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With the exponential growth of the usage of web map services, the geo data analysis has become more and more popular.
This paper develops an online spatial data analysis and visualization system, TerraFly GeoCloud, which facilitates end users
to visualize and analyze spatial data, and to share the analysis results. Built on the TerraFly Geo spatial database, TerraFly
GeoCloud is an extra layer running upon the TerraFly map and can efficiently support many different visualization functions
and spatial data analysis models. Furthermore, users can create unique URLs to visualize and share the analysis results.
TerraFly GeoCloud also enables the MapQL technology to customize map visualization using SQL-like statements. The
system is available at http://terrafly.fiu.edu/GeoCloud/.

Categories and Subject Descriptors: H.2.8 [Database Applications]: Data mining, Spatial databases and GIS

General Terms: Design, Algorithms, Performance
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1. INTRODUCTION
With the exponential growth of the World Wide Web, there are many domains, such as water man-
agement, crime mapping, disease analysis, and real estate, open to Geographic Information System
(GIS) applications. The Web can provide a giant amount of information to a multitude of users,
making GIS available to a wider range of public users than ever before. Web-based map services are
the most important application of modern GIS systems. For example, Google Maps currently has
more than 350 million users. There are also a rapidly growing number of geo-enabled applications
which utilize web map services on traditional computing platforms as well as the emerging mobile
devices.

However, due to the highly complex and dynamic nature of GIS systems, it is quite challenging
for end users to quickly understand and analyze the spatial data, and to efficiently share their own
data and analysis results to others. First, typical geographic visualization tools are complicated and
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fussy with a lot of low-level details, thus they are difficult to use for spatial data analysis. Second,
the analysis of large amount spatial data is very resource-consuming. Third, current spatial data
visualization tools are not well integrated for map developers and it is difficult for end users to
create the map applications on their own spatial datasets.

To address the above challenges, this paper presents TerraFly GeoCloud, an online spatial data
analysis and visualization system, which allows end users to easily visualize and analyze various
types of spatial data. TerraFly GeoCloud offers the following important features to facilitate the
spatial data analysis.

— First, TerraFly GeoCloud can accurately visualize and manipulate point and polygon spatial data
with just a few clicks.

— Second, TerraFly GeoCloud employs an analysis engine to support the online analysis of spatial
data, and the visualization of the analysis results. Many different spatial analysis functionalities
are provided by the analysis engine.

— Third, based on the TerraFly map API, TerraFly GeoCloud offers a MapQL language with SQL-
like statements to execute spatial queries, and render maps to visualize the customized query
results.

Our TerraFly GeoCloud online spatial data analysis and visualization system is built upon the Ter-
raFly system using TerraFly Maps API and JavaScript TerraFly API add-ons in a high performance
cloud Environment. The function modules in the analysis engine are implemented using C and R
language and python scripts. Comparing with current GIS applications, our system is more user-
friendly and offers better usability in the analysis and visualization of spatial data. The system is
available at http://terrafly.fiu.edu/GeoCloud/.

A preliminary version of the work focusing on visualization solutions (e.g., map rendering and
spatial data visualization) is published in [Lu et al. 2013a]. In this journal submission, we added
many spatial analysis functions and also made the result visualization more interactive. With these
changes TerraFly Geocloud became more intelligent and can be applied in many application do-
mains, such as disease analysis, crime analysis, and real estate analysis. We present several appli-
cation case studies including Florida property analysis and Lung cancer analysis to demonstrate the
usefulness of the system.

In summary, the TerraFly GeoCloud system is a type of intelligent decision support system. By
leveraging distributed computing, map rendering, visualization technologies, and spatial data min-
ing techniques, TerraFly GeoCloud enables users to perform different types of spatial data analy-
sis tasks for decision support (e.g., gathering and analyzing data, identifying/diagnosing problems,
proposing possible actions and strategies, and evaluating the proposed actions and strategies) [Mat-
satsinis and Siskos 2003]. Analysis functions supported in TerraFly GeoCloud include spatial data
visualization, spatial dependency and auto-correlation, spatial data clustering, spatial regression,
measuring geographic distribution, spatial interpolation, and customize map visualization. It also
leverages rich user interactions to perform data analysis and support human decision intelligently.
Two real case studies including Florida property analysis and Lung Cancer analysis using Geo-
Cloud shows how TerraFly GeoCloud helps user perform data analysis and visualization to make
decisions. The rest of this paper is organized as follows: Section 2 describes the architecture and the
system overview of TerraFly GeoCloud; Section 3 describes the visualization and analysis methods
in TerraFly GeoCloud; Section 4 describes the MapQL spatial query language and customized map
visualization with MapQL; Section 5 studies the system performance for both on-line and off-line
analysis; Section 6 presents the case studies on the online spatial analysis; Section 7 discusses the
related work; and finally Section 8 concludes the paper.

2. SYSTEM OVERVIEW
TerraFly GeoCloud is built upon the TerraFly system to support various kinds of online spatial data
analysis using TerraFly Maps API and TerraFly API add-ons in a high performance cloud Environ-
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ment. We first introduce the TerraFly system and then describe the overall system demonstration of
GeoCloud.

