
Optimizing Online Spatial Data Analysis with
Sequential Query Patterns

Chunqiu Zeng, Hongtai Li, Huibo Wang, Yudong Guang,
Chang Liu, Tao Li, Mingjin Zhang, Shu-Ching Chen, Naphtali Rishe

School of Computing and Information Sciences,

Florida International University

{czeng001, hli019, hwang033, yguan004, cliu019, taoli, zhangm, chens, rishen}@cs.fiu.edu

Abstract—The exponential growth of the usage of geographic
information services leads to an extensive popularity on spatial
data analysis in both industrial and academic communities.
However, it is quite challenging for users to efficiently analyze
and quickly understand the spatial data due to the inherently
complex and dynamic nature of GIS applications.

To address the challenges, this paper presents an approach to
optimize the online spatial data analysis by mining the sequential
query patterns from the user query logs of GIS applications. The
sequential query patterns are used to automatically generate the
query template, from which the users are able to quickly compose
new queries. The sequential query patterns contribute to the
workflow construction for complex spatial data analysis tasks as
well. Our proposed approach takes advantage of the generated
workflow to parallelize the independent spatial analysis tasks.
As a result, the throughput of our system has been increased
greatly and more efficient geographic information services are
made available to the users. We present a case study to demon-
strate the efficiency and effectiveness of the proposed approach
by integrating two software systems at Florida International
University (FIU): TerraFly (an GIS application) and FIU-Miner
(a distributed data mining framework).

I. INTRODUCTION

With the rapid advancement in technology of geographic

information system, online spatial data analysis becomes in-

creasingly essential in various application domains such as

water management, crime mapping, disease analysis, and real

estate. As a consequence, many geographic applications from

different domains emerge recently in the form of web applica-

tions or mobile applications. Miscellaneous requirements from

diverse application domains strongly dictate efficient support

for spatial data analysis.
However, the inherently complex and dynamic nature of GIS

applications gives rise to great challenges for users to efficient-

ly analyze and quickly understand the spatial data. Spatial data

analysis conducted on a typical geographic application tends

to involve a series of complicated interactions and may be

fussy with a lot of low-level details. In addition, users from

different domains want GIS systems to dynamically create map

applications on their own spatial data sets. Moreover, massive

spatial data analysis conducted on GIS applications is very

resource-consuming. These big challenges require many GIS

applications to be designed with innovative approaches to gain

competitive advantages.
Recently, TerraFly GeoCloud is designed and developed to

support spatial data analysis and visualization [7]. Point and

polygon spatial data can be accurately visualized and ma-

nipulated in TerraFly GeoClould. It allows users to visualize

and share spatial data related to different domains such as

real property, crime, and water resources. Online analysis of

spatial data is supported by the spatial data analysis engine

of TerraFly GeoCloud as well. In order to efficiently support

complex spatial data analysis and flexible visualization of the

analysis results, MapQL, a SQL-like language, is implemented

to represent the analysis queries in TerraFly GeoClould. A

MapQL statement is capable of defining an analysis task and

customizing the visualization of analysis results. According

to the queries, the spatial data analysis engine completes

the analysis task and renders the customized visualization of

analysis results. For instance, given the real property data,

a user may want to explore the house prices near Florida

International University. The corresponding MapQL statement

for such an exploration is shown in Figure 1.

��������

� �	
��	


	�������	��������������������� ��!"�

� ���������������#��"�

� �$%���������#�����&�"�

� ���������'���

()�*��

� ���+,���-.$-$$$/���

0!�)���

�����������������1��,����2�����"�'��(��3��4,2� ����2�5.�-6"�-%�6%6--57�77�8�.�9:�

Fig. 1: A MapQL query on real property data is given,

where POINT(-80.27,25.757228) is the location of Florida

International University.

A MapQL statement extends the semantics of tradi-

tional SQL statements by introducing new reserved key

words. As shown in Figure 1, T ICON PATH, T LABEL,

T LABEL SIZE and GEO are four additional reserved words

in a MapQL statement. These four reserved key words are

used in the “expression AS < reserved word > ”
clause, which provides the expression with additional seman-

tics. In particular, GEO describes the spatial search geometry;

T ICON PATH customizes the icon resource for the spatial

search geometry; T LABEL provides the icon label to be

shown on the map; and T LABEL SIZE gives the size of

253
IEEE IRI 2014, August 13-15, 2014, San Francisco, California, USA  

978-1-4799-5880-1/14/$31.00 ©2014 IEEE



label in pixels. The corresponding spatial query results for

the MapQL statement in Figure 1 is presented in Figure 2.

