
Dynamic Incremental K-means Clustering
Bryant Aaron, Dan E. Tamir

Department of Computer Science,
Texas State University,

San Marcos, Texas, USA
{ba1127,dt19}@txstate.edu

Naphtali D. Rishe, and Abraham Kandel
School of Computing and Information Sciences

Florida International University
Miami, Florida, USA

rishen@fiu.edu,abekandel@yahoo.com

Abstract— K-means clustering is one of the most commonly
used methods for classification and data-mining. When the
amount of data to be clustered is “huge,” and/or when data
becomes available in increments, one has to devise incremental
K-means procedures. Current research on incremental clustering
does not address several of the specific problems of incremental
K-means including the seeding problem, sensitivity of the
algorithm to the order of the data, and the number of clusters. In
this paper we present static and dynamic single-pass incremental
K-means procedures that overcome these limitations.

Keywords—Clustering; K-means Clustering; Incremental
Clustering; Data-mining

I. INTRODUCTION
K-means clustering is an iterative optimization algorithm,

which is one of the most commonly used highly effective
methods for data-mining and non-supervised classification.
Traditionally, in each of the iterations, the algorithm is applied
to the entire data set represented as a vector residing in the
processor memory and representing a multi-dimensional set of
measurements. Recently, however, the K-means algorithm, as
well as numerous other clustering and data-mining algorithms
such as fuzzy C-means (FCM), ISODATA, Kohonen neural
networks (KNN), expectation maximization, and simulated
annealing [1-6], have been exposed to a relatively new
challenge referred to as “big-data.” Often, the enormous
amount of data available online cannot fit processors’ physical
memory. In fact, often the data does not even fit secondary
memory. Given that input/output operations are generally the
most taxing computer operations, working on the entire data in
every K-means iteration requires numerous consecutive reads
of massive amounts of data. This might dim the K-means
algorithm as a non-practical approach for mining in big-data
environments. Another scenario that might challenge the
traditional approach to K-means clustering occurs when
portions of the data are generated or become available
dynamically and it is not practical to wait for the entire dataset
to be available.

This brings the need for incremental clustering into the
forefront. Incremental clustering is also referred to as a single-
pass clustering whereas the traditional clustering is referred to
as multi-pass clustering [7-11]. The idea is to cluster a
manageable portion of the data (a data-block) and maintain
results for the next manageable block until exhausting the
data. Under this approach each block is processed by the
algorithm a limited number of times, potentially only once.

Ideally, a block, along with the preliminary number of initial
centers selected should be as large as possible, occupying as
much of the available internal processor memory. One might
question the validity of “visiting” every data element for a
limited number of iterations in a specific order as opposed to
the traditional approach which considers every piece of data in
each iteration. This is further discussed in section III-E.

A related approach is the multi-resolution or multistage
clustering. Researchers observed that a multistage based
training-procedure can accelerate the convergence and
improve the quality of the training as well as the quality of the
classification/decision phases of many of the clustering
algorithms [6,12,13]. For example, our previous research
reports show that the pyramid K-means clustering algorithm,
the pyramid Fuzzy C-means algorithm, and multi-resolution
KNN yield two-to-four times convergence speedup [6,12,13].
Both the multistage clustering and the incremental clustering
apply an approach of sampling the data. In the multistage
clustering, however, data is sampled with replacement,
whereas in incremental clustering, due to the cost of
replacement, the data is sampled without replacement. In both
cases the validity of the sampling has to be addressed.

This paper describes a new and novel approach for
incremental K-means clustering. The method stems from the
pyramid K-means algorithm presented in [6,12,13]. In
difference from the pyramid approach, the sampling is done
without replacement. Furthermore, the sampling size is fixed.
On the other hand, two measures are applied to the data in
order to overcome the fact that each data block is processed
only one time. First, the algorithm starts with a relatively large
number of clusters and scales the number down in the last
stage. This is referred to a two phase procedure. Hence, in the
intermediate stages (first phase) each block might affect
different cluster centers. A second and innovative version of
the algorithm enables a dynamic number of clusters. Again,
the algorithm starts with a relatively large number of clusters,
however, each transaction on a block might change (increase
or decrease) the number of clusters. Notably, the dynamic
approach can be used to mitigate another inherent problem of
K-means where the number of clusters has to be
predetermined. In both cases the algorithms work on “chunks”
of data referred to as blocks. The paper presents several
experiments with multi-pass and static/dynamic single-pass
versions of the K-means and empirically evaluates the validity
of the static and dynamic incremental clustering approach.

