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Abstract— In this paper a sensor fusion algorithm is 

developed and implemented for detecting orientation in three 

dimensions. Tri-axis MEMS inertial sensors and tri-axis 

magnetometer outputs are used as input to the  fusion system. 

A Kalman filter is designed to compensate the inertial sensors 

errors by combining accelerometer and gyroscope data. A tilt 

compensation unit is designed to calculate the heading of the 

system. 

I. INTRODUCTION  

Orientation tracking has a wide range of applications 

including military, surgical aid, navigation systems, mobile 

robots, gaming, virtual reality and gesture recognition [1], 

[2].So far, orientation detections are mostly done by using 

“externally referenced” [3] motion sensing technologies, 

such as video, radar, infrared or acoustic tracking.  

Although these methods achieve good results in an 

indoor environment, they suffer from some limitations, like 

shadows, light interruptions, distance limitations and 

interference [4], [5]. 

An alternative approach is to use inertial sensors. Inertial 

sensors detect physical quantities of the moving object 

regardless of external references, environment lighting or 

friction. This detected movement is directly related to the 

object that has the sensors attached. Furthermore, inertial 

sensors are self-contained technologies, which do not need 

external devices, like cameras or emitters. These sensors 

have been used in submarines, spacecraft and aircrafts for 

many years [6].  

Micro-Electro-Mechanical-System (MEMS) based 

inertial sensors have emerged during the last decade. Due to 

their miniature size, low power consumption, and light 

weight [7], the use of inertial MEMS sensors has developed 

rapidly in recent years.  

In this paper, an algorithm is proposed to detect 

orientation in three dimensions. An inertial measurement 

unit (IMU) is composed of a tri-axis gyroscope, a tri-axis 

accelerometer, and a tri-axis magnetometer. A Kalman filter 

is implemented to yield a reliable estimate of the orientation. 

Tilt compensation is applied to compensate the tilt error 

present in the raw measurement.  

II. DATA ACQUISITION 

The IMU system we utilized is composed of a tri-axis 

gyroscope, a tri-axis accelerometer and a tri-axis 

magnetometer. The sampling rate is 8.96 samples per 

second. The gyroscope resolution is 16 bits and the 

sensitivity is 0.007˚/sec/digit. The accelerometer sensitivity 

is 0.00024g/digit. Raw data were acquired while the sensors 

were stationary on the desk. In Figure 1, the raw data 

extracted from sensors are shown. 

 

Figure 1: Raw data 

The raw data should not be used, as they need to be 

calibrated. To calibrate these data, scale and bias must be 

taken into account. The bias represents how far the center of 

sensor data is from zero. The scale means how much larger 

the range of data from the sensor is than the real values of 

the physical quantity.  

Figure 2 presents the calibrated data from the gyroscope, 

the accelerometer and the magnetometer respectively. It can 

be observed that in the accelerometer calibrated data, X and 

Y axes are approximately zero and the Z-axis is -1. The axes 

X and Y are zero because there is no acceleration in these 

axes. In fact, the only acceleration present is the earth’s 

gravity, which is along the Z-axis pointing downward. This 

is the reason for measuring a negative number in the Z-axis. 



The hardware was stationary when the data were 

recorded and no rotational movement was applied to the 

system. Therefore, the gyroscope did not record a rate of 

rotation. The fluctuations which are seen are random noise. 

This noise is inseparable from the gyroscope data; it will 

cause drift in the rotational angle, which is obtained based on 

the gyroscope’s data.  

 

 

Figure 2: Calibrated data 

III. METHOD 

MEMS gyroscopes use the Coriolis acceleration effect 

on a vibrating mass to detect angular rotation. The 

gyroscope measures the angular velocity, which is 

proportional to the rate of rotation. They respond quickly 

and accurately and the rotation can be computed by time-

integrating the gyroscope output. Figure 3 depicts the 

rotational angle, obtained by the trapezoidal integration 

from the gyroscope signal, for multiple 90˚ back and forth 

rotations.  

 

 

Figure 3: Drifting Rotation angle calculated by the Gyroscope integration 

The trapezoidal integration method [8] is shown in 

equation (1), for f(x) between interval a and b. 
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The computed result drifts over time and after 

approximately 30 seconds it drifts down about 50 degrees. 

