
Dynamic Incremental K-means Clustering  
Bryant Aaron, Dan E. Tamir 

Department of Computer Science,  
Texas State University, 

San Marcos, Texas, USA 
{ba1127,dt19}@txstate.edu 

Naphtali D. Rishe, and Abraham Kandel 
School of Computing and Information Sciences  

Florida International University 
Miami, Florida, USA 

rishen@fiu.edu,abekandel@yahoo.com 
 

Abstract— K-means clustering is one of the most commonly 
used methods for classification and data-mining. When the 
amount of data to be clustered is “huge,” and/or when data 
becomes available in increments, one has to devise incremental 
K-means procedures. Current research on incremental clustering 
does not address several of the specific problems of incremental 
K-means including the seeding problem, sensitivity of the 
algorithm to the order of the data, and the number of clusters. In 
this paper we present static and dynamic single-pass incremental 
K-means procedures that overcome these limitations.  

Keywords—Clustering; K-means Clustering; Incremental 
Clustering; Data-mining 

I. INTRODUCTION  
K-means clustering is an iterative optimization algorithm, 

which is one of the most commonly used highly effective 
methods for data-mining and non-supervised classification. 
Traditionally, in each of the iterations, the algorithm is applied 
to the entire data set represented as a vector residing in the 
processor memory and representing a multi-dimensional set of 
measurements. Recently, however, the K-means algorithm, as 
well as numerous other clustering and data-mining algorithms 
such as fuzzy C-means (FCM), ISODATA, Kohonen neural 
networks (KNN), expectation maximization, and simulated 
annealing [1-6], have been exposed to a relatively new 
challenge referred to as “big-data.” Often, the enormous 
amount of data available online cannot fit processors’ physical 
memory. In fact, often the data does not even fit secondary 
memory. Given that input/output operations are generally the 
most taxing computer operations, working on the entire data in 
every K-means iteration requires numerous consecutive reads 
of massive amounts of data. This might dim the K-means 
algorithm as a non-practical approach for mining in big-data 
environments. Another scenario that might challenge the 
traditional approach to K-means clustering occurs when 
portions of the data are generated or become available 
dynamically and it is not practical to wait for the entire dataset 
to be available. 

This brings the need for incremental clustering into the 
forefront. Incremental clustering is also referred to as a single-
pass clustering whereas the traditional clustering is referred to 
as multi-pass clustering [7-11]. The idea is to cluster a 
manageable portion of the data (a data-block) and maintain 
results for the next manageable block until exhausting the 
data. Under this approach each block is processed by the 
algorithm a limited number of times, potentially only once. 

Ideally, a block, along with the preliminary number of initial 
centers selected should be as large as possible, occupying as 
much of the available internal processor memory. One might 
question the validity of “visiting” every data element for a 
limited number of iterations in a specific order as opposed to 
the traditional approach which considers every piece of data in 
each iteration. This is further discussed in section III-E. 

A related approach is the multi-resolution or multistage 
clustering. Researchers observed that a multistage based 
training-procedure can accelerate the convergence and 
improve the quality of the training as well as the quality of the 
classification/decision phases of many of the clustering 
algorithms [6,12,13]. For example, our previous research 
reports show that the pyramid K-means clustering algorithm, 
the pyramid Fuzzy C-means algorithm, and multi-resolution 
KNN yield two-to-four times convergence speedup [6,12,13]. 
Both the multistage clustering and the incremental clustering 
apply an approach of sampling the data. In the multistage 
clustering, however, data is sampled with replacement, 
whereas in incremental clustering, due to the cost of 
replacement, the data is sampled without replacement. In both 
cases the validity of the sampling has to be addressed.  