2014 International Conference on Computational Science and Computational Intelligence

978-1-4799-3010-4/14 $31.00 © 2014 IEEE

DOI 10.1109/CSCI.2014.60

308

2014 International Conference on Computational Science and Computational Intelligence

978-1-4799-3010-4/14 $31.00 © 2014 IEEE

DOI 10.1109/CSCI.2014.60

308

2014 International Conference on Computational Science and Computational Intelligence

978-1-4799-3010-4/14 $31.00 © 2014 IEEE

DOI 10.1109/CSCI.2014.60

308

2014 International Conference on Computational Science and Computational Intelligence

978-1-4799-3010-4/14 $31.00 © 2014 IEEE

DOI 10.1109/CSCI.2014.60

308

2014 International Conference on Computational Science and Computational Intelligence

978-1-4799-3010-4/14 $31.00 © 2014 IEEE

DOI 10.1109/CSCI.2014.60

308

The main contributions of the paper are: 1) a new
approach for incremental clustering where the number of
clusters is relatively high, followed by clustering the resultant
centers is presented. This approach increases the validity of
incremental clustering, 2) a second approach where initially
the number of clusters is relatively high, and the number of
clusters dynamically changes throughout execution provides
better incremental clustering quality/validity and can be used
to resolve the issue of identifying the right number of cluster
centers.

A literature review performed shows numerous papers on
incremental clustering. Nevertheless, the number of papers
that apply incremental clustering to K-means is relatively
small and to the best of our knowledge there are no reports on
research that applies the operations listed in this paper to the
K-means algorithm.

The rest of the paper is organized in the following way.
Section II reviews related research. Section III provides the
details of several single-pass and multi-pass variants of K-
means clustering and lists metrics used to assess the quality of
clustering. Section IV describes a set of experiments
conducted to assess the performance and validity of the
incremental clustering algorithms described in section III and
section V includes conclusions and proposals for further
research.

II. REVIEW OF RELATED RESEARCH
Clustering is a widely-used data classification and data-

mining method applied in numerous research fields including
image segmentation, vector quantization, data-mining, and
data compression [7,14-20]. K-means is one of the most
commonly used clustering algorithms, and the Linde, Buzo,
and Gray (LBG) vector quantization (VQ) algorithm with
unknown probability distribution of the sources, which is a
variant of K-means, is utilized in many applications [15].

Garey has shown that the LBG VQ converges in a finite
number of iterations, yet it is NP complete [16]. Thus, finding
the global minimum solution or proving that a given solution
is optimal is an intractable problem. Another problem with K-
means is that the number of clusters (ܭ) is fixed and has to be
set in advance of executing the algorithm. ISODATA is a
generalization of K-means which allows splitting, merging,
and eliminating clusters dynamically [2]. This might lead to
better clustering (better local optimum) and eliminate the need
to set ܭ in advance. ISODATA, however, is computationally
expensive and is not guaranteed to converge [2].

Numerous applications require clustering of very large
data-sets which are too big to fit the available memory and/or
clustering data that become available in “increments”. Both
scenarios induce the need for incremental clustering [7-11].
Significant amount of work was done on the subject of
incremental clustering [7-10]. Nevertheless, there are
relatively few papers that deal with incremental K-means
and/or incremental dynamic clustering. Several of these
algorithms load a slice of the data, where the size of a slice is
constraint by available memory, and cluster this slice [21].
Results of clustering current slices (e.g., centers, partition

matrices, dispersion, etc.) are used in the process of clustering
upcoming slices.