Fig. 2: The MapQL query result on real property data is

displayed on the map.

Comparing with using GIS application programming inter-

face (API), MapQL provides a better interface to facilitate the

use of TerraFly map for both developers and end users without

any functionality limitation. Similar to GIS API, MapQL

enables users to flexibly create their own maps. However, our

further study of TerraFly GeoCloud reveals three interesting

and crucial issues which present similar challenges in other

online spatial analysis systems.

The first issue is the difficulty in authoring MapQL queries.

Though most of developers who are familiar with SQL can

pick up MapQL quickly, the learning curve for end users

who have no idea about SQL before is very steep. Authoring

MapQL queries remains a challenges for the vast majority of

users. As a result, it is difficult for those end users to utilize

MapQL to complete a spatial analysis task from scratch.

The second issue is the complexity of a spatial analysis task.

A typical spatial analysis task tends to involve a few sub-tasks.

Moreover, those sub-tasks are not completely independent

from each other, where the outputs of some sub-tasks are

used as the inputs for other sub-tasks. According to the

dependencies, a spatial data analysis task can be naturally

presented as a workflow. The complexity of building such a

workflow turns out to be a great obstacle for the users during

the online spatial data analysis.

The third issue is the inefficiency of sequentially executing

the workflow of a spatial analysis task. Even though the sub-

tasks in a workflow are not linearly dependent on each other,

the sub-tasks can only be sequentially executed by end users

one by one. As a consequence, it fails to take advantage

of the distributed environment to optimize the execution of

independent sub-tasks in parallel.

The above three issues pose big challenges for users to

freely and flexibly explore spatial data using online spatial

analysis system. In this paper, we employ sequential pattern

mining algorithms to discover the sequential query patterns

from the MapQL query logs of TerraFly GeoCloud. With the

help of discovered sequential query patterns, the workflows of

spatial data analysis tasks are first constructed. FIU-Miner [13]

is then employed to optimize the execution of the spatial data

analysis tasks by maximizing the parallelization of sub-tasks

in the corresponding workflow.

The rest of the paper is organized as follows. Section II

presents the related work. Section III gives the overview of our

system. Section IV introduces the details in mining sequential

query patterns among MapQL query logs, the generation of

query templates for MapQL statements, and the workflow

construction for the spatial data analysis tasks. Section V

presents our empirical study to show the efficiency and the

effectiveness of our system. Finally Section VI concludes and

discusses future works.

II. RELATED WORK

Sequential pattern mining has been studied for decades.

Several famous algorithms have been proposed to discover

the sequential pattern in sequence data including apriori-

based GSP [11], SPIRIT [4], Spade [12], FreeSpan [5], and

PrefixSpan [8]. This paper adapts the PrefixSpan algorithm to

find the frequent sequential pattern.

Mining patterns in SQL logs has received a lot of attention

in recent years, especially with the advent of Big data era.

The research efforts in [3], [1] employ the discovered patterns

from the SQL logs to facilitate the SQL auto-completion with

recommending snippets of query. However, almost all the

reported studies only focus on the patterns within a single

statement. In this paper, we focus on the sequential query

pattern which consists of a sequence of statements.

TerraFly [10], [9] is a platform which supports query and

visualization of geo-spatial data. This platform provides users

with customized aerial photography, satellite imagery and vari-

ous overlays, such as street names, roads, restaurants, services

and demographic data. TerraFly API allows application de-

veloper to create various GIS applications, such as geospatial

querying interface, map display with user-specific granularity,

real-time data suppliers, demographic analysis, annotation, and

route dissemination via autopilots. TerraFly GeoCloud [7] is a

system built on the TerraFly system. One of important features

of TerraFly GeoCloud is that it provides MapQL to support

more flexible and complicated spatial data analysis. However,

it requires end users to compose the MapQL statements.

FIU-Miner is a data mining platform which supports data

analyst with a user-friendly interface to perform rapid data

mining task configuration. Users can assemble the existing

algorithms into a workflow without writing a single line of

code. The platform also supports data mining in distributed

and heterogeneous environments [13]. In this paper, we take

advantage of FIU-Miner to optimize the execution of spatial

data analysis.

III. THE SYSTEM OVERVIEW

To address the highlighted issues of TerraFly GeoCloudin

Section I, the online spatial analysis system is optimized

by integrating FIU-Miner framework, which is capable of

assembling sub-tasks into a workflow in accordance with the

dependencies of sub-tasks and scheduling each sub-task for

254



execution in distributed environment. The overview of the

integrated system is given in Figure 3.

The system consists of four tiers: User Interface, Geo-

Spatial Web Service, Computing Service and Storage.