This paper describes a new and novel approach for 
incremental K-means clustering. The method stems from the 
pyramid K-means algorithm presented in [6,12,13]. In 
difference from the pyramid approach, the sampling is done 
without replacement. Furthermore, the sampling size is fixed. 
On the other hand, two measures are applied to the data in 
order to overcome the fact that each data block is processed 
only one time. First, the algorithm starts with a relatively large 
number of clusters and scales the number down in the last 
stage. This is referred to a two phase procedure. Hence, in the 
intermediate stages (first phase) each block might affect 
different cluster centers. A second and innovative version of 
the algorithm enables a dynamic number of clusters. Again, 
the algorithm starts with a relatively large number of clusters, 
however, each transaction on a block might change (increase 
or decrease) the number of clusters. Notably, the dynamic 
approach can be used to mitigate another inherent problem of 
K-means where the number of clusters has to be 
predetermined. In both cases the algorithms work on “chunks” 
of data referred to as blocks. The paper presents several 
experiments with multi-pass and static/dynamic single-pass 
versions of the K-means and empirically evaluates the validity 
of the static and dynamic incremental clustering approach. 
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The main contributions of the paper are: 1) a new 
approach for incremental clustering where the number of 
clusters is relatively high, followed by clustering the resultant 
centers is presented. This approach increases the validity of 
incremental clustering, 2) a second approach where initially 
the number of clusters is relatively high, and the number of 
clusters dynamically changes throughout execution provides 
better incremental clustering quality/validity and can be used 
to resolve the issue of identifying the right number of cluster 
centers.  

A literature review performed shows numerous papers on 
incremental clustering. Nevertheless, the number of papers 
that apply incremental clustering to K-means is relatively 
small and to the best of our knowledge there are no reports on 
research that applies the operations listed in this paper to the 
K-means algorithm. 

The rest of the paper is organized in the following way. 
Section II reviews related research. Section III provides the 
details of several single-pass and multi-pass variants of K-
means clustering and lists metrics used to assess the quality of 
clustering. Section IV describes a set of experiments 
conducted to assess the performance and validity of the 
incremental clustering algorithms described in section III and 
section V includes conclusions and proposals for further 
research.  

II. REVIEW OF RELATED RESEARCH 
Clustering is a widely-used data classification and data-

mining method applied in numerous research fields including 
image segmentation, vector quantization, data-mining, and 
data compression [7,14-20]. K-means is one of the most 
commonly used clustering algorithms, and the Linde, Buzo, 
and Gray (LBG) vector quantization (VQ) algorithm with 
unknown probability distribution of the sources, which is a 
variant of K-means, is utilized in many applications [15].  

Garey has shown that the LBG VQ converges in a finite 
number of iterations, yet it is NP complete [16]. Thus, finding 
the global minimum solution or proving that a given solution 
is optimal is an intractable problem. Another problem with K-
means is that the number of clusters (ܭ) is fixed and has to be 
set in advance of executing the algorithm. ISODATA is a 
generalization of K-means which allows splitting, merging, 
and eliminating clusters dynamically [2]. This might lead to 
better clustering (better local optimum) and eliminate the need 
to set ܭ in advance. ISODATA, however, is computationally 
expensive and is not guaranteed to converge [2].  

Numerous applications require clustering of very large 
data-sets which are too big to fit the available memory and/or 
clustering data that become available in “increments”. Both 
scenarios induce the need for incremental clustering [7-11]. 
Significant amount of work was done on the subject of 
incremental clustering [7-10]. Nevertheless, there are 
relatively few papers that deal with incremental K-means 
and/or incremental dynamic clustering. Several of these 
algorithms load a slice of the data, where the size of a slice is 
constraint by available memory, and cluster this slice [21]. 
Results of clustering current slices (e.g., centers, partition 

matrices, dispersion, etc.) are used in the process of clustering 
upcoming slices.  