Charikar et al. propose a framework for incremental
clustering [8]. Their framework, however, is not specific
enough for incremental K-means clustering. Young et al.
propose a fast and stable incremental clustering algorithm that
is based on competitive learning. Hore has proposed a slice
based single-pass FCM algorithm for large data-sets [21]. The
proposed method lumps data that has been clustered in
previous slices into a set of weighted points and uses the
weighted points along with fresh slices to commence with the
clustering of the entire set in one path [21]. Another approach
for clustering large data-sets is to sample, rather than slice, the
data [22]. Berkhin provides a thorough survey of clustering
and relates to the problem of incremental single-pass
clustering. He notes that one problem with incremental
clustering is the order in which the data is visited [3]. This is
also observed by Young [23]. Our two phase approach
implementing a very large number of clusters in the first phase
mitigates this problem. Several authors describe the
application of K-means in problems that relate to incremental
clustering. Nevertheless, they use K-means without checking
all alternatives and validity. Cheng proposes a divide and
merge algorithm yet this algorithm does not utilize K-means
[24]. Lughofer proposes a dynamic Evolving Cluster Models
using On-line Split-and-Merge Operations [22,25] this is
somewhat similar to dynamic ISODATA. Our method for
changing the number of clusters is simpler.

III. K-MEANS CLUSTERING VARIANTS
In this section we present several variants of K-means

clustering.

A. The Classical K-means Clustering Algorithm
We refer to the K-means variant introduced by MacQueen

as the classical K-means algorithm [1]. The algorithm is an
iterative criterion optimization attempting to optimize the sum
of the squared distances from all the data points to their
assigned cluster center [1-3]. In this case the clustering
problem can be stated in the following way: Given a set of N
inputs or measurements Nxxx ,...,, 21 where n

i Rx ∈ (that
is, each element of the set of measurements is a vector in an n-
dimensional space), find K (K << N) clusters kccc ,...,, 21

with cluster-centers kωωω ,...,, 21 respectively, such that ‘ܦ,’
the sum of squared distances of data points to their respective
centers given by the following equation (equation 1), is
equivalent to the mean-square-error (MSE). Often, ܦ is
referred to as the distortion. This is especially relevant when
K-means is used for vector quantization [15,16]:

)1(
2

1
)(1

∑
=

∑
∈

−=
K

j jcx jx
N

D ω

 The algorithm consists of the following steps: First, initial
centers are selected in a process that is referred to as seeding
and all objects are classified into the appropriate clusters

309309309309309

based on the nearest neighbor rule [1-3]. Next, cluster-centers
are updated to be at the centroid of their respective clusters.
The objects are then reclassified, and new centers are
calculated. The algorithm continues until convergence; where
the convergence criterion dictates that the centers’ location at
iteration ݅ are identical to the centers’ location at iteration ݅ 1.

B. The LBG Termination Criterion
The LBG vector quantization algorithm generalizes the

K-means algorithm [15]. The main difference between the
LBG algorithm and the classical algorithm is the termination
condition. The LBG algorithm stops when an approximation

for the derivative of the MSE given by)(

)1()(

m

mm

D
DD +− is

smaller than a threshold;)()(

)1()(
ε<− +

m

mm

D
DD . The

advantage of this criterion is that generally convergence
occurs faster with quality results (minimum MSE/minimum
distortion) that are about the same as the results of the
classical K-means.

C. The Sequential K-means Algorithm
K-means, as well as numerous other iterative optimization

algorithms, can be executed in one of two basic modes; batch
mode and on-line mode. The on-line mode is also referred to
as the sequential mode. In an epoch of a sequential mode the
parameters of prototype patterns are recalculated subsequent
to the introduction of a new element of the training set. In
batch mode each epoch uses the entire training set to
recalculate parameters. In K-means, the sequential mode
assigns a point to a cluster and immediately updates the cluster
centers. Due to the heavy overhead of recalculating centers,
the resource requirement of sequential K-means might be a
prohibitive factor. Nevertheless, in certain scenarios the data
appears in a mode of one element at a time. In these cases, it
might be desirable to update results per data occurrence rather
than waiting for the accumulation of the entire data set.

