
(12) United States Patent
Rishe

111111111111111011111111111111111111111!111111111111111110111111

(to) Patent No.: US 6,795,825 B2
(45) Date of Patent: Sep. 21, 2004

(54) DATABASE QUERYING SYSTEM AND
METHOD

(76) Inventor: Naphtali David Rishe, 100 Lincoln
Rd., Suite 1547, Miami Beach, FL (US)
33139

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 32 days.

(21) Appl. No.: 09/729,630

(22)

(65)

Filed: Dec. 1, 2000

Prior Publication Data

US 2002/0107840 Al Aug. 8, 2002

Related U.S. Application Data
(60) Provisional application No. 60/231,773, filed on Sep. 12,

2000.

(51) Int. C1.7 GO6F 17/30
(52) U.S. Cl. 707/10; 707/3; 707/104.1;

709/201
(58) Field of Search 707/3, 10, 100,

707/102, 103 R, 104.1; 709/200, 201, 203

(56) References Cited

U.S. PATENT DOCUMENTS

5,806,066 A * 9/1998 Golshani et al. 707/100
5,963,936 A * 10/1999 Cochrane et al. 707/3
5,970,490 A * 10/1999 Morgenstern 707/10
6,016,497 A * 1/2000 Suver 707/103 R

6,055,540 A * 4/2000 Snow et al. 707/3
6,131,099 A * 10/2000 Johnson et al. 707/104.1
6,356,906 B1 * 3/2002 Lippert et al. 707/10
6,363,391 B1 * 3/2002 Rosenstee 707/102

* cited by examiner

Primary Examiner-Charles Rones
Assistant Examiner-Hassan Mahmoudi
(74) Attorney, Agent, or Firm-McKenna Long & Aldridge
LLP

(57) ABSTRACT

A database querying system to facilitate the retrieval of
desired data from a database including information
categories, object data items, a processor assembly respon-
sive to a user query, a relationship category defined by
relationships between the object data items of the informa-
tion categories, the user query including a relationship
identifier corresponding to the relationship category. Inter-
pretation of relational-database query and data manipulation
languages against non-relational schemas, by regarding the
schemas as representing virtual relational databases with
every class replaced by a virtual table comprised of all the
attributes reachable from the class by a chain of relations.
The interpretation allows concise and simple querying of
non-relational and relational databases in languages origi-
nally intended only for relational databases. The system
further provides wrapping of a relational database into a

semantic conceptual schema to allow formulation of queries
in SQL against the wrapping schema, reducing the size of
SQL queries.

25 Claims, 6 Drawing Sheets

Information
Category

-22-

Relationship
Category

--30--

Information
Category

-22-

21

Relationship
Category

--30--

Relationship
Category

Information
Category

-22-

Processor
Assembly

10

User Query
20

U.S. Patent Sep. 21, 2004 Sheet 1 of 6 US 6,795,825 B2

Information
Category

-22-

Relationship
Category

--30--

Information
Category

-22-

21

Relationship
Category

--30--

Relationship
Category

--30--

Information
Category

-22-

Processor
Assembly

--25--

-1

,
10

User Query
--35--

FIGURE 1

\
20

U.S. Patent Sep. 21, 2004 Sheet 2 of 6 US 6,795,825 B2

Information
Category

-22-

Relationship
Category

--30--

Information
Category

-22-

21

Relationship
Category

--30--

Relationship
Category

--30--

Information
Category

-22-

uery Interpretation Module
--40--

Processor
Assembly

--25--

10

User Query
--35--

FIGURE 2

20

U.S. Patent Sep. 21, 2004

STUDENT

Sheet 3 of 6 US 6,795,825 B2

PERSON

lasr-nante: Siring
first-name: String

hirat-year: 1870..1990
ailtfress: String

minor
I» ' h

majo works in
push u»://0

the student
(tn: 1)

COURSE
ENROLLMENT

find! -grade: 0.1W)

the offer

DEPARTMENT

name: String 13»

FIGURE 3

Or 1)

COURSE
OFFERING

INSTRUCTOR

the instructor
(in:1)

the course

the quarter
(in:11

QUARTER

Year: 19S0.. /995
seumni: String

(in:1)

COURSE

name: String 1:1

U.S. Patent Sep. 21, 2004 Sheet 4 of 6 US 6,795,825 B2

PROJECT

name: String key
description: String
(WM IC1118: String

ling-dine: DOR'
end in Date

LOCATION

north-VI: Number key/2
east-111,1.1: Number key/2

ekvationit: Number
description: String

serves
(m:no

PHYSICAL
OBSERVATION

STATION

--)is-part-of -->

Stri1C111re: String
1'01111110,1'S: Strin14
housing: String

belo igs to

(111. 11)

ORGANIZATION

-)is-part-of twin: ->
name: String key
description: String

IMAGE

image: Raw
suhfeer: String

direction -n(- view'; 0,..361)

comments: String
ope Char(3)

OBSERVATION

time: Dote-time
(minnow String

FIGURE 4

tweed at
(n:/)

FIXED STATION

piarfOrm-height-J): 0..50.000

MEASUREMENT
TYPE

inane: String key
measurement-unit: String

upper-limit: Number
lower-limit: Number

of
(m:

MEASUREMENT

value: Number

U.S. Patent Sep. 21, 2004 Sheet 5 of 6 US 6,795,825 B2

VSICA I-ODSERVA TI ON-STATION
phyA forl-oltsetvation-station-id-key:Intege r I: I; comments:String; Junising:String: stnicture:String;
iA_part-of -p/tvsicat-obsvmtriatt-starion-itt; Integer:

LOC:AT1ON
nort11-1171,-in-ket,:. Number; east-trIll-in-k& v:N rn her; e N urnI)er: description:String;

mune- key:String 1: deArription:String:
ORCA N IZATI ON

PROJECT
trante-ket,;titring, I: I ; deseription:Strin: mammas:String; starting-cicue:Date; outing-date:Date;

NI FAS Ult EM EN'I-TYPE
nantc-kev:String II I ; mettcurement-writ:String; upper-/intir:Number; Number:

FIXED-STATION
physica/-obs ovation-A tation-id-key: I n t ege r I I ; phrtfium-heightit:O..50.000; tocorerf-ar--Jumb-LITM: N um ber;
trowted-at--eam-Untt:Number:

M EASUREM ENT
observarion-hl-key: Integer I : 1; oilmen t: Sin ng; rime:Date-time; value: Number: af-nante:Srring;
bv--plltwical-aservalion-Slallon-liLinteger;

INIAC E
irM- key: Integer :1; c munent String: (PM': Date-time; Image:Raw; subject:String:

direct/un-/ view: 0..360 ; comments:String: rtpe:Chart 3 bv-physical-ohsovation-station-id: ntege