Charikar et al. propose a framework for incremental 
clustering [8]. Their framework, however, is not specific 
enough for incremental K-means clustering. Young et al. 
propose a fast and stable incremental clustering algorithm that 
is based on competitive learning. Hore has proposed a slice 
based single-pass FCM algorithm for large data-sets [21]. The 
proposed method lumps data that has been clustered in 
previous slices into a set of weighted points and uses the 
weighted points along with fresh slices to commence with the 
clustering of the entire set in one path [21]. Another approach 
for clustering large data-sets is to sample, rather than slice, the 
data [22]. Berkhin provides a thorough survey of clustering 
and relates to the problem of incremental single-pass 
clustering. He notes that one problem with incremental 
clustering is the order in which the data is visited [3]. This is 
also observed by Young [23]. Our two phase approach 
implementing a very large number of clusters in the first phase 
mitigates this problem. Several authors describe the 
application of K-means in problems that relate to incremental 
clustering. Nevertheless, they use K-means without checking 
all alternatives and validity. Cheng proposes a divide and 
merge algorithm yet this algorithm does not utilize K-means 
[24]. Lughofer proposes a dynamic Evolving Cluster Models 
using On-line Split-and-Merge Operations [22,25] this is 
somewhat similar to dynamic ISODATA. Our method for 
changing the number of clusters is simpler. 

III. K-MEANS CLUSTERING VARIANTS 
In this section we present several variants of K-means 

clustering. 

A. The Classical K-means Clustering Algorithm 
We refer to the K-means variant introduced by MacQueen 

as the classical K-means algorithm [1]. The algorithm is an 
iterative criterion optimization attempting to optimize the sum 
of the squared distances from all the data points to their 
assigned cluster center [1-3]. In this case the clustering 
problem can be stated in the following way: Given a set of N 
inputs or measurements Nxxx ,...,, 21  where n

i Rx ∈  (that 
is, each element of the set of measurements is a vector in an n-
dimensional space), find K (K << N) clusters kccc ,...,, 21  

with cluster-centers kωωω ,...,, 21  respectively, such that ‘ܦ,’ 
the sum of squared distances of data points to their respective 
centers given by the following equation (equation 1), is 
equivalent to the mean-square-error (MSE). Often, ܦ  is 
referred to as the distortion. This is especially relevant when 
K-means is used for vector quantization [15,16]: 
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 The algorithm consists of the following steps: First, initial 
centers are selected in a process that is referred to as seeding 
and all objects are classified into the appropriate clusters 
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based on the nearest neighbor rule [1-3]. Next, cluster-centers 
are updated to be at the centroid of their respective clusters. 
The objects are then reclassified, and new centers are 
calculated. The algorithm continues until convergence; where 
the convergence criterion dictates that the centers’ location at 
iteration ݅  are identical to the centers’ location at iteration ݅  1. 

B. The LBG Termination Criterion 
The LBG vector quantization algorithm generalizes the 

K-means algorithm [15]. The main difference between the 
LBG algorithm and the classical algorithm is the termination 
condition. The LBG algorithm stops when an approximation 

for the derivative of the MSE given by )(
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advantage of this criterion is that generally convergence 
occurs faster with quality results (minimum MSE/minimum 
distortion) that are about the same as the results of the 
classical K-means. 

C. The Sequential K-means Algorithm 
K-means, as well as numerous other iterative optimization 

algorithms, can be executed in one of two basic modes; batch 
mode and on-line mode. The on-line mode is also referred to 
as the sequential mode. In an epoch of a sequential mode the 
parameters of prototype patterns are recalculated subsequent 
to the introduction of a new element of the training set. In 
batch mode each epoch uses the entire training set to 
recalculate parameters. In K-means, the sequential mode 
assigns a point to a cluster and immediately updates the cluster 
centers. Due to the heavy overhead of recalculating centers, 
the resource requirement of sequential K-means might be a 
prohibitive factor. Nevertheless, in certain scenarios the data 
appears in a mode of one element at a time. In these cases, it 
might be desirable to update results per data occurrence rather 
than waiting for the accumulation of the entire data set.  