�������	


���
����	�������	

�����������	���	�������	

����	���������	

*���
)��;������
�������

*��<��

�����(+=�*���
� ��

*��<��<���=�
��������

��>���,��+�<���=� �,,����*������

0��?@+�
�(��,��=�

(�A�*�����(��3�
��?�

*��<��<���=�
��3�+�,����������

���,��+�1�,�����+=�����+����,�3�������=�

�����(+=�1��,����,�;��,�������=�,�3��

1��,����,�;���3��,����)���������

Fig. 3: The system overview.

In the layer of User Interface, Map Rendering Engine is

responsible for rendering the geo-objects on the map nicely

based on the visualization customized by users. The com-

ponent of MapQL accepts MapQL statements that describe

the spatial analysis task and the required elements for map

rendering.

The second layer is Geo-Spatial Web Service. In this

layer, TerraFly Map API provides the interface to access

the spatial data for other components in the same layer and

Map Rendering Engine in User Interface layer. MapQL Query

Engine is responsible for analyzing the MapQL statements and

guarantees their syntactic and semantic correctness. Sequential

Query Pattern Mining is utilized to discover the sequential

query pattern from the MapQL query log data. The discovered

sequential query pattern can be used to generate the query

templates by MapQL Query Template Engine. Users are able

to rewrite the MapQL query template to construct new MapQL

statements in User Interface layer. A sequential query pattern

contains a sequence of MapQL queries and is used to form

a workflow by Workflow Factory. Each query in a sequential

pattern corresponds to a sub-task in the corresponding work-

flow.

The third layer is Computing Service. FIU-Miner Frame-

work takes a workflow from the second layer as an input. FIU-

Miner takes the load balance of distributed environment into

account to schedule the sub-tasks of a workflow for execution.

The spatial data analysis library is deployed in the distributed

environment. The library can be extended by developers. The

computing resource is used to support the spatial data analysis

tasks.

The last layer is mainly responsible for storing and manag-

ing the spatial data. All the spatial data in TerraFly is stored

in the distributed file system, where replica of data guarantees

the safety and reliability of system.

In the subsequent sections, we introduce the detail of the

proposed system.

IV. SEQUENTIAL QUERY PATTERN

In our system, users mainly use MapQL statements to

accomplish their online spatial data analysis tasks. Although

MapQL is powerful and flexible to satisfy the analysis re-

quirement of the users, it requires end users to compose the

statements, typically from scratch. Based on the user query

logs, the sequential MapQL query pattern is proposed to

partially address the problem.

A. Sequential MapQL Query Pattern

Let D be a collection of sequences of queries, denoted

as D = {S1, S2, ..., Sn}, where Si is a sequence of queries

occurring within a session, ordered according to their time

stamps. Therefore, Si =< q1, q2, ..., qi, ..., qm > is a sequence

including m queries in temporal order. If qi is a compound

query composed of two sub-queries qi0 and qi1, then Si =<
q1, q2, ..., (qi0, qi1), ..., qm >. Sub-queries in a parenthesis are

from a compound query occurring at the same time stamp.

A k-subsequence of Si is a sequence of queries with length

k denoted as T =< t1, t2, ..., tk >, where each t ∈ T
corresponds to only one query q ∈ Si, and all the queries

in T are kept in temporal order. T � Si is used to indicate

that T is a subsequence of Si.

Given the query sequence data collection D, a sequential

query pattern is a query sequence whose occurrence frequency

in the query log D is no less than a user-specified threshold

min support. Formally, the support of sequence T is defined

as

support(T ) = |{Si|Si ∈ D ∧ T � Si}|.
A sequence T is a sequential query pattern, only if

support(T ) ≥ min support.
The process of discovering all the sequential query patterns

from the MapQL logs generally consists of two stages. The

first stage is to generalize the representation of MapQL

statements by parsing the MapQL text into syntax units.

Based on the syntax representation of MapQL statements, the

second stage is to mine the sequential query patterns from the

sequences of MapQL statements.

B. Representation Of MapQL

As shown in Figure 3, MapQL Query Engine collects the

MapQL statements and records them in the log files. A snippet

of MapQL logs are given in Table I. Each MapQL statement

is associated with a user session ID and a time stamp. All

255



the statements are organized in temporal order. Those MapQL

statements sharing the same session ID are those issued by

a user within a session. Our goal is to discover interesting

patterns from the query logs. For example, according to the

log data in the TABLE I, an interesting pattern is that users

who viewed a particular street are more likely to look for the

hotels along that street.

TABLE I: A snippet of MapQL logs.