2.1. TerraFly
TerraFly is a system for querying and visualizing of geospatial data developed by High Performance
Database Research Center (HPDRC) lab in Florida International University (FIU). This TerraFly
system serves worldwide web map requests over 125 countries and regions, providing users with
customized aerial photography, satellite imagery and various overlays, such as street names, roads,
restaurants, services and demographic data [Rishe et al. 2001; Rishe et al. 2005].

TerraFly allows users to virtually fly over enormous geographic information simply via a web
browser with a bunch of advanced functionalities and features such as user-friendly geospatial
querying interface, map display with user-specific granularity, real-time data suppliers, demographic
analysis, annotation, route dissemination via autopilots and API for web sites, etc. TerraFly’s server
farm ingests geolocates, mosaics, and cross-references 40TB of base map data and user-specific
data streams.

2.2. TerraFly GeoCloud
Figure 1 shows the system architecture of TerraFly GeoCloud. Based on the current TerraFly system
including the Map API and all sorts of TerraFly data, we developed the TerraFly GeoCloud system to
perform online spatial data analysis and visualization. In TerraFly GeoCloud, users can import and
visualize various types of spatial data (data with geo-location information) on the TerraFly map,
edit the data, perform spatial data analysis, and visualize and share the analysis results to others.
Available spatial data sources in TerraFly GeoCloud include but not limited to demographic census,
real estate, disaster, hydrology, retail, crime, and disease. In addition, the system supports MapQL,
which is a technology to customize map visualization using SQL-like statements.

Fig. 1: The Architecture of TerraFly GeoCloud

The spatial data analysis functions provided by TerraFly GeoCloud include spatial data visu-
alization (visualizing the spatial data), spatial dependency and autocorrelation (checking for spa-
tial dependencies), spatial clustering (grouping similar spatial objects),spatial regression, measuring
Geographic Distribution and Kriging (geo-statistical estimator for unobserved locations).
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Fig. 2: The Workflow of TerraFly Geocloud

Figure 2 shows the data analysis workflow of the TerraFly GeoCloud system. Users first upload
datasets to the system, or view the available datasets in the system. User can upload GeoJson, Shape-
file and .asc file. They can then visualize the data sets with customized appearances. By Manipulat-
ing the dataset, users can edit the dataset and perform pre-processing (e.g., adding more columns).
Followed by pre-processing, users can choose proper spatial analysis functions and perform the
analysis. After the analysis, they can visualize the results and also share them with others.

(a) The front-end workflow of offline analysis (b) The back-end workflow of offline analysis

Fig. 3: The workflow of offline analysis

Geocloud also supports offline analysis, if users want to perform analysis on large data sets.
Figure 3 shows the workflow of the offline analysis in TerreFly GeoCloud. The workflow in the
front-end is shown in Figure 3a. Users can submit jobs through the GeoCloud website. If the job
submission failed, users should change the job configurations. If a job is accepted successfully, the
user will receive a URL from which the analysis results can be downloaded. The offline job status
can be shown through the URL. Figure 3b shows the back-end workflow of the offline analysis. The
system polls the database for new jobs. If a new job exists, first, the system will retrieve data from
the central DB. Second, the system will configure the job using the submitted configuration. Third,
the system will copy the data to HDFS, send the job to the GeoCloud hadoop platform, and run the
hadoop job. If the job is successfully completed, the results will be transferred to the database. After
the jobs status being updated, users can download the analysis results through the URL.
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Fig. 4: Interface of TerraFly Geocloud

Figure 4 shows the interface of the TerraFly GeoCloud system. The top bar is the menu of all
functions, including Data, analysis, Graph, Share, and MapQL. The left side shows the available
datasets, including both the uploaded datasets from the user and the existing datasets in the system.
The right map is the main map from TerraFly. This map is composed by TerraFly API, and it
includes a detailed base map and diverse overlays which can present different kinds of geographical
data.

Fig. 5: Modules of the GeoCloud system

Figure 5 shows the main function modules of the GeoCloud system. The center of the system
is a central database which holds all the system related data. The central database composed by
the sksOpen database, the map file database, and the relational databases such as SQL Server and
PostGreSQL. The sksOpen database is a spatial object hybrid index and storage system that includes
both an R-Tree spatial index and an inverted text file index, which attained fast retrieval of spatial
data even when the matching objects were located far away from one another [Lu et al. 2013b].
The map file database provides the base map for users, and the relational databases are used for
storing the uploaded data and the analysis results. The online and offline analysis modules process
the analysis tasks and push back the results to the Central Database. The online analysis module
processes analysis tasks which can be done at runtime while the offline analysis module employs the
MapReduce module to process heavy duty tasks. The load balance module and web service module
leverage distributed spatial data visualization with autonomic resource management techniques to
provide the on-demand and balanced resource allocation to achieve the QoS (Quality of service).