P L-OBSERVATI ON-STATION -BE LONGS-TO-ORGANIZATION
physical-ohs ovation-sration-hl-in-kev: Integer, organi.lation-nante-in-key:String;

oRGANIzATIoN-RUNS-PROJ ECU
organization--nante-in-kev:String: e-in-kev:String;

l' II YS ICA L-0 IS ER VATIO N-STATI ON--S ER V ES-PROJECT
ph,,,,r,,d-ohservoll(M-Stalk»i-htin-ket': I nt eger; project-nenne-in-ke r:Str in tz

ORGANIZATION-- IS-PA RT-0 F-ORGANIZATI ON
onwi i2L1 i kev:Stri ne mizonizarion-2--nante-In-kev:STrintz;

FIGURE 5

U.S. Patent Sep. 21, 2004 Sheet 6 of 6 US 6,795,825 B2

List of the time and housing of temperature measurements ove50 degrees

SQL statement based on semantic schema:

select housing,time from MEASUREMENT where of name-'Temperature' and value>50

SQL statement based on relational schema:

select housing, time

from PI lYSICAL_OBSERVATION_STATION, MEASUREMENT

where exists

(select from MEASUREMENT-TYPE

where name_key - of name and name_key = 'Temperature* and
hy_ physical_ohservation_station_id = physical_observation_station_id_key and
value > 50)

FIGURE 6

US 6,795,825 B2
1

DATABASE QUERYING SYSTEM AND
METHOD

CLAIM OF PRIORITY

The present application is based on and a claim to priority
is made under 35 U.S.C. Section 119(e) to provisional patent
application currently pending in the U.S. Patent and Trade-
mark Office having Ser. No. 60/231,773 and a filing date of
Sep. 12, 2000.

BACKGROUND OF THE INVENTION

1. Field of the Invention
The present invention relates to a database querying

system and method which is substantially effective, and
simplifies a querying syntax that must be utilized in order to
achieve the effective retrieval of desired information from a
relational or non-relational database by means of any lan-
guage or interface intended originally only for relational
databases. The system and method operate in a manner
which can be used for initial database setup and program-
ming as well as for the adaptation of existing standardized
database querying systems to utilize the present simplified,
more concise querying method.

2. Description of the Related Art
A variety of different types and information are com-

monly stored in databases, those databases often including
many different categories and types of information which
are to be made available for retrieval as needed. While some
databases are relatively simple, in a variety of uses and
applications, the nature and amount of information con-
tained by the database can be quite extensive and complex,
and as a result the querying of that database can be sub-
stantially difficult and complicated if truly usable informa-
tion is going to be retrieved.

In order to provide for that effective retrieval of the
desired information from the database of stored data and
information, databases are programmed in association with
query languages. In particular, the language defines the
syntax that a user must utilize in order to effectively com-
municate with the database and thereby retrieve the appro-
priate information from the fact database.

Within the various specialized fields of database program-
ming and query language programming, "relational database
systems" are widely used, and indeed there are millions of
relational database systems installed throughout the world. A
relational database can typically be seen as a collection of
flat tables, each table aggregating information about objects
of certain types, each row of the table containing several
fields describing an object; relationships between objects in
a relational database are typically represented only
implicitly-by cross-referencing values of some fields. As
with any programming technology, a number of query
languages have been utilized and developed over the years
in an attempt to effectuate the appropriate communication
between a user and the databases. Of those various query
languages, Structured Query Language (SQL) query syntax
has been recognized as a primary standard for relational
databases and has been employed in the majority of the
commercial environments for database products. SQL can
be used directly or as an intermediary language via one of its
communication protocols, such as the Open Database Con-
nectivity (ODBC) protocol, Java Database Connectivity
(JDBC), or Object Linking and Embedding (OLE), that have
been recognized as the primary standards. Unfortunately,
however, in order to effectively use query relational data-
bases in SQL in the proper manner, users typically need
substantial amounts of prior training in order to efficiently
utilize the language to correspondingly retrieve information.

2
Specifically, users must understand the language itself, as
well as the principles of relational databases, so that they can
appropriately draft a query to be utilized by the system
processors in order to retrieve the desired data. Even with an

5
understanding of the language, however, in many situations
an SQL query can become too complicated if a user is to
ensure correctness of the meaning to be achieved thereby.
Queries for a relational database are generally quite com-
plex. This is generally because the stored data in a relational
database is typically grouped in a variety of different tables,

10 and the relationships among those tables are not explicit.
Users submitting queries are then required to identify each
table and provide the database with a formula relating
between the various tables in order to ultimately arrive at
and achieve the desired data results. Naturally, the more
abstract those relationships are the more difficult it becomes

is for users to effectively identify all valid relationships in the
appropriate format. Recently, improvements over the rela-
tional database approach have been introduced, the trend of
such improvements being to allow explicit relationships
between classes of objects and a other improvements to the

20 structure of information. Such database structures are called
"semantic", "object-relational", "object-oriented", "concep-
tual schema", "entity-relationship". We refer herein to all
such databases with explicit relations as "Semantic Data-
bases". However, such improved database structures
required new or enhanced query language and do not allow

25 access in standard language and interface tools intended for
relational databases.

Recognizing the problems associated with existing data-
base query systems, three principal efforts regarding
improving query interfaces over the relational databases

30 have emerged. Theses include SQL3 (sometimes called SQL
1999), Object Query Language (OQL), and some graphical
(or visual) query languages. Such approaches, however,
focus on enhancing the expressiveness of the current SQL by
changing the data models and syntax of the language. As
such, when users need to develop a new application, they

35 must utilize new features that come with the object-
orientation, for example super/subclasses and inheritance, in
order to enable them to do the database modeling in a way
closer to the real world. As can be appreciated, such a
requirement is not very helpful to the existing databases that

40 have been developed under the conventional relational
model and therefore have no object-oriented features at all.
Furthermore, they require that a user learn a new and often
equally complex programming technique to set up the
database. In particular, both SQL3 and OQL introduce new
syntax as well as a semi-procedural programming paradigm

45 to fulfill the object-oriented requirements. Users who are
used to programming with a pure declarative language such
as the standard SQL (also called SQL92) have difficulty or
are uncomfortable when being asked to switch from declara-
tive programming to procedural programming.

so Another type of attempt to make the query interface more
friendly is to use the so-called graphical query languages.
The most important advantage coming up with such
attempts is the query visualization. However, there are down
sides with the current graphical query languages. For

55
example, a navigational paradigm with a hypertext language
is usually restrictive and inefficient. As a result, it often
yields useless information after a user has spent a lot of time
in navigating in a perplexed cyberspace. A menu-driven
query paradigm as found in some desktop databases such as
in dBaseIII+ or a table-like browser called Query-By-

60 Example (QBE) such as in Microsoft Access, frees users
from having to learn the SQL syntax. But when using any of
them for complex queries, users may feel of frustrated when
following the procedures of generating the query. In addition
to this, users also must know the logical structures of

65 relational database such as foreign key links clearly so as to
compose queries with explicitly expressing each join cor-
rectly.

