next discuss the simulation in FCP.

SIMULATION DESCRIPTION

Flat Concurrent Prolog (FCP)

A Flat Concurrent Prolog program is a set of guarded Hom clauses of the

form : H <--- G I ,G2, ... ,Gn I B I ,82, ... ,Bm

Where H is the head prcdicat.e, Gs (guard elements) and Bs (body ele-

ments) are sets of "procedure" calls. Procedure calls may be solved in

any order and thus may be viewed as a system of parallel "processes".

The semantics of FCP are based on non-deterministic process and clause

selection. Each state of a computation consists of a multi -set of processes

which form the resolvent, a program and the data state. A reduction Iran-

sition involves non-dct.erministically selecting a process from the resol-

vent and a clause from the program, verifying the validity of the guard

and reducing the head process to the body processes.

The computation must be "just" i.e. a process. whose reduction is con-

tinuously enabled, is eventually taken. No other restrictions on order of

process selection exist.

524

\

Description of !be Simulation Program

A) The network we used is a 3-dirnensional cyclic cube of order N, in

which each node has 6 neighbors. Therefor the network can have

1.8,27,64 ... et.e. nodes.

B) All nodes are the same and each one consists of a few parts (see figure

1). Requests enter the node and arrive at the selector. The selector

divides the requests into specific requests regarding data at the node

which are sent to the process and general requests which are sent to the

originator. Each new request opens a new originator which shares a

common input stream with all other originators. The messages from the

originators pass through a linear merger and are then merged with the

messages from the process and passed to the connector.

C) Communication between nodes: The communication protoeol is

msg(/Dreceiver "\1essage). The connector at each node is in charge of

the communication. Each connector has 7 input-output channels, 6to it's

neighbors and one to itself, and one input channel from the system host.

The connectors perform two taSks:

a. Passi11g messages to the correct node via the short.est route possi-

ble.

b. Accepting incoming messages and removing thetr com munica-

tion protoCol.

The concurrency algorithm itself is performed by the process process.

D) The structure of the data at each node is a list of pairs (Key, Value).

The range of the key is Node_ID•to - Node_ID•t 0+9 so that it will be

possible to know at which node the data resides. Transactions and

queries' contents are in terms of (Kcy,Value) pairs.

The structure of a 1ransaction is for example:

msg(Orig_!D ,originator([(Rec JD ,sub _t([] ,{(1014 ,abc)] ,[(n7,vvv)/))/

More _sub _transactions]))

The structure of a query is for example:

msg(Orig_!D,q_originator([(Receiver JD .sub _ q([(JOJ4.A ·)]))/

More_sub _queries/))

Further details on the implementation can be found in [9].

Toncia)lbowt &. bo.1

.......

F• g~rc no. I . The description of a single node

SIMULATION RESULTS

The ftrst example shows a clash between two transactions:
@spawn_hypcr#hypcr(2.1n)

spawned: 0 . 0 · 0
spawned: 0 . 0 . I

spawned: 0 · I · 0

<I> sWicd
spawned: 0 · I · I

spawned: I · 0 · 0
spawned: I · 0 · I
spawned: 1 · 1 · 0
spawned: 1 . I · I
@ln! msg(J ll,originator{[(l01,sub_t([],[(l014,abc)],[(777, vvv)])),
(II O,sub_t(U ,[],[(888.vvv)])),(l ,sub_t([J,[J ,[(777, vvv)]))]))
@lnlmsg(J !.originator{[(10 l,sub_t([(I 0 14,abc)],[(I 014,abc)],[(777. vvv)))),
(II O,sub_t([],[],[(888,vvv)])),(l.sub_t([],[],[(555, vv v)]))]))

kill transaction:, 17197
@U=[]
successful transaction:. 14470

The second example shows an example of killing notes. A commit mes-

sage for a transaction whose sul>-transaction is in the hold queue arrives

with killing-notes. A query arrives and is killed by the notes left by the

transaction.
@proccssllproccss(l 0 1,ln,Out)

<1> started

@ln!(sub_t([(IOJ4, abc)], [(1014, abc)], [(1013, vvv)]),k(101.777))
@lnl(commit(l 01. 777+[(1 01 ,888)]))
@lnl(sub_q([(I 014.W)]).k(1 01,888))
@OuC

Out= [(101 , agnee(/77 + [])), (101, kill(888)) I _j

The third example, without script, involved running the system with a

continuous stream of transactions for a fixed period of time on an eight

node system with each node containing 10 data items.

\

525

The syst.em run with:

a. Transactions containing 3 sul>-transactions.

b. Queries containing 3 sub-queries.

c. An evenly distributed load on each node .

d. Transaction:query ratio of 2:8.

produced the following results:

a. All the queries succeeded.

b. Approximat.ely 10% of the transactions were killed.

Changing each transaction to contain 2 sub-transactions and changing the

transaction:query ratio to I :9 caused the percentage of transactions

killed to be reduced to approximately 4%.

These case study resu lts clearly show, as the algorithm predicts, that the

preference of transactions over queries reduces the cont.ention in this

environment.

REFERENCES

[J] Kung H. T .. and Robinson J. T., "On Optimistic Methods for Con­
currency Control". ACM Trans. on Database Systems. V. 6, No.2. 1981.
[2] Carey M.].,"Improving the Pcrforrnancc of an Optimistic Concurrency

Control Algorithm Through Timestamps and Versions", IEEE Trans. on
Software Engineering, V. 13, No. 6, 1987.
[3] Rishe N., Tal D .. and Gudes E., "An Optimistic Concurrency control
algorithms for distributed-storage semantic da tabase machines", submitted
for pubiication, 1989.
[4] Shapiro E., Concurrent Prolog . Collected Papers, The MIT Press,
1987.
[5] Reches E .. Gudes E., Shapiro E., "Parallel access to a distributed data­
base and i!S implementation in Flat Concurrent Prolog", Weizmann lnst.
technical repon. CSSS-11. July, 1988.

Ill} Qudes E., Shapiro E., "A parallel B-tree process stiUcrure". Weizmann

lnst. tochnical repon. CS89-06, April, 1989.
[7) Bernstein P. A .. Hadzilacos P. A., Goodman N., "Concurrency control
and recovery in database systems". Addison-Wesley, 1987.

[8) Ceri and Pelagaui, Distributed database systems, McGraw-Hill, 1986.

[9] Addess J., Bloch E .. 'The irnplcrnent.alion of a concurrency control
algorithm for a distributed-storage semantic database machine in FCP",

Ben-Gurion Urtivcrsity, technical report. August. 1989.