D. The Block Sequential K-means Algorithm
The block sequential mode is a compromise between the

stringent computational requirements of the sequential K-
means and the need to operate on data online. In this case, the
clustering occurs on accumulated blocks of data. Each block is
going through ݈ epochs of K-means where the final centers of
block ݅ are used as the initial centers for block ݅ 1. In many
cases ݈ ൌ 1 . In this sense, the algorithm resembles other
multistage clustering such as the pyramid K-means [12-14].
The block sequential algorithm might be utilized in an
iterative fashion where each of the iterations performs ݈
epochs of K-means on a single block of data elements at a
time.

Note that all the clustering algorithms described so far
assume that (at some point) the entire data set is available.
Moreover, generally, due to the iterative fashion of execution,
these algorithms access the same elements more than once (in
different iterations). When the data is very large and cannot fit

the memory of the processor, a different approach, referred to
as single-pass, has to be adapted. Under the single-pass
(incremental) approach, each block/data-element is accessed
only one time and then removed from internal memory to
provide space for new elements. This is described next.

E. The Incremental K-means Algorithm
The incremental K-means algorithm presented in this

paper is similar to the block sequential algorithm with the
exception that each block is accessed only one time. Each
block is going through a set of ݈ epochs of K-means where the
final centers of block ݅ are used as the initial centers for block ݅ 1.

The fact that each block is “touched” just one time might
raise a question about the validity of the results. The results
might be valid if the data elements of blocks share similar
features. For example, the data elements are drawn from the
same probability distribution function or the same fuzzy
membership function. Alternatively, validity might be attained
if the features of data elements vary “slowly” between blocks.
We use two methods to improve the validity of results. First,
we use a two phase incremental algorithm. In the first phase a
very large set of clusters is used. Practically, we are trying to
fit as many elements in a block and as many clusters per block
as possible in the memory. In the next phase, after processing
all the blocks, a process of clustering the centers obtained
from the last block is applied. The second measure for
increasing validity is using a relatively large number of
clusters and at the same time allowing the number of clusters
to change dynamically. This is described in the next section.

F. The Dynamic Incremental K-means Algorithm
The dynamic incremental K-means algorithm presented in

this paper is similar to the incremental K-means algorithm.
The difference is that the number of clusters is allowed to
change.

Several operations can change the number of clusters.
First, following the ISODATA algorithm principles, clusters
with too few elements might be eliminated, clusters that are
too close to each other might be merged, and clusters with
large dispersion might be split [22-24]. The criteria for merge
and split might be related to the within and between dispersion
of the clusters [1-3,22]. Other methods for changing the
number of clusters might include incrementing/decrementing
the number of clusters (without split/merge) based on a
criterion such as a threshold on the distortion. We have
implemented the threshold approach.

Each block is going through a set of ݈ epochs of K-means
where the final centers of block ݅ are used as the initial centers
for block ݅ 1. Following the application of K-means on a
block, a decision concerning the effective number of clusters
is made and the number might be incremented or decremented
based on predetermined quality criteria threshold. We place an
upper bound and a lower bound on the number of clusters
where the lower bound ensures that we still have enough
clusters to maintain validity and enable the two phase
approach described above. Again, we are trying to fit as many
elements in a block and a large number of clusters per block in

310310310310310

the memory and apply a two phase approach where the centers
from the last iteration are clustered and provide the final set of
clusters.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup
In order to compare and contrast the performance and

validity of the K-means variants presented we have
implemented these algorithms numerous times on different
data-sets, using different parameters. Two sets of data are used
for the experiments performed; the first set consists of the
Red, Green, and Blue (RGB) components of color images
used for color quantization and the second set includes
synthetic data with known centers and known distribution.
Three types of output data/results are collected: 1) records of
convergences (distortion per iteration), 2) execution time and
3) clustering quality (inverse of distortion at the final
iteration).