TerraFly GeoCloud also provides MapQL spatial query and render tools. MapQL supports SQL-
like statements to realize the spatial query, and render the map according to users inputs. MapQL
tools can help users visualize their own data using a simple statement. This provides users with a
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better mechanism to easily visualize geographical data and analysis results. Shown in Figure 5, the
MapQL module creates map visualization at runtime based on the MapQL statements.

3. VISUALIZATION AND ANALYSIS METHODS
Many different visualization functions and spatial data analysis models are provided in TerraFly
GeoCloud. TerraFly GeoCloud also integrates spatial data mining and data visualization. The spatial
data mining results can be easily visualized. In addition, visualization can often be incorporated into
the spatial mining process.

3.1. Spatial Data Visualization

Fig. 6: Spatial Data Visualization: Point data and Polygon Data

For spatial data visualization, the system supports both point data and polygon data and users can
choose color or color range of data for displaying. As shown in Figure 6, the point data is displayed
on left, and the polygen data is displayed on the right. The data labels are shown on the base map
as extra layers for point data, and the data polygons are shown on the base map for polygon data.
Many different visualization choices are supported for both point data and polygon data. For point
data, users can customize different parameters such as the icon style, icon color or color range, and
label value. For polygon data, users can customize different parameters including the fill color or
color range, fill alpha, line color, line width, line alpha, and label value.

3.2. Spatial Dependency and Auto-Correlation
Spatial dependency is the co-variation of properties within the geographic space: characteristics
at proximal locations that appear to be correlated, either positively or negatively. Spatial depen-
dency leads to the spatial autocorrelation problem in statistics [De Knegt et al. 2010]. Spatial au-
tocorrelation is more complex than one-dimensional autocorrelation because spatial correlation is
multi-dimensional and multi-directional. The TerraFly GeoCloud system provides auto-correlation
analysis tools to discover spatial dependencies in a geographic space, including global and local
clusters analysis where Moran’s I measure is used [Li et al. 2007]. Formally, Morans I, the slope of
the line, estimates the overall global degree of spatial autocorrelation as follows:

I =
n∑n

i

∑n
j wij

∗
∑n

i

∑n
j wij(yi − ŷ)(yi − ŷ)∑n

i (yi − ŷ)2
, (1)

where wij is the weight, wij = 1 if locations i and j are adjacent and zero otherwise wii = 0 (a
region is not adjacent to itself).yi and ŷ are the variable in the i-th location and the mean of the
variable, respectively. n is the total number of observations. Morans I is used to test hypotheses
concerning the correlation, ranging between 1.0 and +1.0. Morans I measures can be displayed as
a checkerboard where a positive Morans I measure indicates the clustering of similar values and a
negative Morans I measure indicate dissimilar values. TerraFly GeoCloud provides auto-correlation
analysis tools to check for spatial dependencies in a geographic space, including global and local
clusters analysis.
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Figure 7b shows an example of spatial auto-correlation analysis on the average properties price by
zip code data in Miami (polygondata). Each dot here in the scatterplot corresponds to one zip code.
The first and third quadrants of the plot represent positive associations (high-high and low-low),
while the second and fourth quadrants represent associations (low-high, high-low). For example, the
green circle area is in the low-high quadrants. The density of the quadrants represents the dominating
local spatial process. The properties in Miami Beach are more expensive, and are in the high-high
area. Figure 7a presents the auto-correlation analysis results on the individual properties price in

(a) Properties value in Miami

(b) Average properties price by zip code in Miami

Fig. 7: Spatial Dependency and Auto-Correlation

Miami (point data). Each dot here in the scatterplot corresponds to one property. As the figure
shows, the properties near the big lake are cheaper, while the properties along the west are more
expensive.

3.3. Spatial Data Clustering
Spatial data clustering algorithms identify clusters, or densely populated regions, according to some
distance measures in a large, multidimensional dataset. Several spatial clustering techniques are
provided in TerraFly GeoCloud.

K-Means. K-means is an efficient clustering algorithm. K-means partition all the data set in to
k cluster. Firstly, the algorithm will randomly find k initial center points. Secondly, finding the
nearest center point for each record as its cluster and getting mean value for each cluster as new
cluster center. Repeating first and second step until the cluster center doesn’t change. In TerraFly
GeoCloud system, user can apply k-means algorithm by inputing cluster number.

DBSCAN. The TerraFly GeoCloud system supports the DBSCAN (for density-based spatial clus-
tering of applications with noise) data clustering algorithm [Ester et al. 1996]. DBSCAN is a
density-based clustering algorithm and it finds a number of clusters starting from the estimated den-
sity distribution of corresponding nodes. DBSCAN requires two parameters as the input: eps (the
neighbor size) and minPts (the minimum number of points required to form a cluster). It starts with
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an arbitrary starting point that has not been visited so far. This point’s neighborhood is retrieved,
and if it contains sufficiently many points, a cluster is started. Otherwise, the point is labeled as a
noise point [Ester et al. 1996]. If a point is found to be a dense part of a cluster, its neighborhood
is also part of that cluster. Hence, all points that are found within the neighborhood are added. This
process continues until the density-connected cluster is completely identified. Then, a new unvisited
point is retrieved and processed, leading to the discovery of new cluster or noise points [Bilodeau
et al. 2005]. Figure 8a shows an example of DBSCAN clustering on the crime data in Miami. As
shown in Figure 8a, each point is an individual crime record marked on the place where the crime
happened, and the number displayed in the label is the crime ID. By using the clustering algorithm,
the crime records are grouped, and different clusters are represented by different colors on the map.