Session
ID

Timestamp MapQL statement

1
20140301
13:26:33

SELECT geo FROM street
WHERE name LIKE ‘sw 8th’;

1
20140301
13:28:26

SELECT h.name FROM street s
LEFT JOIN hotel h ON
ST Distance(s.geo, h.geo) < 0.05
WHERE s.name = ‘sw8 th’
AND h.star >= 4;

2
20140315
14:21:03

select geo from street
where name like ‘turnpike’;

2
20140315
14:25:21

SELECT h.name FROM street s
LEFT JOIN hotel h ON
ST Distance(s.geo, h.geo) < 0.05
WHERE s.name = ‘turnpike’
AND h.star >= 4;

3
20140316
10:23:08

SELECT zip FROM us zip;

4
20140319
11:19:21

SELECT count(*) FROM hotel;

... ... ...

In order to discover patterns from the query logs, intu-

itively, existing sequential pattern mining algorithms can be

directly applied to the raw logs of MapQL statements, where

different text of MapQL statements are treated as different

items. However, representing an query item by the text of the

MapQL statement is often too specific. As a consequence,

it is difficult to discover the meaningful sequential patterns

with such representations. For instance, the first and third

records in TABLE I are identified as different query items

during sequential query pattern mining, although both MapQL

statements share the same semantics (i.e., locating a street

given its partial name).

To address the aforementioned problem, the representation

of a query in our system is generalized by parsing a MapQL

statement into a collection of syntax units. The syntax units

are organized as a syntax tree. For instance, the syntax tree for

the first record of TABLE I is presented in Figure 4. There

are two types of labels in the node of syntax tree. One is

the type of a syntax unit, such as “Select Clause”. The other

label in the parenthesis is the content of a syntax unit, for

example, “sw 8th”. Provided with the syntax tree, the MapQL

query can be generalized by representing any nodes with their

types instead of their actual contents. For instance, assuming

the node with ‘Value’ type in the syntax tree is represented

as “#Value#” rather than using its text content, the original

MapQL statements in both the first and third row of TABLE

I are rewritten as “SELECT geo FROM street WHERE name

LIKE #Value#;”. Therefore, the two MapQL statements with

the same semantics share the same query item. In addition, to

simplify the extraction of patterns, each query item is identified

with a unique integer number.

Query Statement

Select Clause

(select)

From Clause

(from)

Where Clause

(where)

Column
(geo)

Table
(street)

Prediction
(like)

Column

(name)

Value

( 8 )

Fig. 4: The syntax tree for a MapQL statement “ SELECT

geo FROM street WHERE name LIKE ‘sw 8th’;”.

C. Mining Sequential Query Pattern

Based on the properly generalized representation of a

MapQL query, the PrefixSpan algorithm [8] is applied to

efficiently discover all the sequential query patterns from the

MapQL query log data.

The main idea of the PrefixSpan algorithm is to recursively

partition the whole dataset into some sub-datasets, where

the query sequences in a sub-dataset share the same prefix

subsequence. The number of query sequences in each sub-

dataset indicates the support of its corresponding prefix sub-

sequence. If a prefix subsequence T whose support is no

less than the user specified threshold min support, T is

a sequential query pattern. Given two sequences T and R,

T � R if T is a subsequence of R. An important property (i.e.,

downward closure property) is that R cannot be a sequential

query pattern if T is not a sequential query pattern. According

to the property, the recursive partition to search for super-

pattern is not terminated until the size of current sub-dataset

is smaller than the min support.
The PrefixSpan algorithm is illustrated in Figure 5. The top

table presents the original collection of query sequences which

contains two sequences of queries S1 =< (q0, q1) > and

S2 =< (q0), (q2) >. Sequence S1 has only one compound

query composed of q0 and q1. The other sequence S2 has

two queries named q0 and q2. Let min support = 2. The

procedure of mining sequential query patterns is described as

follows.

1) Find the frequent subsequences with a single query: <
q0 >, < q1 >, < q2 >.

2) Take the subsequences found in the step 1 as the

prefixes. Based on the prefixes, the original dataset is

partitioned into three sub-datasets, where each of them

is specified by a prefix subsequence. The support of the

prefix subsequence is the number of postfix sequences

in its corresponding sub-dataset. The prefix patterns are

extracted if their supports are larger than min support.
Only the prefix subsequence in D1 is a sequential query

pattern.

256



	

��������	
� ������
��
�� 82>.">$7B�
�� 8>.">-B�

����
��������

�����������
������
��

������������
������
��

��������


�� 8>.B� 8B"8>-B� -�

�� 8>$B� 8B� $�

�� 8>-B� 8B� $�

����
��������

�����������
������
��

������������
������
��

��������


�� 8>.">-B� 8B� $�

)������
�+=����,�,����

)������
�+=����,�,����

��1

2$7�

2-7�

297�

Fig. 5: An example illustrating the PrefixSpan algorithm.