The experiments are divided into two classes; multi-pass
and single-pass. In the multi-pass experiments we compared
the performance of classical K-means, LBG based K-means,
sequential K-means, and block sequential K-means. Given the
constraints of these algorithms they were applied to a
manageable data set (i.e., a data-set with a medium number of
elements). In the single-pass experiments we tested the
incremental and the dynamic incremental approaches with the
same data used for the multi-pass algorithms and with a
“huge” set of synthetic data that is not suitable for multi-pass
processing. Nevertheless, to verify the results with the large
data-set we ran the LBG algorithm on that data using a
“powerful” multicore computer. The computer worked on the
data for several hours. For the dynamic incremental algorithm,
we used an approach where the number of clusters is
incremented/decremented by 1 based on a threshold on
distortion.

All the experiments are performed with the scripting
version of MATLAB using the built-in MATLAB K-means
function where the function is executed one epoch at a time.

1) Color Quantization
The problem of color quantization can be stated in the

following way: given an image with N different colors, choose ܭ ا ܰ colors such that the resulting K-color image is the
least distorted version of the original image [19]. Color
quantization can be implemented by applying the K-means
clustering procedure to the image-pixels where each pixel
represents a vector in some color representation system. For
example, the clustering can be performed on the three-
dimensional vectors formed by the red, green, blue (RGB)
color components of each pixel in the image [19]. After
clustering, each three-dimensional vector (pixel) is
represented by the cluster-number to which the vector
belongs, and the cluster centers are stored in a color-map. The
K-value image along with the color-map is a compressed
representation of the N-colors, original image. The
compressed image can be used to reconstruct the original
three-dimensional data-set by replacing each cluster-number

by the centroid associated with the cluster. In the case of 8 bit
per color component and ܭ ൌ 16, the original 24-bit per pixel
image is represented by a 4-bits per pixel image along with a
small color map. Hence, about 6 times compression is
achieved. In this set of experiments, a block processed by the
single-pass algorithm consists of an image row.

The sequential algorithm is applied to every pixel of a
scaled down version of the images while the rest of the multi-
pass algorithms operate on the entire set of the pixels of the
original images. The experimental results are scaled to
represent the distortion for the entire image. The static
incremental algorithm starts with 192 clusters per block.
Following the processing of the last block, the 192 centers are
clustered into 16 centers and the distortion for the entire image
with these centers is measured. The dynamic incremental
algorithm starts with 192 clusters per block and allows
fluctuations of േ64 in this number. Following the processing
of the last block, the centers are clustered into 16 centers and
the distortion for the entire image with these centers is
measured.

2) Synthetic Data
A set of 20 random cluster centers with a total of 20,000,000 6-dimensional vectors is generated. The vectors

within a cluster are distributed according to a 2-D normal
distribution with standard deviation of 0.05 around the center.
For the single-pass experiments the data is divided into 500
blocks of 40,000 elements per block. Other parameters are
identical to the ones used for the color map quantization
experiments.

B. Experimental Results
1) Experiments with Color Quantization
Figure 1 shows the distortion per iteration of the multi-

pass algorithms executed on the image Lena which is a 512 ൈ 512 RGB image. Figure 1a shows the results of the
classical K-means. Following a long convergence curve with
114 iterations it settles down at a distortion rate of 216. The
LBG variant, depicted in Figure 1b, converges much faster to
about the same value (209) after 32 iterations. The sequential
algorithm (Figure 1c) operates on a scaled version of the
image and converges relatively fast, using the LBG criterion
to a distortion value that is lower than the ones attained for the
classical and LBG variants (204). Nevertheless, this variant
would not be applicable for a large amount of data.

Finally, the block sequential algorithm presents an
interesting behavior. Figure 1d depicts the distortion per block
in iteration 1 for the 512 blocks of the image. The results
converge to the value of 216 which is very close to the results
of running the other algorithms for several iterations.
Furthermore, the next iteration produces the same results.
Hence, practically, the algorithm converges in a single
iteration. This is consistent with results of multistage and
pyramid K-means clustering and can be used to implement
fast versions of multi-pass K-means. Visually, all the versions
of clustering executed in this research produced about the
same reconstructed image.