The explanation for this phenomenon is that the integration 

accumulates the noise and offsets over time and turns them 

into the drift, which yields unacceptable results. 

In fact, the integration result is less noisy than the 

gyroscope signal but there is more drift present. However 

one good aspect of the gyroscope is that it is not affected by 

earth’s gravity. 

Accelerometers measure acceleration based on the forces 

associated with the Newton’s second law. The problem with 

accelerometers is that they measure both acceleration due to 

the device’s linear movement and acceleration due to earth’s 

gravity, which is pointing toward the earth. Since it cannot 

distinguish between these two accelerations, there is a need 

to separate gravity and motion acceleration by filtering. 

Filtering makes the response sluggish and it is the reason 

why the accelerometer has to be processed with information 

from the gyroscope. 

By utilizing the accelerometer output, rotation around 

the X- axis (roll) and around the Y-axis (pitch) can be 

calculated. If Accel_X, Accel_Y, and Accel_Z are 

accelerometer measurements in the X-, Y- and Z-axes 

respectively, equations (2) and (3) show how to calculate 

the pitch and roll angles: 
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These equations provide angles in radians and they can 

be converted to degrees later. Figure 4 presents the rotation 

angle, which is computed by using the accelerometer signal. 

Despite recording this signal in a much longer interval, 

contrary to Figure 3, no drift is observed in Figure 4, but it 

is noisier. 

In order to measure rotation around the Z-axis (yaw), the 

other sensors need to be incorporated with the 

accelerometer. 

It has now been observed that neither the accelerometer 

nor the gyroscope provides accurate rotation measurements 

alone. This is the reason to implement a sensor fusion 

algorithm to compensate for the weakness of each sensor by 

utilizing other sensors. 

 

 



 

Figure 4: Noisy Rotation angle calculated by the Accelerometer  

IV. SYSTEM CONFIGURATION 

The applied sensor fusion system is depicted in Figure 5. 

The calibrated accelerometer signal is used to obtain roll* 

and pitch* by equations (2) and (3). Roll* and pitch* are 

noisy calculations and the algorithm combines them with the 

gyroscope signal through a Kalman filter to acquire clean 

and not-drifting roll and pitch angles. On other hand, a tilt 

compensation unit is implemented, which uses a 

magnetometer signal in combination with roll and pitch to 

calculate the challenging yaw rotation. 
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Figure 5: System Structure 

 

A. Kalman Filter 

Kalman filtering is a recursive algorithm which is 

theoretically ideal for fusion processing of noisy data. 

Implementation of the Kalman filter calls for knowledge of 

the physical properties of the system. Kalman filter 

estimates the state of system at a time (t) by using the state 

of system at time (t-1). The system should be described in a 

state space form, like the following: 

            (4) 

          (5) 

 

Where;   is the state vector at time k, A is the state 

transition matrix,   is the state transition noise,   is 

measurement of x at time k, H is the observation matrix and 

  is the measurement noise. State variables are the physical 

quantities of the system like velocity, position, etc. 

Matrix A describes how the system changes with time 

and matrix H represents the relationship between the state 

variable and the measurement. In our Kalman filter the input 

vector x, and A and H are:: 
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H=     (8) 

 

Where   is the angular velocity from the gyroscope, and 

is the rotation angle, which is calculated by the 

accelerometer signal. To implement the Kalman filter, the 

steps in algorithm 1 should be executed [10]. The A, H, Q 

and R should be calculated before implementing the filter. Q 

and R are covariance matrices of    and    respectively, 

which are diagonal matrices.    is the system measurement  

vector and  ̂  is the filter output. 

 

Algorithm 1 

 

1. Set initial values, 

    ,  ̂    

2. State prediction; the superscript ‘‘means predicted 

value. This step uses the state from the previous time 

point to estimate the state at the current time point: 

 ̂ 
    ̂    

3. Error covariance prediction; this step uses the error 

covariance from the previous time point to estimate 

the error covariance at the current time point: 

  
        

    

4. Kalman gain computation; H and R are computed 

outside the filter, and   
 comes from the previous 

step. Kalman gain is the weight used for the 

computation of the estimate and it updates for each 

time step based on error covariance: 

                    
   (   

     )   

5. Estimate computation; in this step, the algorithm 

compensates the difference between measurement 

and prediction. This is the output of the filter: 

         ̂   ̂ 
     

 (     ̂ 
 )  

6. Error covariance computation; error covariance 

indicates the degree of estimation accuracy. Larger 

   shows bigger error in estimation: 

     
       

  

7. Loop to step 2; 

 

 



 Tilt Compensation

As mentioned earlier, computing the rotation around the 

Z-axis is challenging (the Z-axis is perpendicular to the 

earth’s surface.). This angle is also called the heading or 

azimuth. If the gyroscope is used to calculate the heading, 

not only is the drift problem encountered, but the initial 

heading must be known [11]. 