US 6,795,825 B2
3

Further, there are many other efforts under prototype
development. Most notable results include G-log, Func-
tional Graphical Language, Visual-Query-Language,
Graqula, DUO, and Query-By-Diagram. These methods,
however, do not provide an easy way for the user to
formulate very complex queries. Additionally, several soft-
ware firms have announced products facilitating the interop-
erability of different data models, for example TITANIUM
at Micro Database System. Their efforts are enabling access
to single database with different query interfaces based on
users' preference. Using these tools, developers first need to
convert the existing database to a specific database product,
for example TITANIUM database engine, thereby limiting
their usefulness, especially if an SQL database is already in
use.

Accordingly, it would be beneficial to provide a database
querying system and method which can be implemented
independently or with an existing relational database to
provide a semantic view of the relational schema and enable
users to query the relational database in a standard language
for relational databases but to utilize the benefits of explicit-
relations structure afforded by a semantic schema. Such a
system should provide users with a number of object-
oriented features, such as super/sub-categories,
relationships, and inheritance, which can be utilized by users
when formulating their queries, without changing the basic
familiar syntax, such as SQL syntax, but merely enhancing
its ease of use, expressiveness, and conciseness. Users of
non-relational ("semantic") databases would therefore have
a way to access their database in a language intended for
relational databases; users of relational database would
benefit from simplifications and conciseness of queries do to
a "semantic" view, while the existing database remains
purely relational without any modifications. Additionally,
such an improved system should preferably be a pure
declarative language, syntactically identical to a known
language, such as ODBC SQL 2.0, thereby only requiring a
minimum of prior training, and allowing it to be imple-
mented as a middle-ware.

SUMMARY OF THE INVENTION

The present invention relates to a database querying
system which is structured to facilitate the retrieval of
desired data from a database. The database will typically be
of the type that includes at least a first and a second
information category. In particular, the database querying
system includes a first plurality of object data items catego- 45

rized in the first information category. Similarly, a second
plurality of object data items are also provided and catego-
rized in the second information category.

A processor assembly is also provided with the present
system and is responsive to a user query. In particular, the
processor assembly is structured to identify the desired data
from the user query. To facilitate information retrieval,
however, the present system further includes a relationship
category. The relationship category is defined as a result of
the relationships between the object data items of the
information categories. Along these lines, the user query
includes at least a relationship identifier. The syntax of the
user query is thereby substantially simplified as the user
does not require to narrow the abstract relationships between
each of a variety of tables and category, but rather the use of
the defined relationship identifier in the context of the
system of the present invention seamlessly and internally
extrapolates the abstract relation into the syntax of a query
language for relational databases, even if said language
syntax does not recognize abstract relations. Naturally, such
a simplification is even more significant in an embodiment
including a large number of information categories, as the
user is therefore not required to identify each category and

4
a connection therebetween in order to ultimately arrive at the
desired information.

These and other features and advantages of the present
invention will become more clear when the drawings as well

5 as the detailed description are taken into consideration.

10

15

20

25

30

35

40

50

55

60

65

BRIEF DESCRIPTION OF THE DRAWINGS

For a fuller understanding of the nature of the present
invention, reference should be had to the following detailed
description taken in connection with the accompanying
drawings in which:

FIG. 1 is a schematic representation of one embodiment
of the database querying system of the present invention;

FIG. 2 is a schematic representation of another embodi-
ment of the database querying system of the present inven-
tion;

FIG. 3 is an illustration of a semantic schema for a
university application;

FIG. 4 is a schematic representation of the semantic
schema for a hydrology application;

FIG. 5 is a schematic representation of a relation schema
for the hydrology application; and

FIG. 6 is an illustration comparing the program sizes of
semantic SQL an standard SQL.

Like reference numerals refer to like parts throughout the
several views of the drawings.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

As illustrated in Figures, the present invention is directed
towards a database querying system, generally indicated as
10. In particular, the database querying system is structured
to substantially facilitate the manner in which a user enters
a query and a processors interprets that query for retrieval of
desired data from an often very large database of
information, by utilizing a relational schema in a much
easier, semantic manner. Further, the present database que-
rying system 10 allows for facilitated adaptation and modi-
fication of existing databases without requiring substantial
modification of syntax and/or the internal processing and
operation of the assembly.

Looking specifically to one embodiment of the database
querying system 10 of the present invention, it includes at
least a first and a second plurality of object data items
categorized in at least a first and a second information
categories 22. Preferably, however, it is recognized that with
most databases, and in particular the databases which can be
benefit from the database querying system 10 of the present
invention, a plurality, and often a very large plurality of
information categories 22 are provided, each containing a
corresponding plurality of object data items categorized
therein. With further regard to the object data items,
typically, the object data items include specific object data,
such as a name, department, value, date, etc. These object
data items all represent information which may comprise the
desired data to be retrieved by a user, and which also help
to identify specifically what the desired data includes.

In the illustrated embodiment, at least one computer
processor assembly, which may include a personal
computer, main frame, network, etc., is defined and includes
a storage assembly 21 wherein the object data items from
each of the information categories 30 are stored.
Additionally, however, the present database querying system
10 includes a processor assembly 25. The processor assem-
bly 25 is responsive to a user query 35 and is structured to
identify the desired data as a result of the user query.
Specifically, the user query may be provided through any
conventional input device and/or a remote or local terminal

US 6,795,825 B2
5

associated with the processor assembly 25. Further, the user
query 35 is generally provided in a query syntax which can
be interpreted by the processor 25 so as to effectively
identify and thereby retrieve the desired data item.

Looking to the illustrated embodiment of FIG. 1, the
present database querying system further includes at least
one, but generally a plurality of relationship categories 30.
Each relationship category 30 is defined by the relationship
between corresponding object data items of the various
information categories, including the data objects derivable
from those relationships. Furthermore, although some object
data items may have relationships only with one another,
most have relationships with many object data items in
many information categories. As such, a plurality of rela-
tionships category 30 are defined correlating the relation-
ships between all related categories. Along these lines, the
user query presented by the user preferably includes at least
a relationship identifier In most embodiments, the relation-
ship identifier will be associated with at least one object item
from the object categories 22 so as to provide a frame of
reference for interpretation. The present invention, however,
by allowing for the inclusion of the relationship identifier of
the user query, presented in a semantic schema, is able to be
utilized by the processor assembly 25 in effectively inter-
preting the query and identifying the desired data in a much
more effective manner wherein the syntax of the user query
can be substantially simplified. For example, prior querying
systems required the inclusion of details for each category so
that the query could fully specify a number of objects and
can narrow the results of the query in an effective manner to
achieve the desired data. The utilization of the relationship
identifier within the user query of the present database
querying system 10 allows the user to effectuate a more
acceptable object oriented or semantic schema wherein the
relationships are more simplified and easier to understand
and identify. In particular, the database querying system 10
of the present invention is able utilize the relationship
identifier so as to effectively replace various complex joints
and data links that would have been required, narrowing the
query results and providing a much more usable result from
the query without requiring the degree of complex query
management and creation. Moreover, the data objects in the
relationship categories allow the system to provide the
results in a more efficient manner.