Cluster Detection. Kulldorff & Nagarwalla(KN)[Kulldorff 1997] provides a method to perform
cluster detection. KN method is implemented by scanning all the area using circular zones of vari-
able size. KN method is widely used in spatial epidemiology. The steps of KN method include: (1).
Move a circle in space to obtain an infinite number of overlapping circles; (2). Compute LLR (Log
Likelihood Ratio) of each circle and sort the LLR; and (3). Get some large LLR then use Monte
Carlo method to calculate P-value of them. The Log Likelihood Ratio can be calculated as follow:

LLR = maxj(
Yj
Ej

)Yj (
Y+ + Yj
Y+ − Ej

)Y+−YJ I(Y j > Ej), (2)

where Yj denotes the observed number of instance in circle area, Y+ denotes the number of instance
in all the area, Ej denotes the expected number of instance in circle area. Figure 8b shows the
result of lung cancer cluster map in Florida. The red points indicate the disease cluster where the
unusual disease case happened. The number in the red point is the p-value of each area.[Elliott and
Wartenberg 2004]

HotSpot. HotSpot analysis function using Gi* statistic method aims to detect the hot (or cold)
cluster which has a high (or a low) Gi* value. Figure 8c shows the result of the hotspot cluster map
of lung cancer mortality in Florida. From this map, we can observe that the central part which is
covered by red color is a hot cluster and four counties in the south region forms a cold cluster.

Outlier Analysis. Outlier analysis recognizes the outliers whose attributes values are different
from their neighbors. In TerraFly GeoCloud, local moran’s I map, z-value map, and p-value map
are provided.

3.4. Spatial Regression
Regression tools can be used to estimate relationships between attributes.

Linear Regression. TerraFly GeoCloud provides linear regression tools with multiple tests, such
as global morans I test. Figure 9a shows the linear regression results between mortality and median
house price and median income. It should be noted that global Morans I test indicates that the
residual is geo-correlated, and thus linear regression model is not a good fit for this problem.

Spatial auto-regression. In spatial auto-regression, a lag model and an error model are provided.
The spatial auto-regression lag model can be calculated as follows:

Y = ρWy + xβ + ε, (3)

where Y is a dependent variable, W is a matrix of spatial weights, x is an independent variable, β
denotes the unknown parameters, and ε is an error term.

Figure 9b shows the result of a spatial auto-regression lag model. In this model, multiple test
methods are provided for verifiability: Wald test is used to determine whether various parameters
can be zero or not; AIC for linear regression and lag model is applied to indicate which model is
better; LR test, the Likelihood Ratio diagnostics, is used for testing spatial dependence; and LM test

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



TerraFly GeoCloud: Online Spatial Data Analysis and Visualization System 39:9

(a) DBSCAN clustering on the crime data in Miami (b) KN cluster detection on lung cancer in Florida

(c) Hotspot clustering on lung cancer in Florida

(d) Center point and weighted center point

Fig. 8: Spatial Clustering in Geocloud

is utilized for evaluating the absence of spatial autocorrelation in lag model residuals [Dubin et al.
1999][Kelejian and Prucha 1998].

3.5. Measuring Geographic Distribution
Geographic distribution measurements include mean/median central, standard distance, and distri-
butional trends functions. In our system, a weighted mean central is provided as follow:

X =
Σiwixi
Σiwi

, Y =
Σiwiyi
Σiwi

, (4)

where xi and yi denote the coordinate of each point (but when the data set is polygonal, xi and
yi indicate the center of each polygon) and wi is the weight which corresponds in our system to
mortality or incidence. Figure 8d shows these two type of points: one type is the non-weighted
center point, and the other type is the lung cancer mortality weighed center point. Besides the
center/median point function, TerraFly GeoCloud also includes distributional trends and standard
distance.
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(a) Linear regression tool on lung cancer in Florida

(b) Spatial auto-regression lag model on lung cancer in
Florida

Fig. 9: Spatial Regression in Geocloud

3.6. Spatial Interpolation Method
Kriging is a geo-statistical estimator that infers the value of a random field at an unobserved location
(e.g. elevation as a function of geographic coordinates) from samples (see spatial analysis) [Stein
1999] Figure 10 shows an example of Kriging. The data set is the water level from water stations

Fig. 10: Kriging data of the water level in Florida

in central Florida. Note that not all the water surfaces are measured by water stations. The Kriging
results are estimates of the water levels and are shown by the yellow layer.