D. The Block Sequential K-means Algorithm 
The block sequential mode is a compromise between the 

stringent computational requirements of the sequential K-
means and the need to operate on data online. In this case, the 
clustering occurs on accumulated blocks of data. Each block is 
going through ݈ epochs of K-means where the final centers of 
block ݅ are used as the initial centers for block ݅  1. In many 
cases ݈ ൌ 1 . In this sense, the algorithm resembles other 
multistage clustering such as the pyramid K-means [12-14]. 
The block sequential algorithm might be utilized in an 
iterative fashion where each of the iterations performs ݈ 
epochs of K-means on a single block of data elements at a 
time.  

Note that all the clustering algorithms described so far 
assume that (at some point) the entire data set is available. 
Moreover, generally, due to the iterative fashion of execution, 
these algorithms access the same elements more than once (in 
different iterations). When the data is very large and cannot fit 

the memory of the processor, a different approach, referred to 
as single-pass, has to be adapted. Under the single-pass 
(incremental) approach, each block/data-element is accessed 
only one time and then removed from internal memory to 
provide space for new elements. This is described next. 

E. The Incremental K-means Algorithm 
The incremental K-means algorithm presented in this 

paper is similar to the block sequential algorithm with the 
exception that each block is accessed only one time. Each 
block is going through a set of ݈ epochs of K-means where the 
final centers of block ݅ are used as the initial centers for block ݅  1. 

The fact that each block is “touched” just one time might 
raise a question about the validity of the results. The results 
might be valid if the data elements of blocks share similar 
features. For example, the data elements are drawn from the 
same probability distribution function or the same fuzzy 
membership function. Alternatively, validity might be attained 
if the features of data elements vary “slowly” between blocks. 
We use two methods to improve the validity of results. First, 
we use a two phase incremental algorithm. In the first phase a 
very large set of clusters is used. Practically, we are trying to 
fit as many elements in a block and as many clusters per block 
as possible in the memory. In the next phase, after processing 
all the blocks, a process of clustering the centers obtained 
from the last block is applied. The second measure for 
increasing validity is using a relatively large number of 
clusters and at the same time allowing the number of clusters  
to change dynamically. This is described in the next section. 

F. The Dynamic Incremental K-means Algorithm 
The dynamic incremental K-means algorithm presented in 

this paper is similar to the incremental K-means algorithm. 
The difference is that the number of clusters is allowed to 
change.  

Several operations can change the number of clusters. 
First, following the ISODATA algorithm principles, clusters 
with too few elements might be eliminated, clusters that are 
too close to each other might be merged, and clusters with 
large dispersion might be split [22-24]. The criteria for merge 
and split might be related to the within and between dispersion 
of the clusters [1-3,22]. Other methods for changing the 
number of clusters might include incrementing/decrementing 
the number of clusters (without split/merge) based on a 
criterion such as a threshold on the distortion. We have 
implemented the threshold approach. 

Each block is going through a set of ݈ epochs of K-means 
where the final centers of block ݅ are used as the initial centers 
for block ݅  1. Following the application of K-means on a 
block, a decision concerning the effective number of clusters 
is made and the number might be incremented or decremented 
based on predetermined quality criteria threshold. We place an 
upper bound and a lower bound on the number of clusters 
where the lower bound ensures that we still have enough 
clusters to maintain validity and enable the two phase 
approach described above. Again, we are trying to fit as many 
elements in a block and a large number of clusters per block in 
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the memory and apply a two phase approach where the centers 
from the last iteration are clustered and provide the final set of 
clusters. 

IV. EXPERIMENTS AND RESULTS 

A. Experimental Setup 
In order to compare and contrast the performance and 

validity of the K-means variants presented we have 
implemented these algorithms numerous times on different 
data-sets, using different parameters. Two sets of data are used 
for the experiments performed; the first set consists of the 
Red, Green, and Blue (RGB) components of color images 
used for color quantization and the second set includes 
synthetic data with known centers and known distribution. 
Three types of output data/results are collected: 1) records of 
convergences (distortion per iteration), 2) execution time and 
3) clustering quality (inverse of distortion at the final 
iteration). 