311311311311311

Figure 1 Distortion per iteration for the multi-pass algorithms with the Image Lena

Figure 2 Incremental and Dynamic Incremental Clustering of the Image Lena

Figure 3 Incremental and Dynamic Incremental Clustering of Synthetic Data

Figure 2 shows the results of running the single-pass
incremental versions on the image Lena with single row per
block. Figure 2a shows the results of dedicating 1 epoch of the
incremental K-means per block. The distortion is about 275.
Figure 2b shows the number of clusters and distortion per
block for the dynamic incremental K-means algorithm with 5
epochs per block. The number of clusters is fluctuating around
200. In fact, runs with 1, 3, 5, and 100 epochs per block
produce similar results. Hence, in this case, it is sufficient to
allocate 1 epoch per block. Compared to the static incremental

algorithm the distortion per iteration is a bit more stable and
converges to 172 which is somewhat better than the value for
the static cases. In terms of time, except for the sequential K-
means, all the algorithms are comparable with a relatively
short CPU time of about 300 seconds. This is a reasonable
CPU time for a scripting MATLAB implementation.

2) Experiments with Synthetic Data
Figure 3 shows the results of incremental clustering and

dynamic incremental clustering with a “huge” amount of
synthetic data points (20,000,000 points) in a 6 dimensional

a b

a b

a b

c d

312312312312312

space). In addition, the figure shows the results of LBG
clustering on the entire data.

Figure 3a shows the results of running the static
incremental K-means on the synthetic data. Due to the fact
that the data is drawn from a fixed distribution, the results of
distortion per block are quite stable and the execution ends up
at a value of 180. In Figure 3b, the execution of the dynamic
version of incremental K-means is depicted. The number of
centers starts at 192 and ends up at around 200 while the
distortion per block is better than results obtained for the static
case and stabilizes at 174. To validate the results we ran the
LBG algorithm on the entire set of values for the static cases.
In terms of time, except for the sequential K-means, all the
algorithms are comparable with a relatively short CPU time of
about 300 seconds. This is a reasonable CPU time for
scripting MATLAB.

C. Result Evaluation
The results of the experiments reported and additional

experiments performed show the utility of using a two phase
single-pass incremental K-means algorithm where the first
phase uses a large number of centers and the second phase
clusters the centers obtained in the first phase into a desired
size of clusters. Moreover, as demonstrated by comparing the
dynamic and incremental approach to the static incremental
approach (control tests), the quality of clustering is the same,
and in fact, in some cases, the dynamic incremental clustering
outperforms the control tests.

V. CONCLUSIONS AND FUTURE RESEARCH
This paper has reviewed static and dynamic single-pass

and multi-pass variant of the K-Means. A novel two phase
static single pass algorithms as well as a dynamic two phase
single-pass algorithm have been presented and are showing
high utility. Future research will concentrate on additional
methods for dynamic change in the number of clusters in both
steps of dynamic incremental K-means. In addition, we plan to
initiate research on equivalent approaches in Fuzzy c-means
and in the KNN. Finally, we plan to investigate parallel
incremental algorithms.

ACKNOWLEDGEMENT
This material is based in part upon work supported by the
National Science Foundation under Grant Nos. CNS-0821345,
CNS-1126619, HRD-0833093, IIP-0829576, CNS-1057661,
IIS-1052625, CNS-0959985, OISE-1157372, IIP-1237818,
IIP-1330943, IIP-1230661, IIP-1026265, IIP-1058606, IIS-
1213026.

REFERENCES
[1] J. MacQueen, “Some Methods for Classification and Analysis of

Multivariate Data,” Proc. 5th Berkeley Symposium on Probability and
Statistics, May 1967, pp. 281-297.

[2] J. Tou, and R. C. Gonzalez, Pattern Recognition Principles, London:
Addison-Wesley, 1974.

[3] P. Berkhin. Survey Of Clustering Data Mining Techniques, Technical
report, Accrue Software, San Jose, CA, 2002

[4] A. A. El-Gamal, “Using Stimulated Annealing to Design Good
Codes,” IEEE Transactions on Information Theory, 33(1), Jan. 1987,
pp. 116-123.