4. CUSTOMIZED MAP VISUALIZATION
TerraFly GeoCloud also provides MapQL spatial query and render tools, which supports SQL-like
statements to facilitate the spatial query and more importantly, render the map according users
requests. This is a better interface than API to facilitate developer and end user to use the TerraFly
map as their wish. By using MapQL tools, users can easily create their own maps.
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4.1. Introduction and Implementation

Fig. 11: MapQL System Architecture

MapQL is an extension of GeoSPARQL, which is a standard for representation and
querying of geospatial linked data. MapQL defined some new key words that include
T ICON PATH, T LABEL, T LABEL SIZE, T FILED COLOR, T THICKNESS, T OPACITY
and T BORDER COLOR to facilitate customized map visualization. The architecture of MapQL is
shown in Figure 11. MapQL contains three modules: Query parser, Query Engine, and Map Render-
ing Engine. Query Parser checks syntax and semantic correctness of the input query. After passing
Query Parser, the query goes to Query Engine where it is committed to the database. The Post-
GreSQL database, which has a very good support for spatial data indexing and query, is used in the
Query Engine module. The returned results from Query Engine will be processed at Map Rendering
Engine. Mapnik, a toolkit for making customized map, is used in Map Rendering Engine to create
customized maps and put them as a layer on TerraFly map through TerraFly map API. The workflow
of MapQL is shown in Figure 12. The input of the whole procedure is MapQL statements, and the
output is map visualization rendered by the MapQL engine.

Fig. 12: The workflow of MapQL

Shown in Figure 12, the first step is the syntax check of the statements. The syntax check guar-
antees that the syntax of an input query conforms to the standard (e.g., the spelling-check of the
reserved words). The semantic check ensures that the data source name and metadata which MapQL
statements want to visit are correct. After the above two checks, the system will parse the statements
and store the parse results including the style information into a spatial database. The style infor-
mation includes where to render and what to render. After all the style information is stored, the
system will create style configuration objects for rendering. The last step is for each object, load the
style information from the spatial database and render to the map according to the style information.
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We implemented the MapQL tools using C++. For the last step of rendering the objects to the map
visualization, we employed the TerraFly map render engine.

4.2. Query Examples
For example, if we want to query the house prices near Florida International University, we use
MapQL statements in Figure 13. There are four reserved words in the statements, T ICON PATH ,

Fig. 13: Query house prices using MapQL

T LABEL, T LABEL SIZE , and GEO. We use T ICON PATH to store the customized icon. Here
we choose a local png file as icon. T LABEL denotes that icon label that will be shown on the
map, T LABEL SIZE is the pixel size of the label, and GEO is the spatial search geometry. The
statements go through the syntax check first. If there is incorrect usage of reserved words or wrong
spelling of the syntax, the statements will be corrected or Error information will be sent to the user.
For example, if the spelling of select is not correct, Error information will be sent to the user. The
semantic check makes sure that the data source name realtor 20121116 and metadata r. price and
r.geo are exist and available. After the checks, the system parsed the statements. The SQL part will
return corresponding results including the locations and names of nearby objects, the MapQL part
will collect the style information including icon path and icon label style. Both of them are stored
into a spatial database. The system then created style configuration objects for query results. The last
step is rendering all the objects on the map visualizations. The needed style information includes
icon picture and label size, and the data information includes label value and location (Lat, Long).
Figure 14 shows the result of this query.

Fig. 14: Result of query house prices using MapQL

In the following, we present several query examples using MapQL statements. Figure 15 shows
all the hotels along a certain street within a certain distance and also displays the different stars of
the hotels. The MapQL statement for this query is listed below:
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Fig. 15: Query hotel data along the line

Figure 16 shows the traffic of Santiago where the colder the color is, the faster the traffic is; the
warmer the color is, the worse the traffic is. The MapQL statement is listed below:

Fig. 16: Query traffic data of Santiago

Figure 17 shows the different average incomes with in different zip codes. In this demo, users can
customize the color and style of the map layers, different colors stand for different average incomes.
The corresponding MapQL statement is listed below:
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Fig. 17: Query average incomes

All these examples demonstrate that in TerraFly GeoCloud, users can easily create different map
applications using simple SQL-like statements.

5. SYSTEM PERFORMANCE
In this section, we evaluate the performance of Terrafly GeoCloud using some example datasets and
analysis. Terrafly GeoCloud supports both online analysis and offline analysis. For online analy-
sis, we discuss the performance of correlation analysis; and for offline analysis, we use K-means
analysis as an example.

We did not perform performance comparisons with similar products as they typically do not share
much about their system design and implementation. Based on the fact that all GeoCloud functions
have reasonable running time which facilitated users data analysis, we performed functionality com-
parisons with products whose functions are available (such as GeoDa and ArcGis [Anselin et al.
2006; Johnston et al. 2001]) in Related Products.

5.1. Online Analysis Performance
The data set used for performance evaluation is Florida property value which contains 1,042,281
records, and each record includes longitude, latitude and property value. Figure 18 shows part of
the data set on the second zoom level. A yellow point, showing the property value, is used to denote
each property.