The earth’s magnetic field is parallel to the earth’s 

surface. Therefore, while the tri-axis magnetometer is 

parallel with the earth’s surface, it can measure the heading 

accurately through the direction of the earth’s magnetic field 

[12]. However, in most applications, the magnetometer is 

attached to the object and it moves with the object and goes 

out of the horizontal plane. 

By tilting the magnetometer, the direction of axial 

sensitivity will change [13]. Consequently, it will be 

difficult to measure the heading. Depending on how much 

the magnetometer tilts, different amounts of error appear in 

the calculations. 

The tilt compensation process maps the magnetometer 

data to the horizontal plane and provides the accurate 

heading calculation regardless of the position of the 

magnetometer. 

The roll and pitch angles are utilized in combination 

with magnetometer data to correct the tilt error, regardless 

of the magnetometer’s position. 

As Figure 5 shows, the roll and pitch angles come from 

the output of the Kalman filter. 

If   ,    , and    are calibrated and normalized 

magnetometer outputs, and and present roll, pitch and 

yaw respectively, the heading is calculated by equation (9). 

Equations (7) and (8) are used to transform the 

magnetometer reading to the horizontal plane. When 

magnetometer data is mapped to the horizontal plane, 

equation (9) obtains a reliable calculation. 
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The difference between the regular inverse tangent and 

the MATLAB’s command “atan2” is that the first one 

returns the results in the range of [-π/2, π/2], while “atan2” 

calculates the results in the range of [-π, π]. 

 

V. EXPERIMENTAL RESULTS 

In order to evaluate the performance of the proposed 

system, some experiments were performed to measure the 

Euler orientation. 

 Initially, the hardware was manually moved back and 

forth in the horizontal plane. It was observed that roll and 

pitch angles remained constant during this movement. A 

small fluctuation has been observed in the yaw angles 

measured, which is because of hand unsteadiness while the 

hardware was moved. This shows the system can detect even 

small fluctuations. 

 The experiment was repeated in both planes, which are 

perpendicular to the X-axis and perpendicular to the Y-axis 

as well. Observations proved that the system could track 

both roll and pitch angles accurately. In both roll and pitch 

movements, the hand fluctuations can be observed. 

The Kalman filter was designed to estimate the 

orientation. To evaluate the performance of the Kalman 

filter, an experiment was carried out. Back and forth 

movements around X-axis were applied to the hardware. The 

roll angle was obtained by integrating the gyroscope output 

and then it was compared with the result from the Kalman 

filter. The results are depicted in Figure 6.  

 

 

Figure 6: Comparison between the Kalman filter’s output and the 

gyroscope integration result 

The dashed line shows the results come from the 

gyroscope integration by the trapezoidal integration method 

and the solid line shows the output from the Kalman filter. 

Noticeable down-drift is clearly seen in the result from 

integration while this drift is eliminated in the Kalman filter 

results. 

 

Figure 7: Comparison between Kalman filter output and the accelerometer 
result 



Evaluation of the performance of the Kalman filter 

continued by comparing the rotation angle from the 

accelerometer with the Kalman filter output.In Figure 7, the 

red solid line presents the filter output and the blue solid line 

is the angle calculated by the accelerometer output. It is 

clearly observed that all fluctuations, seen in the 

accelerometer output, are eliminated successfully by the 

filter.   

 

VI. CONCLUSION 

In this paper, a method was proposed to detect the 

orientation in three dimensions by utilizing micro-

electromechanical sensors. 

An efficient algorithm was proposed to deal with the 

limitation of inertial sensors based on the Kalman filter 

implementation. Heading compensation is applied to the 

system to provide accurate orientation around the Z-axis in 

any position. The experimental results confirmed the 

appropriate performance of the proposed algorithm. 

Our next step will be expanding the algorithm such that it 

can measure the position in three dimensions. 
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