Although the relationship categories, and the relationships
which define them, may actually be generated and stored on
a storage assembly 21 of the computer processor assembly
20, in a preferred, illustrated embodiments of the present
invention, the relationship categories are virtual categories
that are not actually generated and/or filed with data objects
resulting from the various relationship identifiers. Rather,
the general relationships between the categories that corre-
spond the relationship identifiers between the various object
items of the categories are identified and the category can be
virtually achieved. As such, the utilization of the relationship
identifier within the query allows the processor assembly 25
to appropriately determine the relationship between the
object categories, and derives previously required extrane-
ous terms.

Although the present database querying system 10 may be
provided as an independent querying system originally
programmed according to the system and method of the
present invention, it is also recognized that this system and
method of the present invention may also be effectively
integrated within an existing database system. As a result,
the query syntax that must be utilized by a user is substan-
tially facilitated, and that simplification and more detailed
query analysis also can be effectively achieved without
requiring complex modifications and/or substantial addi-
tional training of the users. Along these lines, the processor

6
assembly 25 to the database querying system 10 may be
responsive to Open Database Connectivity (ODBC) query
syntax, Structure Query Language (SQL) query syntax, any
relational query language query syntax or any relational

5 graphical query language query syntax. When integrated
within the database query system 10 of the present
invention, however, more simplified user queries 35 includ-
ing the relationship identifier can still be effectively utilized
to achieve the appropriate desired result. For example, in
such an environment, and as illustrated in FIG. 2, a query
interpretation module 40 is preferably provided. In
particular, the query interpretation module 40, sometimes
referred to as a semantic wrapper, is structure to utilize the
relationship identifier from the user query to interpret the
user query as the corresponding query which the processor

is assembly 25 has traditionally been configured to receive and
interpret. Along these lines, the query interpretation module
40 may include a semantic conversion tool The semantic
conversion tool is structured to identify relational schema of
the database and convert those relational schemas to seman-

20 tic schemas. It is the semantic schemas that allow more
simplified identification of the relationships between the
information categories. One factor that achieves the simpli-
fication utilizing the semantic schema is that the relation-
ships can be presented in a semantic, object oriented format

25 rather than the abstract, relational format wherein the user is
required to identify all of the data items themselves, and
must previously know the relational combinations of the
various data items.

Because in some circumstances, such identification of the
relational schemas of the database and conversion to seman-
tic schemas for the purposes of this invention cannot be
directly achieved, as there may be no specific semantic
schema to correspond to the pre-existing relational schemas,
the present invention, and in particular the query interpre-
tation module, may include a knowledge base tool. In

35 particular, the knowledge base tool, is structured to custom-
ize a conversion of at least some of the relational schemas
into semantic schemas, actually generating a semantic sche-
mas in some circumstances. As previously identified, in the
illustrated embodiments of the present invention, a semantic

40 conversion tool does not actually have to generate a new set
of object data (relationship data items) based upon the
semantic schema, but rather virtually converts the conven-
tional schemas into semantic schemas for utilization by the
processor assembly in query interpretation. As a result, a

45 user is able to input the more refined user query including
the relationship identifier, however, based upon the previ-
ously identified semantic schema for the pre-existing rela-
tional schema, that query may be used by the processor
assembly to identify the desired data. Essentially, complex

50
joinders and additional object data often required by the
processor assembly 25 utilizing traditional mediums are
supplemented seamlessly by the processor assembly 25.

From the processing, it can be seen that the present
invention is further directed towards a method of simplify-
ing a query syntax of an existing relational database. The
method includes an initial step of identifying the at least two,
but often a plurality of information categories containing
objects data items. Relationship between those information
categories are then identified and the relational schemas
between those information categories are converted into

60 semantic schemas. The semantic schemas are identified by a
corresponding plurality of relationship identifiers indicative
of a relationship between the object data items of the
information categories. Relationship categories can then be
defined from the relationship identifiers, and a query entered

65 utilizing at least the relationship identifier.
The relationship identifier is then utilized to identify a

desired item from the database by the processor assembly.

1 0

3 0

5 5

US 6,795,825 B2
7

Furthermore, in connection with the present method, it is
recognized that at least some of semantic schemas may
actually be generated and that the user query will include in
addition to the relationship identifier, an object based query
so as to complete the user query and allow it to be effectively
interpreted for retrieval of the desired data.

Similarly, in connection with a pre-existing object ori-
ented database, the method may include the steps of iden-
tifying at least two or a plurality of information categories
containing object data items, identifying the relationships
between those objects data items of the information catego-
ries and defining relationship identifiers from the relation-
ships between those object data items. The user query can
then be entered utilizing at least a relationship identifier
which is utilized to identify desired data items. For example,
the relationship identifier facilitate the interpretation of the
user query as an object query that may normally be utilized
by the processor assembly.

From the preceding it is seen that the objective of the
semantic wrapper of a relational database is to provide easier
access to a legacy relational database, in parallel to contin-
ued access via existing legacy application software. The
present system presents a semantic view over a relational
schema. Accordingly, queries can be made simple and very
short, and in some cases up to ten times shorter (and so
easier to pose) than in relational databases. For example, the
user need not bother about "joins"-cross-references
between relational tables, many-to-many relations, inherit-
ance. Additionally, shorter application programs may be
utilized, in that user programs for a semantic view are
substantially shorter than for a relational one, achieving
major improvements in the application software develop-
ment cycle, maintenance, and reliability. In one preferred
embodiment wherein SQL, the standard relational database
language, is adapted to the present inventions semantic
database, programs in SQL for Sem-ODB tend to be an order
of magnitude simpler and shorter than for a relational
database. In one embodiment, the ODBC driver for the
Semantic Wrapper of the present invention allows SQL
querying of a semantic database and interoperability with
relational database tools, e.g. end-user systems like MS
Access Query-By-Example or Crystal Reports. In these
tools the number of user keystrokes required is proportional
to the size of the generated SQL program. As such, in such
an embodiment savings are realized and simplicity is
attained through the use of the semantic view of the present
invention. An Embedded SQL interface for C and C++ may
also provided, and the present invention may include a
knowledge base tool that aids in reconstruction of a
conceptual/semantic schema and documentation of a legacy
relational database.