Fig. 18: South Florida Property

In order to provide good user experience, we only show part of the data that can be displayed
on user’s current screen. When a user zooms out the screen, GeoCloud will load the new data into
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the screen and the analysis is then performed on the current displayed data. This guarantees that
a user can view the data and obtain the analysis results very quickly. When users want to preform
data analysis, most of the time they are more concerned with some local data. For example, if a user
wants to buy a property in a certain zip code, and he/she will only care about the property values of
his/her interested location. At this time, doing a global analysis is time consuming and unnecessary.

The online analysis performance is related to the zoom level. Here we use the auto-correlation
analysis as an example to evaluate the online analysis performance. Figure 19 shows the perfor-
mance of autocorrelation. The horizontal axis indicates the number of records on each zoom level.
The vertical axis denotes the running time. For example, when the user zooms to the third level,
there are 52 records showing on the screen, and the autocorrelation analysis needs 0.956s (which
includes network communication time, time for analysis, and time for rendering the results on the
map) to complete. The time needed for the sixth zoom level is 4 seconds. The sixth zoom level,
which contains 1535 data records, is the highest level that all the data can be shown without over-
lapping. When we zoom to a higher level, too many records are overlapping with each other that
makes the results hard to view.

Fig. 19: Auto-Correlation performance

5.2. Offline Analysis Performance
Here we use the K-means clustering method to evaluate offline analysis performance in TerraFly
GeoCloud. We apply K-means clustering analysis on Florida property value data set. In order to
compare the performance of signal machine and hadoop cluster, we duplicate 10 times of the data
set, the total number of the records is 19, 616, 320.

For the experiment, we set the number of clusters to be 100 and iteration time is 4. The running
time for signal machine is 34.83 minutes. Figure 20 shows the running time of hadoop. The vertical
axis denotes the running time. The horizontal axis denotes the total task capacity that is the number
of cores running parallel, which refer to the total computation power we assigned to the task. When
we set total task capacity to 16, the running time of K-means is 7 minutes, so when user wants to
perform big data analysis, using Hadoop is more efficient than single machine: when we adding the
total task capacity, the performance is increasing, so the running time is decreasing dramatically.
Leveraged by the Hadoop platform, we can guarantee the analysis performance by simply adjust
total task capacity (computing power).
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Fig. 20: Parallel K-means performance

6. CASE STUDIES
In this section, we present some case studies on using TerraFly GeoCloud for spatial data analysis
and visualization. We use two types of data set, one is Florida property data, the other is Florida Lung
cancer mortality to show how to apply Geocloud analysis and visualization function on application
domains.

6.1. Florida Property Analysis
As discussed in Section 3.2, we know the results of auto correlation can be shown in a scatter
diagram, where the first and third quadrants of the plot represent positive associations, while the
second and fourth quadrants represent negative associations. The second quadrant stands for low-
high which means the value of the object is low and the values of surrounding objects are high.

A lay user Erik, who has some knowledge about the database and data analysis, wanted to invest a
house property in Miami with a good appreciation potential. By using TerraFly GeoCloud, he may
obtain some ideas about where to buy. He believes that if a property itself has low price and the
surrounding properties have higher values, then the property may have good appreciation potential,
and is a good choice for investment. He wants to first identify such properties and then do a field
trip with his friends and the realtor agent.

To perform the task, first, Erik checked the average property prices by zip code in Miami which
is shown in Figure 7b. He found the green circled area in the low-high quadrants, which means that
the average price of properties of this area is lower than the surrounding areas.

Fig. 21: Sample Data of south florida house price data set

Erik wanted to obtain more insights on the property price in this area. He uploaded a de-
tailed spatial data set named as south florida house price into the TerraFly GeoCloud system.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



TerraFly GeoCloud: Online Spatial Data Analysis and Visualization System 39:17

south florida house price data set contains more than 1 million records and it shows the Geo-
location information(coordinates) and price of the property in south Florida. The sample of the data
set is shown in Figure 21. He customized the label color range as the properties price changes. And
then, he chose different areas in the green circled area in Figure 7b to perform the auto-correlation
analysis.

Fig. 22: Properties in Miami

Finally, he found an area shown in Figure 22, where there are some good properties in the low-
high quadrants (in yellow circles) with good locations. And one interesting observation is, lots of
properties along the road Gratigny Pkwy has lower prices. He was then very excited and wanted to
do a query to find all the cheap properties with good appreciation potential along the Gratigny Pkwy.
Erik composed the MapQL statements to find out the properties whose distance from the Gratigny
Pkwy is less than a threshold and price is lower than the surrounding area, and if the value of the
property is between 100,000 to 200,000, using green to denote the property, and if the value between
200,000 and 400,000, using blue to denote the property, and if the value is more than 400,000, using
red color to indicate the house.

Fig. 23: MapQL results

The Figure 23 presents the final results of the MapQL statements. Finally, Erik sent the URL of
the map visualization out by email, waiting for the response of his friends and the realtor agent.

