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ABSTRACT communication and synchronization primitives. The algorithm maps 

A new optimistic concurrency control algorithm for a parallel multi- very naturally into FCP since the concepts of processes and messages 

processor database machine is presented. The algorithm is simulated map directly into FCP constructs . FCP proved itself as a very useful tool 

using Flat Concurrent Prolog and it' s performance is discussed. for simulating concurrency control algorithms. Other uses of FCP for 

simulating parallel database algorithms were reponed in [5,6]. 

THE TRANSACTIONS MODEL 
INTRODUCTION 

A transaction is a set of interrelated update requests to be performed as 
Concurrency contrOl algorithms have received considerable attention 

one unit [7]. In our model we employ the deferred update scheme. Upon 
since the 1970s when the need for fast and high performance database 

completion of the transaction the DBMS checks its integrity and then 
machines became critical. The traditional approach of locking entails 

physically performs the update. A two-phase commit protocol is used to 
high overhead, especially in highly parallel database machines and there-

insure that all updates will be performed at all nodes. 
for optimistic algorithms [1,2] seem more suitable in that environmenL 

We use here the term programmatic transaction to denote the program 
In this repon we focus on a modification of the classic Kung & Robinson 

fragment comprising a transaction. During its execution. a programmatic 
time-stamp based concurrency control algorithm, proposed in (3]. The 

transaction may issue database queries. Queries which are performed 
algorithm is based primarily on two innovative techniques: query killing 

fro m within a programmatic transaction are called transactional queries. 

notes and wealc serializability of transac tions. In particular, it prefers 
The immediate outcome of a programmatic transaction is an accumulaud 

long transactions over shon queries and thus reduces considerably the 
transaction, which is composed of a set of facts to be deleted from the 

number of transaction rollbacks required. 
database. a set of facts to be inserted into the database and additional 

In order to test the validity and evaluate the performance of the proposed 
information needed to verify that there is no interference between con-

algorithm a simulation program was written and run using a realistic set 
current transactions. If the verification produces a positive result, then 

of transactions. This paper first brieHy reviews the transactions model 
the new instantaneous database is: ((the-old-instantaneous-databasl!) 

and concurrency algorithm presented in [3], and then presents and 
(the-set-of-facts-to-be-deleted)) U (the-set -of-facts-to-be-inserted) . 

discusses the simulation results. 

The simulation has been performed at the Ben-Gurion University using 

Flat Concurrent Prolog (FCP) [4] . The advantages of FCP for specifying 

and implementing parallel algorithms include its refined granularity of 

parallelism, its declaretiveness and conciseness and it 's powerful 
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The execution of a transaction statement is composed of four stages: 

I) transaction accumulation - The results of the updating instruc­

tions are accumulated in the sets D (the set of facts to be deleted 

from the database), I (the set of facts to be inserted into the data­

base.) and V (the results of the transactional queries which need to 

be verified) . The result of the transaction accumulation, i.e. the 

outcome (V.D.D of the run of the program segment, is called the 

accumulated transaction. 

2) Integrity validation - at this time the system checks if the result­

ing database would not violate the integrity constraints. 

3) Concurrency validation - using the algorithm below, it is 

checked that the set V is still consistent, and that this transaction 

does not interfere with other concurrent accumulated transactions 

and queries . 

4) Physical performance of the accumulated transaction - the new 

instantaneous database is: ((the -old-instantaneous-database) - D) 

U I. 

The above model of transactions is mapped onto a parallel semantic data­

base machine described in [3]. Briefly, that machine is a multi -disk 

multi-processor database machine where all the processors are identical, 

have access to their own local disks, can process both transactions and 

queries and may communicate via a high speed communication nerwork . 

The database is divided among the local disks using a special storage 

structure described in [3). 

In the machine described above, any node may serve as the entry point 

for transactions and queries, that node is called: the originator node. 

Queries arrive at the originator node and are divided into sub-queries 

which are sent to the appropriate processors. Transactional queries are 

divided into sub-queries and distributed like any other queries. 

Programmatic transactions are executed as pan of the host programs. 