Now, for purposes of clarity, one embodiment of the
present invention is described in the context of integration
and/or comparison within a more traditional SQL query
based system, the present invention referred to as Sem-SQL
or Semantic SQL. Specifically, as indicated Structured
Query Language (SQL) is the standard language used to
write queries for relational databases. The present system
and method, Semantic SQL (or Sem-SQL), interprets SQL
with respect to semantic and object database schemas. The
syntax of Sem-SQL is similar to that of Open Database
Connectivity (ODBC) 3.0 standard SQL, but it is interpreted
differently. The present invention re-interprets SQL in order
to further a number of goals. For example, as SQL is a
uniform interface provided by almost every database
system, it is, perhaps, the most popular database language
and it is known by millions of users. The availability of the
Sem-SQL interface will significantly enhance the accessi-
bility of semantic, object-relational, and object-oriented
databases and of semantic interfaces to relational databases.

8
Sem-SQL also affords the possibility of supporting ODBC
and JDBC, which are standard database-access interfaces.
Sem-SQL and standard SQL are identical in syntax,
however, from the users' point of view, using Sem-SQL will

5 be different from but easier than using standard SQL.
Sem-SQL queries refer to a virtual relational schema. This
virtual schema consists of inferred tables, which are defined
as a spanning tree of all the relations reachable from a given
semantic category. (The central notion of semantic models is

10 the concept of object, which is any real world entity that we
wish to store information about in the database. The objects
are categorized into classes according to their common
properties. These classes are called categories.) Users query
the database as if there were a universal table for each class

15 with all the information derivable from it. However, a virtual
table is never physically generated. Therefore, Sem-SQL is
able to relieve users of explicitly expressing joins; conven-
tional relational SQL requires them to do so. However,
updates against a derived user view, and in particular against

20 the virtual tables, are inherently ambiguous. Therefore,
disambiguating semantics are provided in the data manipu-
lation language part of Sem-SQL in terms of the underlying
semantic database. SQL insert, delete, and update statements
can then be applied to virtual tables, preserving the intuitive

25 meaning of these operations. Sem-SQL enables users to
manipulate data in a more intuitive way than the standard
SQL does, so it turns out to be simpler and more user-
friendly.

The present solution utilizes a semantic view of a data-
base. Users compose their queries in Sem-SQL based on this
semantic view. In case of a semantic or object-relational
database, queries in Sem-SQL are translated into basic
database operations. In case of a semantic view wrapping of
a relational database, the queries are translated into rela-
tional SQL queries that are semantically equivalent. The
basic idea of the query transformation is to restore the
semantic query, which is usually formulated on the virtual
tables, by adding the join conditions or sub-queries explic-
itly in the WHERE clause. This is achieved by referring to

40 the mapping information between the semantic view and the
relational schema. The basic components in relational sche-
mas are tables, attributes, and foreign key links. Tables and
attributes can be mapped to categories and attributes
(concrete relations) respectively in the semantic model,

45 while foreign key links can be represented by abstract binary
relations in semantic model. The present semantic wrapper
uses a knowledge base to store this mapping information.
Sometimes such basic information may not be enough to
complete the transformation. Therefore, the system, such as

so part of the knowledge base tool, includes a set of inference
rules to derive new knowledge that is essential during the
query transformation. These techniques can also be applied
when integrating relational databases and semantic data-
bases together in a heterogeneous multi-database environ-
ment where there are a number of autonomous semantic or
relational databases. The semantic wrapper of a relational
database first imports the relational schemas of databases
and automatically converts them to semantic schemas. This
conversion process maps every table to be a category and
every functional dependency to be a relation in the semantic

60 schema. This automatically generated schema does not
contain semantically rich information such as inheritance,
meaningful relation names, etc. Relational schemas are
unable to represent such complex semantics so they cannot
be automatically generated from the schema information. As

65 such, the present invention includes the Knowledge Base
Tool (KDB Tool), which is capable of customizing the
generated schemas (enriching them with semantic

3

3

0

5

5 5

US 6,795,825 B2
9

information) with the interaction of the Database Adminis-
trator (DBA). The acquired knowledge and mapping
between semantic and relational schemas are stored in the
knowledge base which is implemented using a semantic
database as well. The wrapper provides not only a seman-
tically rich schema for the relational database but also an
easy-to-use query language, Semantic SQL, for querying the
generated semantic schema. The query translator or inter-
pretation module transforms Semantic SQL queries posed
on the semantic schema into semantically equivalent SQL
statements on the relational schema. It uses the mapping
information generated in the knowledge base along with the
semantic and relational schemas. The query translation
process uses temporary views to generate the appropriate
projections of the virtual tables. Next, it proceeds to apply
outer joins between these temporary views to provide query
results. An important point to note is that the query trans-
lation process often generates substantially larger relational
SQL statements for corresponding Semantic SQL state-
ments. Though the translation algorithm does not necessar-
ily provide optimal-size translated queries for every possible
Semantic SQL query, this illustrates the ease of using
Semantic SQL queries to generate complex queries. Since
the translation process is automated, users are required only
to specify the simpler Semantic SQL statements.

As mentioned, the present invention uses the same syntax
as

10
Inferred Relations

Every abstract category C has the following inferred
relations:

inverted relations: for every relation R:B->C, its inverse

5 R :C->B. The inverse relation has short name R and
full name BR. It also may have a name defined in
the schema. (Example: full name: instructor works
in ; short name: worksin; it may also have a
schema-defined inverse name such as full:
department employs or short: employs.)

the identity relation, also called C: x.C=if x in C then x
else null. (Example: instructor, full name: instructor
instructor)

for each direct subcategory S of C, there is an attribute
Isa S:C->{"y"}: x.Isa S=if x in S then "y" else null.

15 (Example: isa student; full name: person isa
student)

the combined attribute C, which is the concatenation of
all the original attributes of C (including attributes of
supercategories of C, but not including attributes lim-

20 ited to subcategories of C) that are representable by
printable strings (this includes numbers, enumerated,
Boolean). The concatenated values are separated by
slashes. Null values are replaced by empty strings.
Attributes that are to-many are excluded. In case the
schema defines no order between attributes of C, the
order defaults to lexicographic by name of attribute.

1 0

full attribute name abbreviation type sample value

STUDENT
last name
birth-year
the student the offer the quarter year
the student the offer the quarter season
the student final grade
major
minor
major name
minor name

year
season
final grade

surrogate 123235
string Smith
integer 1970
integer 1999
string Spring
integer 75
surrogate CS
surrogate ECE
string CompSci
string Electrical

the standard ODBC SQL (with null values). However, the
present SQL queries refer to a virtual schema. This virtual
schema consists of an inferred table T defined for each
category C as a spanning tree of all the relations reachable
from C. This virtual table T is never physically generated.
The table T contains every attribute reachable from category
C.