Fig. 24: The flow path of Erik case
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Figure 24 illustrates the whole workflow of the case study. In summary, Erik first viewed the
system build-in datasets, conducted the data analysis, and then he identified properties of interest.
He then composed MapQL statements to create his own map visualization to share with his friends.
The case study demonstrates that TerraFly GeoCloud supports the integration of spatial data analysis
and visualization and also offers user-friendly mechanisms for customized map visualization.

6.2. Florida Lung Cancer Analysis
In this section we provide an example of how our GeoCloud system can be employed in epidemio-
logic research. Assume a researcher studies lung cancer in Florida. She can upload and choose the
mor price income dataset to TerraFly GeoCloud - shown in Figure 25. mor price income dataset
contains median house price, median income, lung cancer mortality, geometry information and
name of each county in Florida.

Fig. 25: Datasets in TerraFly GeoCloud

She can then choose the disease analysis button to draw a disease map. In this function, she can
choose a legend group number; a disease map is displayed then, as shown in Figure 26.

Fig. 26: Lung Cancer disease map

From Figure 26 we observe how this map, with legend at the top left corner, provides a direct
summary of the disease data. For lung cancer in Florida, the mortality in the central region is higher
and it is lower in the south region. However, the researcher cannot have an accurate analysis result
just from this one map. She can further choose the cluster and outlier detection function, which
uses Local Morans I to perform further analysis. This analysis function provides three maps: local
Morans I map, z-value map, and p-value map. Figure 27 shows the p-value map, from which the
researcher can know which counties form a statistically significant cluster and which counties are
statistically significant outliers.
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Fig. 27: P-value map of Local Moran I

Now the researcher may want to know what kind of relationship exists between lung cancer mor-
tality and the median income of each county. For this purpose, she can use the median income
dataset provided by the TerraFly GeoCloud system, and apply the spatial auto-regression tool. Fig-
ure 28 shows the result of this model. From the result, we can observe that when the mortality
of surrounding areas increase by 1, the mortality of this county will increase by 0.233, and when
the median income in the surrounding area increases by $10, 000, the mortality of this county will
decrease by 0.09.

Fig. 28: Spatial auto-regression of lung cancer mortality and median income

7. RELATED WORK AND PRODUCTS
7.1. Spatial Data Visualization
Information visualization (or data visualization) techniques are able to present the data and pat-
terns in a visual form that is intuitive and easily comprehendible, allow users to derive insights
from the data, and support user interactions [Zhang and Li 2012; Spence and Press 2000; Li et al.
2010b]. For example, Figure 29a shows the map of Native American population statistics which has
the geographic spatial dimensions and several data dimensions. The figure displays both the total
population and the population density on a map, and users can easily gain some insights on the
data by a glance [Old 2002]. In addition,visualizing spatial data can also help end users interpret
and understand spatial data mining results. They can get a better understanding on the discovered
patterns.k

Visualizing the objects in geo-spatial data is as important as the data itself. The visualization task
becomes more challenging as both the data dimensionality and richness in the object representation
increase. In TerraFly GeoCloud, we have devoted lots of effort to address the visualization challenge
including the visualization of multi-dimensional data and the flexible user interaction. For spatial
data mining to be effective, it is important to include the visualization techniques in the mining
process and to generate the discovered patterns for a more comprehensive visual view [Zhang and
Li 2012; Rishe et al. 2004].
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(a) America Median Income (b) Customized map

Fig. 29: Related work

7.2. Spatial Analysis
Spatial analysis is especially used on geographic data. The difference between spatial analysis and
traditional analysis is that spatial analysis methods use spatial information of the data, such as the
location, orientation, and adjacent areas. Spatial analysis is widely used in many domains including
biology, ecology, epidemiology, ecology, and criminology. There are many kinds of spatial analysis
methods which include spatial clustering, spatial autocorrelation, spatial regression, spatial interpo-
lation and spatial distribution measurement [Fotheringham and Rogerson 2013]. TerraFly GeoCloud
presents comprehensive spatial analysis methods and result visualization in a more interactive way.
User can leverage these methods without programming, and obtain the result visualized on the map
with just a few clicks [Bailey et al. 1994].

7.3. Customized Map Visualization
The process of rendering a map generally means taking raw geospatial data and making a visual map
from it. Often it applies more specifically to the production of a raster image, or a set of raster tiles,
but it can refer to the production of map outputs in vector-based formats. ”3D rendering” is also
possible when taking the map data as an input. The ability of rendering maps in new and interesting
styles, or highlighting features of special interest, is one of the most exciting aspects in spatial data
analysis and visualization.

Customized map visualization have several challenges. First, it takes time to generate a map. User
needs to use complicated programs to generate maps from traditional map visualization software
tools. Second, it is hard to obtain a really customized map. Some map services can provide some
customized views for users. For example, Figure 29b shows a customized map where the adjacent
data objects are merged together and are represented using big circles. However, it can not allow
users to manipulate the data as there are only few visualization styles are provided.