[5] T. Kohonen, Artificial Networks, Amsterdam: Elsevier, 1991.
[6] D. E. Tamir and A. Kandel “The Pyramid Fuzzy C-means Algorithm,”

Computational Intelligence in Control, (2)2, Dec. 2010.
[7] P. S. Bradley, F. Usama, and R. C. Corey, “Scaling Clustering

Algorithms to Large Database,” Proc. of the Fourth International
Conference on Knowledge Discovery and Data Mining, Aug. 1998, pp.
9-15.

[8] M. Charikar, C. Chekuri, T. Feder, and R. Motwani. “Incremental
Clustering And Dynamic Information Retrieval,” Proc. of the twenty-
ninth annual ACM symposium on Theory of computing, May 1997,
pp. 626-635.

[9] F. Farnstrom, J. Lewis, and C. Elkan, “Scalability for Clustering
Algorithms Revisited,” ACM SIGKDD Explorations Newsletter, 2000.

[10] C. Gupta, C. and R. Grossman, “A Single Generalized Incremental
Algorithm for Clustering,” The Fourth SIAM International Conference
on Data Engineering, May 2004, pp. 234-242.

[11] J. Lin, M. Vlachos, E. Keogh, and D. Gunopulos, “Iterative
Incremental Clustering of Time Series,” Proc. Advances in Database
Technology, Mar. 2004, pp. 106-122.

[12] D. E. Tamir, C. Park, and B. Yoo, “The Validity of Pyramid K-means,”
Proc. SPIE conference on Optics and Photonics / Optical Engineering
and Applications, Sept. 2007, pp 1225-1233.

[13] D. E. Tamir, “Cluster Validity of Multi Resolution Competitive Neural
Networks,” Proc. International Conference on Artificial Intelligence,
Jun. 2007, vol 3, pp. 1452-1540.

[14] G. Coleman, and H. Andrews, “Image Segmentation by Clustering,”
Proceedings of the IEEE, 67(5), May 1979, pp. 773-785.

[15] Y. Linde, A. Buzo, and R. Gray, R., “An Algorithm for Vector
Quantizer Design,” IEEE Transactions on Communications, 28(1), Jan.
1980, pp. 84-95.

[16] M. Garey, S. Johnson, and H. S. Witsenhausen, “The Complexity of
the Generalized Lloyd-Max Problem,” IEEE Transactions on
Information Theory, 28(2), Mar. 1972, pp. 255-256.

[17] J. F. Huang, Image Segmentation Using Discrete Cosine Transform
and K-Means Clustering Algorithm, Florida Institute of Technology,
Computer Science, Melbourne, Florida, 1991.

[18] Y. Zhu, Image Segmentation for Color Separation, Florida Institute of
Technology, Computer Science, Melbourne, Florida, 1991.

[19] P. Heckbert, “Color Image Quantization for Frame Buffer Display,”
ACM Transactions on Computer Graphics, 16(3), Mar. 1982, pp. 297-
307.

[20] X. Xu, J. Jager, and H.P. Kriegel, “A Fast Parallel Clustering
Algorithm for Large Spatial Databases,” Data Mining and Knowledge
Discovery, 3(3), Marc. 1999, pp. 263-290.

[21] P. Hore, L. W. Hall, and D. b. Goldgof, “Speedup of Fuzzy Clustering
Through Stream Processing on Graphics Processing Units,” Proc. IEEE
International Conference on Fuzzy Systems, Aug. 2008, pp. 1101-
1106.

[22] E. Lughofer, “Dynamic Evolving Cluster Models Using On-line Split-
and-Merge Operations,” Proceedings of the 10th International
Conference on Machine Learning Vol. 2, Dec. 2011, pp. 20-26.

[23] S. Young, I. Arel, T. Karnowski, and D. Rose, “A Fast and Stable
Incremental Clustering Algorithm,” Seventh International Conference
on Information Technology, Apr. 2010, pp. 204-209.

[24] D. Cheng, R. Kannan, S. Vempala, and G. Wang. “A Divide-And-
Merge Methodology For Clustering,” ACM Trans. Database
Systems. 31(4), Apr. 2006, pp. 196-205.

[25] E. Lughofer, “Single-pass active learning with conflict and ignorance,”
Evolving Systems, 3(4), Jun. 2012, pp. 251—271.

313313313313313