EXAMPLE

Consider the Semantic Schema of FIG. 3
Original Relations

For every category C in the schema, the schema defines
certain relations whose domain is the category C. Let r be a
relation with domain C and range B, i.e. r:C->B. B can be
another abstract category in the schema or it can be a
concrete category, e.g. Number or String. The name of the
relation r as defined in the semantic schema is called the
short semantic name. It is unique among all the relations
whose domain is C. The relation's full semantic name is
made of the name of its domain and the short name: C r.

The short name is used only when the domain is known.
(Example: short name: works in; full name: instructor
works in) The relation r is called to-many if it is possible
that at some point in time there is an object x and two distinct
objects y and z so that there are relationships xry and xrz. If
this situation may never exist then the relation is called
to-one.

in spatial-data databases, infinite virtual relations repre-
senting functions over space-time, which in the actual
database are represented by a finite data structure.

45 Applicable Relations
A category C may be a sub-category of, a super-category

of, or intersecting category of, another category E. All
relations whose domain is E are applicable on objects of C.
Main Defenition

so The virtual table T(C) for a category C, recursive defini-
tion:

1. The first attribute of T:

C-attribute of T, range: C (m:1)
2. For every attribute A of T, for every relation r applicable

55 to the range of A:

A r-attribute of T, range:range(r) (m:1)
Note: this virtual table is infinite When interpreting a

specific query, a finite projection of this table is assumed as
further explained in Technical Notes.

60 The name of T is the same as of C.
Note: to-many original relations are reduced to to-one

attributes of the virtual table.
If the semantic relation r is many-to-many or one-to-

many, the new attribute would be many-to-one, but many
65 virtual rows would exist in the table T, one for each instance

of the tree. If r has no value for an object, a null value will
appear in the virtual relational table. The relation r may be

US 6,795,825 B2
11

inferred. The range of a virtual attribute may be of multi-
media type: numbers with unlimited varying precision and
magnitude, texts of unlimited size, images, etc.
Abbreviation of Prefixes

Every component relation r in the virtual attribute name
may be named by its full semantic name or, if no ambiguity
arises, by its short semantic name.

The attribute names of T contain long prefixes. These
prefixes can be omitted when no ambiguity arises, i.e.:
attribute y is an abbreviated synonym of an unabbreviated
attribute x y of T if T has no other unabbreviated attribute
z y where depth(z)<=depth(x).

depth(x)I is the number of relations present in x.
Surrogates

All attributes of T(C) of type Abstract are replaced by
their surrogates of type String.
Characters

Prior to defining the virtual tables we "clean" the name of
every relation or category: replace all non-alphanumeric
characters with " ", if the name begins with a digit or "
prepend "A", if the name ends with " " append "Z",
collapse multiple " " into a single " ". If any ambiguity
arises after the cleaning, the original schema is rejected by
the Semantic SQL interpreter.
Definition of the Extension of a Table

The virtual table T for a category C is logically generated
as follows:

1. Initially, T[C]=C, i.e. T contains one column called C
whose values are the objects of the category.

2. For every attribute A of T, for every schema relation or
attribute r whose domain may intersect range(A), let R
be the relation r with its domain renamed A and range
renamed A r, let T be the natural right-outer-join of T
with R. (Unlike a regular join, the outer join creates
A r=null when there is no match.)

3. For a given query q the virtual table against which q is
interpreted, T[C,q]l, is a projection of T[C]l on the
following virtual attributes:

the virtual attributes that appear in the query,
the unabbreviated prefixes of said attributes (including the

surrogate attribute C),
and the attributes pr where p is any of said prefixes and

r is an original printable-type to-one attribute of the
semantic schema.

Note: the projection operation here is a set operation with
duplicated tuples eliminated.
User-control of Table Depth
(Used only by sophisticated users trying to outsmart
$MAXDEPTH defined by a graphical user interface; not
needed by users posing direct SQL queries without a GUI.)

For each category C, in addition to the default table
named C, of depth limited by $MAXDEPTH, there are also
tables called C i for any positive integer i, with the depth
limited by i rather than $MAXDEPTH. Also, there is a table
C0 which includes only the original to-one attributes and
relations whose domain is C or a supercategory of C and the
surrogate attribute of C.
User-specified Tables
(Used only by generic graphical user interfaces; not needed
by users posing direct ODBC SQL queries)

Let C be a category. Let S=IA1, . . . , AkI be some
unabbreviated attributes of the table C.

Let ENRICH(S) be the set of unabbreviated attributes of
T(C) comprised of the attributes S, their prefixes, and
one-step extensions of the prefixes by to-one attributes and
relations.

(An attribute A is a prefix of an attribute in S if and only
if A is in S or A w is in S for some string w. An attribute

12
B is a one-step extension of an attribute A if and only if B=A
or B=A w where w contains no underscores. Note that
value of every such prefix A is an abstract object (surrogate))

We define a virtual table T(C,S) as the projection of the
5 table T(C) on ENRICH(S).

The name of T(C,S) is generated as follows: for each Ai
let Bi be the shortest synonym of Ai. The name of T is:
B1 B2 . . . Bk
ODBC Schema Queries

ODBC request for the names of all tables for every
category the primary virtual table C and the tables C0 and
C 1.

ODBC request for the names of all attributes of a given

15 virtual table T returns all attributes maximally abbreviated.
If the request is for the virtual table corresponding to
category C, only attributes of C 2 are returned.

ODBC request to browse the virtual table is denied.
(Browsing of C0 is permitted. Browsability of C1 is not

20
guaranteed).
Semantics of Updates

Updates against a derived userview, and in particular
against the virtual relational database, are inherently
ambiguous. Therefore, diambiguating semantics is provided

25 here in terms of the underlining semantic database. SQL
insert, delete, and update statements are applied to virtual
relational tables preserving the intuitive meaning of these
operations. Simple updates are explained below first.

This section explains simple updates where only the
30 immediate attributes of categories are used.

1. delete from C where condition Removes objects from
the category C (does not delete them from supercategories of
C).

10

35 EXAMPLE

delete from STUDENT where FINAL GRADE<50

2. insert into C (attributes) query

40 Evaluates the query, resulting in a set of rows. For each
row, a new object is created and placed in C. Its one-step
relationships are assigned values from the rows. If a one-step
relationship is m:m or 1:m only one value may be assigned.

45 EXAMPLE

create a new student Jim in Physics:

insert into STUDENT (FirstName, Major) select distinct
`Jim', Department from DEPARTMENT where name=

so 'Physics'

EXAMPLE

create a new instructor Jim in Physics (although Worksln
55 is a m:m relation, only one value is assigned in this

statement):

insert into STUDENT (FirstName, Worksln) select dis-
tinct 'Jim', Department from DEPARTMENT where
name=' Physics'

60 3. insert into C (attributes) values (assignments
Creates a new object, places it in the category C, and

relates it to some one-step attributes (i.e. the original
attributes/relations of category C and their inverses.)