When the program reaches the "end transaction" statement, the accumu­

lated transaction is computed and sent to a transactions originator which 

distributeS them between relevant processors as a set of sub-transactions 

(Vl,Dl ,ll), (V2,D2,I2) .... The above sub-transactions are executed 

using a rwo-plulse commit protocol [8). As soon as the sub-transaction 
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(Vi,Di,Ii) is examined by its processor i, its components are checked. 1f 

verification is successful and there are no conflicts with concurrent accu­

mulated transactions, then a ready message is sent to the originator of the 

accumulated transaction. When the commit message arrives, the updates 

are performed atomically. 

THE ALGORITHM 

As in (1,2] the algorithm is based on Time-stamps. Time stamps for 

queries are assigned at the time the query is distributed to the processors. 

Time stamps for transactions are assigned at the time the accumulated 

transaction is distributed . The algorithm uses three data structures at 

each node: two queues and a log. One queue is the waiting queue which 

contains the transactions or queries wh ich have not been processed yet by 

this node. The other queue is the hold-queue which contains the sub­

transactions which were checked for conflict, found O.K., sent the ready 

message, and are now waiting for a commit message. The log contains 

information on all the sub-transactions and queries which were executed 

locally during the last reasonable period of time. The log is used during 

the verification process for checking whether any sub-transaction exists 

on the log which conflicts with the current transaction or query, and has 

an earlier time-stamp. 

One unique propeny of the algorithm is the notion of lei/ling notes. 

When a conflict is detected between a transaction and a query, the query 

is selected to be a boned. However, instead of aborting the query, the 

node discovering the conflict sends a killing note. If all other nodes have 

already executed the query , then they may ignore the killing note, and as 

will be discussed in the simulation pan. can save quite a few query 

abons. The algorithm is presented in high-level only. See (3) for details. 

- . . ~ . - '-. ...... . - . ~ . ' . . 



(A) A sul>-transaction Tl=(Vl.D\Jl) of a transaction T=(V,DJ) arrives at 

node Nl. 
1. Perform the verification. If VI is not O.K. then kill the current 

t:rallSllCtion and return. 
2. If there is a sub-transaction in the hold queue that can interfere 

with the current sub-transaction then kill the current sub-transaction 

Tl and rerum. 
3. If there is a younger su~K~uery Qi in the log which interferes 

with Tl then send a killing note for Qi. 
4. Put the sub-ttansaction on hold and send an ag,.• to perform 
message 10 the cransaction origina10r. 

(B ) A transactional sub-query PI arrives at node Nl. 
1. Execute Pl. 

(C) A su~K~uery Ql arrives at node Nl or is popped from the hold queue. 

1. If any sul>-transaction Tl with a later time-stamp than Ql which 

interferes with Ql has been physically performed or any killing 

message associated with some sub-transaction Tl has been left fc>r 
sul>-query Q I and T1 interferes with Q I then lcill the current query 

and rerum else: 2. Execute Q I, rerum the result 10 the originaror 

and update the log. 
(D) A commit message for a sul>-transaction Tl arrives at node Nl. 

1. Remove sui>- transaction Tl from the hold queue. 

2. If the message is associated with killing notes for sub-<jueries 

then for each sub-<juery Ql to be killed perform sub-algorithm (C) 

on it. 
3. Perform the physical change in the database and updote the log. 

Examples of several scenarios which can arise by this algorithm were 

presented in [3]. We next discuss the simulation in FCP. 

SIMULATION DESCRIPTION 

Flat Concurrent Prolog (FCP) 

A Flat Concurrent Prolog program is a set of guarded Hom clauses of the 

form : H <--- G I ,G2, ... ,Gn I B I ,82, ... ,Bm 

Where H is the head prcdicat.e, Gs (guard elements) and Bs (body ele-

ments) are sets of "procedure" calls. Procedure calls may be solved in 

any order and thus may be viewed as a system of parallel "processes". 

The semantics of FCP are based on non-deterministic process and clause 

selection. Each state of a computation consists of a multi -set of processes 

which form the resolvent, a program and the data state. A reduction Iran-

sition involves non-dct.erministically selecting a process from the resol-

vent and a clause from the program, verifying the validity of the guard 

and reducing the head process to the body processes. 

The computation must be "just" i.e. a process. whose reduction is con-

tinuously enabled, is eventually taken. No other restrictions on order of 

process selection exist. 
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Description of !be Simulation Program 

A) The network we used is a 3-dirnensional cyclic cube of order N, in 

which each node has 6 neighbors. Therefor the network can have 

1.8,27,64 ... et.e. nodes. 