The experiments are divided into two classes; multi-pass 
and single-pass. In the multi-pass experiments we compared 
the performance of classical K-means, LBG based K-means, 
sequential K-means, and block sequential K-means. Given the 
constraints of these algorithms they were applied to a 
manageable data set (i.e., a data-set with a medium number of 
elements). In the single-pass experiments we tested the 
incremental and the dynamic incremental approaches with the 
same data used for the multi-pass algorithms and with a 
“huge” set of synthetic data that is not suitable for multi-pass 
processing. Nevertheless, to verify the results with the large 
data-set we ran the LBG algorithm on that data using a 
“powerful” multicore computer. The computer worked on the 
data for several hours. For the dynamic incremental algorithm, 
we used an approach where the number of clusters is 
incremented/decremented by 1 based on a threshold on 
distortion.  

All the experiments are performed with the scripting 
version of MATLAB using the built-in MATLAB K-means 
function where the function is executed one epoch at a time. 

1) Color Quantization 
The problem of color quantization can be stated in the 

following way: given an image with N different colors, choose ܭ ا ܰ  colors such that the resulting K-color image is the 
least distorted version of the original image [19]. Color 
quantization can be implemented by applying the K-means 
clustering procedure to the image-pixels where each pixel 
represents a vector in some color representation system. For 
example, the clustering can be performed on the three-
dimensional vectors formed by the red, green, blue (RGB) 
color components of each pixel in the image [19]. After 
clustering, each three-dimensional vector (pixel) is 
represented by the cluster-number to which the vector 
belongs, and the cluster centers are stored in a color-map. The 
K-value image along with the color-map is a compressed 
representation of the N-colors, original image. The 
compressed image can be used to reconstruct the original 
three-dimensional data-set by replacing each cluster-number 

by the centroid associated with the cluster. In the case of 8 bit 
per color component and ܭ ൌ 16, the original 24-bit per pixel 
image is represented by a 4-bits per pixel image along with a 
small color map. Hence, about 6 times compression is 
achieved. In this set of experiments, a block processed by the 
single-pass algorithm consists of an image row.  

The sequential algorithm is applied to every pixel of a 
scaled down version of the images while the rest of the multi-
pass algorithms operate on the entire set of the pixels of the 
original images. The experimental results are scaled to 
represent the distortion for the entire image. The static 
incremental algorithm starts with 192 clusters per block. 
Following the processing of the last block, the 192 centers are 
clustered into 16 centers and the distortion for the entire image 
with these centers is measured. The dynamic incremental 
algorithm starts with 192 clusters per block and allows 
fluctuations of േ64 in this number. Following the processing 
of the last block, the centers are clustered into 16 centers and 
the distortion for the entire image with these centers is 
measured. 

2) Synthetic Data 
A set of 20  random cluster centers with a total of 20,000,000 6-dimensional vectors is generated. The vectors 

within a cluster are distributed according to a 2-D normal 
distribution with standard deviation of 0.05 around the center. 
For the single-pass experiments the data is divided into 500 
blocks of 40,000 elements per block. Other parameters are 
identical to the ones used for the color map quantization 
experiments. 
 

B. Experimental Results 
1) Experiments with Color Quantization 
Figure 1 shows the distortion per iteration of the multi-

pass algorithms executed on the image Lena which is a 512 ൈ 512 RGB image. Figure 1a shows the results of the 
classical K-means. Following a long convergence curve with 
114 iterations it settles down at a distortion rate of 216. The 
LBG variant, depicted in Figure 1b, converges much faster to 
about the same value (209) after 32 iterations. The sequential 
algorithm (Figure 1c) operates on a scaled version of the 
image and converges relatively fast, using the LBG criterion 
to a distortion value that is lower than the ones attained for the 
classical and LBG variants (204). Nevertheless, this variant 
would not be applicable for a large amount of data.  