4. update C set Al=e1 , . . . , Ak=ek where condition
65 Selects a set of objects of category C. For each of them

updates some one-step attributes. For example, to make a
person become a student:

US 6,795,825 B2
13

update PERSON set Isa STUDENT='y' where condition
To move the person from subcategory of students to
subcategory of instructors:

update PERSON set Isa STUDENT=null, Isa
INSTRUCTOR='y' where contition

EXAMPLE

5

promote Johnson from student to instructor and change 10
his phone to 222-2222:

update PERSON set Isa INSTRUCTOR='y', Isa
STUDENT=null, Phone=2222222

where LastName=`Johnson'
5. insert into C R . . .

Allows creation of multiple relationships R. This cannot
be accomplished with previous commands when R is many-
to-many and many values need to be assigned. Note: C R
has been defined as a virtual table.

EXAMPLE

let Johnson work in Physics insert into INSTRUCTOR
Worksln (INSTRUCTOR, DEPARTMENT) select distinct
INSTRUCTOR, DEPARTMENT from INSTRUCTOR,
DEPARTMENT where INSTRUCTOR.LastName=
`Johnson' and DEPARTMENT.Name=`Physics'

EXAMPLE

let Johnson work in every department insert into
INSTRUCTOR Worksln (INSTRUCTOR,
DEPARTMENT) select distinct INSTRUCTOR, DEPART-
MENT from INSTRUCTOR, DEPARTMENT where
INSTRUCTOR.LastName=`Johnson'

6. delete from C R where condition

Allows deletion of multiple relationships R.

EXAMPLE

do Not Let Johnson Work in any Department.

delete from INSTRUCTOR Worksln

where LastName=`Johnson'
7. Object surrogate assignment:
If in an insert statement there is an assignment of a

user-supplied value to an object being created, that value
becomes the object's surrogate, overriding surrogates gen-
erated by other algorithms. In the database it is entered into
the attribute User Supplied Surrogate, which is enforced to
be 1:1. Further, if this value begins with the character "#" the
database will derive the internal object id from this value-it
may have effect only on efficiency. If this value begins with
a "$" it will be automatically erased at the end of the session.

15

20

25

30

35

40

45

14
EXAMPLE

insert into INSTRUCTOR (Instructor, FirstName) values
(John', 'John')

Note: as was specified in a previous section, any expres-
sion producing an abstract object is automatically converted
into that object's surrogate. The algorithm for surrogate
generation is given below but can be overridden by the user
as above.
We now turn to non-simple updates.
Disambiguation of Arbitrary SQL Updates

Let C be a category against which an update operation is
performed.

Notation:
T=T(C)I-the virtual table of C.

A-the list of full names of attributes of T that are
assigned values in the operation.

R1, . . . , Rn-the set of relations of C such that for some
suffix s, Ri s is in A. (That is, Ris is a two-step or
deeper attribute.)

Cl, . . . , Cn-the ranges of R1, . . , Rn.
Si-list (slRi s in A) in the order of appearance in A.
V()I-For every attribute a in A let V(a)I be the value

being assigned to the attribute a. For every s in Si let
V(s)I be the value assigned to Ri s. Let V(Si) be the
list of V(s) where s in Si.

Ei-the list of assignments s=V(s)I for s in Si.
1. delete from C where condition a. perform: select C

from C where condition b. for every resultant object o in C:
remove o from C.

EXAMPLE

delete from STUDENT where FINAL GRADE<50
2. insert into C (attributes) values (assignments)
a. Create a new object in C. Let this object be denoted (o).

Its one-step relationships are assigned values from the
assignments. If a one-step relationship is m:m or 1:m
only one value may be assigned. b. For every category
Ci in Cl . . . Cn do:

(1) if Ri Ci is in A and V(Ri Ci)="new"
then recursively perform:
insert into Ci (Si) values (V(Si));
let v be the object inserted above else do:
(2.1) perform: select Ci from Ci where Ei
(2.2) if the above select results in exactly one object, then

denote that object v else abort with an error message (2)
relate: o Ri v

EXAMPLE
create a New Student James in the Department in which
Johnson Works and Enroll Jim in the Only Existing Offering
of "Magnetism":

50 3. insert into C (attributes) query
a. Evaluate the query, resulting in a set of rows. b. For

each row r perform: insert into C (A) values (r)

EXAMPLE
for Every Instructor Create a Department Named After Him
and Make Him Work there.

insert into STUDENT
(FirstName, Major WorksIn LastName, Enrollment, The Course)

values (`James', 'Johnson', 'new', 'Magnetism')

4. update C set assignments where condition a. perform:
65 select C from C where condition b. for every object o in the

result of the above query perform: (1) The object's one-step
relationships are assigned values from the assignments, i.e.:

US 6,795,825 B2
15

for every one-step attribute Ai in A perform: o.Ai:=V(Ai) (2)
For every category Ci in Cl . . . Cn do:

(2a) if Ri Ci is in A and V(Ri Ci)="new" then recur-
sively perform:
(2a1) insert into Ci (Si) values (V(Si));
(2a2) let v be the object inserted above (2b) else do:
(2b1) perform: select Ci from Ci where Ei
(2b2) if the above select results in exactly one object,

then denote that object v else abort with an error
message (2c) o.Ri:=v

5. insert into C R . . .

insert into

select
from

DEPARTMENT
(Name,
LastName,
Instructor

Worksln
Instructor

Allows creation of multiple relationships R. This cannot
be accomplished with previous commands when R is many-
to-many and many values need to be assigned. Note: C R
has been defined as a virtual table.

EXAMPLE

let Johnson work in Physics insert into INSTRUCTOR
Worksln (INSTRUCTOR, DEPARTMENT) select distinct
INSTRUCTOR, DEPARTMENT from INSTRUCTOR,
DEPARTMENT

where INSTRUCTOR.LastName=`Johnson' and
DEPARTMENT. Name=`Physics'

EXAMPLE

let Johnson work in every department insert into
INSTRUCTOR WorksIn (INSTRUCTOR,
DEPARTMENT) select distinct INSTRUCTOR, DEPART-
MENT from INSTRUCTOR, DEPARTMENT where
INSTRUCTOR.LastName=`Johnson'

6. delete from C R where condition
Allows deletion of multiple relationships R.

EXAMPLE

do not let Johnson work in any department Smith works
in. delete from INSTRUCTOR _Worksln where
LastName=`Johnson' and Worksln (select Worksln from
INSTRUCTOR where LastName=`Smith')

7. Object surrogate assignment: if in an insert statement
there is an assignment of a user-supplied value to an object
being created, that value becomes the object's surrogate,
overriding surrogates generated by other algorithms.

EXAMPLE
insert Into INSTRUCTOR (Instructor, FirstName)

values (John', 'John') Note: as was specified in a previ-
ous section, any expression producing an abstract
object is automatically converted into that object's
surrogate. Examples of semantic SQL and comparison
to relational SQL

This section contains: the semantic schema of a Hydrol-
ogy application; a normalized relational schema of the same
application (a real schema, not our virtual schema); several
SQL statements written for the semantic schema and (for
comparison) for the relational schema.