TerraFly map render engine is a toolkit for rendering maps and is used to render the main map
layers. It supports a variety of geospatial data formats and provides flexible styling options for
designing many different kinds of maps, and the render speed is fast [Teng et al. 2006; Lu et al.
2014]. TerraFly Geocloud also provides MapQL as a spatial query and map render tool. User can
query and visualize the data use a SQL-like statements. Because Geocloud is a web-based online
service, user can use MapQL online and get a result in the map directly. This SQL-like statements
facilitate users and let them draw the map in their own ways [Lu et al. 2013a].

7.4. Related Products
In the geospatial discipline, web-based GIS services can significantly reduce the data volume and re-
quired computing resources at the end-user side [Li et al. 2010a; Fotheringham and Rogerson 2013].
To the best of our knowledge, TerraFly GeoCloud is one of the first systems to study the integra-
tion of online visualization of spatial data, data analysis modules and visualization customization
language.
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Various GIS analysis tools are developed and visualization customization languages have been
studied in the literature. ArcGIS is a complete, cloud-based, collaborative content management
system for working with geographic information. But systems like ArcGIS and Geoda focus on
the content management and share, not online analysis [Johnston et al. 2001; Anselin et al. 2006].
Azavea has many functions such as optimal Location find, Crime analysis, data aggregation and
visualization. It is good at visualization, but has very limited analysis functions [Boyer et al. 2011].

Various types of solutions have been studied in the literature to address the problem of visual-
ization of spatial analysis. However, on one hand, good analysis visualization tools like Geoda and
ArcGIS do not have online functions. To use them, users have to download and install the software
tools, and download the datasets. On the other hand, good online GIS systems like Azavea, SKE,
and GISCloud have limited analysis functions. Furthermore, none of above products provides a sim-
ple and convenient way like MapQL to let user create their own map visualization [Hearnshaw et al.
1994; Boyer 2010]. The related products are summarized in Table I. Our work is complementary to
the existing works and our system also integrates data mining and visualization.
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Table I: GIS Analysis & Visualization Products

Name Website Product features
description

Online
tool

Spatial
analysis
abilities

Spatial
visualization

abilities

ArcGIS
http://www.esri.com/

software/arcgis/
arcgis-for-desktop

This software
provides

map creating
and multiple

analysis functions.
But need
training.

No
Multiple analysis

functions are
provided.

Good visualization.
But map creating is

complicated and
need training.

Geoda http://geodacenter.asu.edu/

User can import
map, add

layer to do
some geodata

analysis.

No

Multiple analysis
functions, such as
statistic map and

rate map.

Limited visualization.

ArcGIS
Online http://www.arcgis.com

ArcGIS Online
is a complete,
cloud-based,
collaborative

content
management
system for

working with
geographic

information.

Yes No online Analysis.
Focus on the

content management
and share.

Azavea http://www.azavea.com/
products/

optimal Location
find, Crime

analsis,
data aggregated
and visualized

Yes Very limited
analysis functions Good visualization.

SKE http://www.skeinc.com/
GeoPortal.html Spatial data Viewer Yes Very limited

simple analysis.

Focus on the
spatial data

viewer.

GISCloud http://www.giscloud.com

with few analysis
(Buffer , Range , Area ,
Comparison , Hotspot ,

Coverage , Spatial
Selection )

Yes No spatial
analysis function

Focus on geo-data
management and

share.

GeoIQ http://www.geoiq.com/
http://geocommons.com/

filtering, buffers,
spatial aggregation

and predictive
Yes

Very limited
and simple

analysis: currently
provide predictive

(Pearsons Correlation).

Focus on GIS,
very good

visualization and
interactive operation.

GeoCloud http://terrafly.fiu.edu/GeoCloud/

Provide spatial
data visualization,
spatial dependency

and auto-correlation,
spatial data clustering,

spatial regression,
measuring geographic

distribution, spatial
interpolation and
customize map
visualization

Yes

Provides multiple
spatial analysis

function.
Easy to use.

Provide good
data visualization

and interactive operation.
Easy to use.

8. CONCLUSION
This paper presents TerraFly GeoCloud, an online spatial data analysis and visualization system, to
facilitate end users to visualize and analyze spatial data, and to share the analysis results. TerraFly
GeoCloud focuses on building a new intelligent system that allows a general user perform spatial
data analysis in a very simple and convenient way. By leveraging distributed computing, visual-
ization and data mining techniques, TerraFly GeoCloud enables users to perform different types of
spatial data analysis tasks for decision support. The system is a GIS analysis tool providing soft-
ware as a service (SaaS). Comparing with traditional desktop software tools, Terrafly GeoCloud is
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based on the cloud architecture and users can upload, visualize, analyze, and share the data through
browsers with a few clicks. As the application of cloud service is getting widely used, this type of
intelligent systems will be more and more popular in the future. About the future works, we will
provide better visualization techniques to improve user experience. As user visits increasing, we
will add load balance function in the front end through some popular technologies such as Nejx.
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