Finally, the block sequential algorithm presents an 
interesting behavior. Figure 1d depicts the distortion per block 
in iteration 1 for the 512 blocks of the image. The results 
converge to the value of 216 which is very close to the results 
of running the other algorithms for several iterations. 
Furthermore, the next iteration produces the same results. 
Hence, practically, the algorithm converges in a single 
iteration. This is consistent with results of multistage and 
pyramid K-means clustering and can be used to implement 
fast versions of multi-pass K-means. Visually, all the versions 
of clustering executed in this research produced about the 
same reconstructed image. 
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Figure 1 Distortion per iteration for the multi-pass algorithms with the Image Lena 

 
Figure 2 Incremental and Dynamic Incremental Clustering of the Image Lena 

 
Figure 3 Incremental and Dynamic Incremental Clustering of Synthetic Data 

Figure 2 shows the results of running the single-pass 
incremental versions on the image Lena with single row per 
block. Figure 2a shows the results of dedicating 1 epoch of the 
incremental K-means per block. The distortion is about 275. 
Figure 2b shows the number of clusters and distortion per 
block for the dynamic incremental K-means algorithm with 5 
epochs per block. The number of clusters is fluctuating around 
200. In fact, runs with 1, 3, 5, and 100 epochs per block 
produce similar results. Hence, in this case, it is sufficient to 
allocate 1 epoch per block. Compared to the static incremental 

algorithm the distortion per iteration is a bit more stable and 
converges to 172 which is somewhat better than the value for 
the static cases. In terms of time, except for the sequential K-
means, all the algorithms are comparable with a relatively 
short CPU time of about 300 seconds. This is a reasonable 
CPU time for a scripting MATLAB implementation. 

2) Experiments with Synthetic Data 
Figure 3 shows the results of incremental clustering and 

dynamic incremental clustering with a “huge” amount of 
synthetic data points (20,000,000 points) in a 6 dimensional 

a b

a b

a b

c d
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space). In addition, the figure shows the results of LBG 
clustering on the entire data.  

Figure 3a shows the results of running the static 
incremental K-means on the synthetic data. Due to the fact 
that the data is drawn from a fixed distribution, the results of 
distortion per block are quite stable and the execution ends up 
at a value of 180. In Figure 3b, the execution of the dynamic 
version of incremental K-means is depicted. The number of 
centers starts at 192 and ends up at around 200 while the 
distortion per block is better than results obtained for the static 
case and stabilizes at 174. To validate the results we ran the 
LBG algorithm on the entire set of values for the static cases. 
In terms of time, except for the sequential K-means, all the 
algorithms are comparable with a relatively short CPU time of 
about 300 seconds. This is a reasonable CPU time for 
scripting MATLAB. 

C. Result Evaluation 
The results of the experiments reported and additional 

experiments performed show the utility of using a two phase 
single-pass incremental K-means algorithm where the first 
phase uses a large number of centers and the second phase 
clusters the centers obtained in the first phase into a desired 
size of clusters. Moreover, as demonstrated by comparing the 
dynamic and incremental approach to the static incremental 
approach (control tests), the quality of clustering is the same, 
and in fact, in some cases, the dynamic incremental clustering 
outperforms the control tests. 

V. CONCLUSIONS AND FUTURE RESEARCH 
This paper has reviewed static and dynamic single-pass 

and multi-pass variant of the K-Means. A novel two phase 
static single pass algorithms as well as a dynamic two phase 
single-pass algorithm have been presented and are showing 
high utility. Future research will concentrate on additional 
methods for dynamic change in the number of clusters in both 
steps of dynamic incremental K-means. In addition, we plan to 
initiate research on equivalent approaches in Fuzzy c-means 
and in the KNN. Finally, we plan to investigate parallel 
incremental algorithms. 
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