The Hydrology schema of this example is actually a small
one-page subschema of the 100-page schema of the database
that we have developed for the Everglades National Park. In
that regard, FIG. 4 illustrates the Hydroogy Application

5

10

15

20

25

30

35

40

45

50

55

60

65

16
Semantic Schema wherein boxes are categories of objects
(dashes connect sub- to super-categories), solid arrows are
semantic relationships (many-to-many relationships are
marked m:m). Keys are optional, changeable, combinable
identifiers. Numbers are optionally of unlimited size and
precision. Strings and raw attributes are optionally of unlim-
ited length. Conversely, FIG. 5 illustrates a schema devel-
oped for a relational DBMS is functionally equivalent to the
previous semantic schema (if we disregard the "flexibility
parameters": numbers will have limited size and precision,
keys must always exist and cannot be changed, etc.). FIG. 6
illustrates a program size comparison between the two.

Since many modifications, variations and changes in
detail can be made to the described preferred embodiment of
the invention, it is intended that all matters in the foregoing
description and shown in the accompanying drawings be
interpreted as illustrative and not in a limiting sense. Thus,
the scope of the invention should be determined by the
appended claims and their legal equivalents.

Now that the invention has been described,
What is claimed is:
1. A database query system comprising:
a) a first database including at least a first and a second

information categories, and at least one relationship
between information categories;

b) a query language able to specify retrieval of data from
a flat table, said query language incompatible with said
first database;

c) a plurality of object data items categorized in said
information categories;

d) a plurality of instances of said relationships;
e) a schema of a virtual logical table, said virtual logical

table including a plurality of virtual rows, each of said
rows including a plurality of attributes reachable from
said information category by any number of forward or
backward traversals of said relationships between said
information categories and application of attributes of
said information categories,

f) a user query formulated in said query language in terms
of said virtual table; and
a processor assembly responsive to said user query,

said processor assembly directly operates said first
database based on said user query.

2. A database querying system comprising:
a) a first database including at least a first and a second

information categories, and at least one relationship
therebetween;

b) a query language able to specify retrieval of data from
a flat table, said query language incompatible with said
first database;

c) a first plurality of object data items categorized in said
first information category;

d) a second plurality of object data items categorized in
said second information category;
a plurality of instances of said relationships;
a virtual database schema defining a virtual table, said
virtual table including a plurality of virtual rows, each
of said virtual rows including a plurality of attributes of
an object data item of said first category and of virtual
attributes thereof, each of said virtual attributes repre-
senting a chain of forward or backward traversals of
said relationship and attributes of said information
categories;
a user query formulated in said query language in terms

of said virtual table; and
a processor assembly responsive to said user query, said

processor assembly structured to directly identify
desired data in said first database from said user
query.

g)

e)

US 6,795,825 B2
17

3. A database querying system as recited in claim 2
including a plurality of said information categories, said
virtual table being defined by said relationships between
each of said information categories.

4. A database querying system as recited in claim 3
wherein said plurality of said information categories are
defined in an object oriented schema.

5. A database querying system as recited in claim 3
wherein said plurality of said information categories are
defined in an object-relational schema.

6. A database querying system as recited in claim 3
wherein said plurality of said information categories are
defined in a semantic schema.

7. A database querying system as recited in claim 3
wherein said plurality of said information categories are
defined in an entity-relational schema.

8. A database querying system as recited in claim 3
wherein said plurality of said information categories are
defined in a conceptual schema.

9. A database querying system as recited in claim 2
wherein said query language includes an Open Database
Connectivity (ODBC) query syntax.

10. A database querying system as recited in claim 9
wherein said processor assembly includes a query interpre-
tation module structured to utilize said virtual table formu-
lation of said user query to interpret said user query as an
ODBC query structured to be used by said processor assem-
bly to identify the desired data.

11. A database querying system as recited in claim 2
wherein said query language includes a Java Database
Connectivity (JDBC) query syntax.

12. A database querying system as recited in claim 11
wherein said processor assembly includes a query interpre-
tation module structured to utilize said virtual table formu-
lation of said user query to interpret said user query as an
JDBC query structured to be used by said processor assem-
bly to identify the desired data.

13. A database querying system as recited in claim 2
wherein said query language includes a Structured Query
Language (SQL) query syntax.

14. A database querying system as recited in claim 13
wherein said processor assembly includes a query interpre-
tation module structured to utilize said virtual table formu-
lation of said user query to interpret said user query as an
SQL query structured to be used by said processor assembly
to identify the desired data.

15. A database querying system as recited in claim 2
wherein said query language includes an Object Query
Language query syntax.

16. A database querying system as recited in claim 2
wherein said query language includes a graphical query
language query syntax.

17. A database querying system as recited in claim 2
wherein said processor assembly includes a query interpre-
tation module structured to utilize said virtual table formu-
lation of said user query to interpret said user query as an

18
open form query structured to be used by said processor
assembly to identify the desired data.

18. A database querying system as recited in claim 17
wherein said query interpretation module includes a seman-

5 tic conversion tool structured to identify relational schemas
of the database and convert said relational schemas into
semantic schemas.

19. A database querying system as recited in claim 18
wherein said semantic schemes are identified by said rela-
tionships between said information categories.

20. A database querying system as recited in claim 19
wherein said query interpretation module includes a knowl-
edge base tool, said knowledge base tool structured to
customize a conversion of at least some of said relational
schemas into said semantic schemas.

15 21. A database querying system as recited in claim 20
wherein said knowledge base tool is structured to generate
said semantic schema.

22. A database querying system as recited in claim 19
wherein said semantic conversion tool is structured to vir-

al tually convert said relational schemas into semantic schemas
for utilization by said processor assembly.

23. A method of simplifying a query syntax of an existing
relational database having a relational schema, said method
comprising:

25 a) identifying at least two information categories contain-
ing object data items;

b) identifying relationships between said information cat-
egories;

c) converting said relational schema into a semantic
30 schema identified by a corresponding plurality of rela-

tionship identifiers representative of a relationship
between said object data items of said information
categories;

d) defining a relationship category from said relationship
35 identifiers;

e) entering a query utilizing at least said relationship
identifiers, wherein said query is formulated in a syntax
of a language intended for relational databases but
refers to said semantic schema;

f) utilizing at least said relationship identifier to identify
a desired data item from the database;

g) a middleware processor assembly interpreting said
query by automatically translating said query into an
equivalent second query in said language, which sec-
ond query is formulated in terms of said first relational
database.

24. The method of claim 23 further comprising generating
at least some of said semantic schemas.

25. The method of claim 23 wherein said entering said
5° query further comprises entering an object based query with

said relationship identifier.

1 0

4

4

0

5