B) All nodes are the same and each one consists of a few parts (see figure 

1). Requests enter the node and arrive at the selector. The selector 

divides the requests into specific requests regarding data at the node 

which are sent to the process and general requests which are sent to the 

originator. Each new request opens a new originator which shares a 

common input stream with all other originators. The messages from the 

originators pass through a linear merger and are then merged with the 

messages from the process and passed to the connector. 

C) Communication between nodes: The communication protoeol is 

msg(/Dreceiver "\1essage). The connector at each node is in charge of 

the communication. Each connector has 7 input-output channels, 6to it's 

neighbors and one to itself, and one input channel from the system host. 

The connectors perform two taSks: 

a. Passi11g messages to the correct node via the short.est route possi-

ble. 

b. Accepting incoming messages and removing thetr com munica-

tion protoCol. 

The concurrency algorithm itself is performed by the process process. 

D) The structure of the data at each node is a list of pairs (Key, Value). 

The range of the key is Node_ID•to - Node_ID•t 0+9 so that it will be 

possible to know at which node the data resides. Transactions and 

queries' contents are in terms of (Kcy,Value) pairs. 

The structure of a 1ransaction is for example: 

msg(Orig_!D ,originator([(Rec JD ,sub _t([] ,{( 1014 ,abc)] ,[(n7,vvv )/ ))/ 

More _sub _transactions])) 

The structure of a query is for example: 

msg(Orig_!D,q_originator([(Receiver JD .sub _ q([( JOJ4.A ·)]))/ 

More_sub _queries/)) 

Further details on the implementation can be found in [9]. 
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F• g~rc no. I . The description of a single node 

SIMULATION RESULTS 

The ftrst example shows a clash between two transactions: 
@spawn_hypcr#hypcr(2.1n ) 

spawned: 0 . 0 · 0 
spawned: 0 . 0 . I 

spawned: 0 · I · 0 

<I> sWicd 
spawned: 0 · I · I 

spawned: I · 0 · 0 
spawned: I · 0 · I 
spawned: 1 · 1 · 0 
spawned: 1 . I · I 
@ln! msg(J ll,originator{[(l01,sub_t([],[(l014,abc)],[(777, vvv)])), 
(II O,sub_t(U ,[],[ (888.vvv)] )),( l ,sub_t([J,[J ,[ (777, vvv)]))])) 
@lnlmsg(J !.originator{[ (10 l,sub_t([ (I 0 14,abc)],[ (I 014,abc)],[ (777. vvv)))), 
(II O,sub_t([],[],[(888,vvv)])),(l.sub_t([],[],[(555, vv v)]))])) 

kill transaction:, 17197 
@U=[] 
successful transaction:. 14470 

The second example shows an example of killing notes. A commit mes-

sage for a transaction whose sul>-transaction is in the hold queue arrives 

with killing-notes. A query arrives and is killed by the notes left by the 

transaction. 
@proccssllproccss(l 0 1,ln,Out) 

<1> started 

@ln!(sub_t([(IOJ4, abc)], [(1014, abc)], [(1013, vvv)]),k(101.777)) 
@lnl(commit(l 01. 777+[(1 01 ,888)])) 
@lnl(sub_q([ (I 014.W)]).k(1 01,888)) 
@OuC 

Out= [(101 , agnee(/77 + [])), (101, kill(888)) I _j 

The third example, without script, involved running the system with a 

continuous stream of transactions for a fixed period of time on an eight 

node system with each node containing 10 data items. 

\ 
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The syst.em run with: 

a. Transactions containing 3 sul>-transactions. 

b. Queries containing 3 sub-queries. 

c. An evenly distributed load on each node . 

d. Transaction:query ratio of 2:8. 

produced the following results: 

a. All the queries succeeded. 

b. Approximat.ely 10% of the transactions were killed. 

Changing each transaction to contain 2 sub-transactions and changing the 

transaction:query ratio to I :9 caused the percentage of transactions 

killed to be reduced to approximately 4%. 

These case study resu lts clearly show, as the algorithm predicts, that the 

preference of transactions over queries reduces the cont.ention in this 

environment. 
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