3) Recursively partition D1. As a result, only one sub-

dataset is generated and its support is 1.

4) Terminate the partition since no new prefix patterns can

be further derived.

In the end, PrefixSpan discovers one sequential query pat-

tern < q0 >.

D. Query Template

Query template is generated by MapQL Query Template

Engine in the system. This function alleviates the burden of

users since MapQL queries can be composed by rewriting

query templates. Based on the discovered sequential query

patterns, a query template is generated by Algorithm 1. This

algorithm scans the syntax trees in the sequential query pattern

and replaces the specific table, column and constant value

with template parameters. The algorithm guarantees that the

same table, column or constant value appearing at multiple

places, even multiple queries of a sequence acquires the same

template parameter. Users can easily convert the template to

executable queries by assigning the template parameters with

specific values.

Given a sequential query pattern that contains the two

queries with session ID 1 in TABLE I, we can apply Algorith-

m 1 to generate the template for the sequential query pattern.

The generated template is shown in Figure 6. This template

owns three parameters (i.e., #arg1#, #arg2#, #arg3#). Provided

with values of these parameters, the executable sequence of

queries can be easily derived from the template.

E. Spatial Data Analysis Workflow

All the MapQL queries in a sequential pattern are organized

in a workflow, where the template parameters indicate the

data transmission between queries. A sequence of queries

Algorithm 1 templateGen

1: procedure templateGen(S)

�Input: S is a sequential pattern which contains a se-

quence of MapQL queries.

�Output: query template for sequential query pattern.

2: initialize an empty inverted index TAB for Table

3: initialize an empty inverted index COL for Column

4: initialize an empty inverted index V AL for Value

5: for each query qi in S do
6: while each node e in the syntax tree of qi do
7: if e.label is not generalized then
8: CONTINUE

9: end if
10: if e.type is TABLE then
11: add element to TAB for the table name

12: end if
13: if e.type is COLUMN then
14: add element to COL for the column name

15: end if
16: if e.type is VALUE then
17: add element to V AL for the constant value

18: end if
19: end while
20: end for
21: With TAB,COL, V AL, rewrite S by replacing a spe-

cific table, column and constant value with corresponding

template name.

22: return the rewritten sequence as template.

23: end procedure

����������������	���� ��	����!�"#	

�� �����������
�� �,���,�()�*
��0!�)�

�� � ��3�� �C���$C:���D�
�

�� ����3���������
�� �,���,����()�*

� �� ��,�+������(� E���
�� � ���1��,����2�����"�����7�8�C���-C���

� ����3�� �C���$C�0!�)� ��D�
�� � ���,���BF�C���9C:�������1

Fig. 6: Example of a generated template.

constitutes a spatial data analysis task and atypical spatial data

analysis task often involves a few sub-tasks. The dependencies

among those sub-tasks make spatial data analysis very compli-

cated. The complexity of spatial data analysis dictates the sup-

port of workflow. In our system, Workflow Factory is designed

and implemented in support of executing a complex spatial

data analysis task in a workflow. A workflow is represented as

a directed and connected graph consisting of nodes (denoting

the sub-tasks) and edges (describing the dependencies among

the sub-tasks). Data transmission between dependent sub-tasks

257



are supported in our system.

End

Start

Condition

Trigger

Parallel

Synchron

ize

Action

(1)

(2) (3)

(4)

(5)

(6)

(7)

Fig. 7: Node types in a workflow.

In order to facilitate the spatial data analysis, we design

seven types of nodes as shown in Figure7.

1) Start Node This type of node indicates the start of

the workflow. There is only one such node in a valid

workflow. This start node must link to one other node.

2) Parallel Node This type of node has one input link and

more than one output links. After the work is completed

in the parent node, the parallel node triggers the sub-

tasks in its children nodes. All the sub-tasks of its

children are executed in parallel.

3) Condition Node One input link and more than one

output links are associated with this type of node. When

the control flow reaches a condition node, it will check

the input data and then move along one of its output

links.

4) Action Node One input link and one output link are

associated with this type of node. It often accommodates

the sub-tasks for spatial data analysis. The data from the

input link is fed into the sub-task and the result data of

this sub-task is forwarded along its output link.

5) Synchronize Node This type of node has more than one

input links and one output link. This node does not direct

the control flow to its output link until all the sub-tasks

in its parent nodes is completed.

6) Trigger Node More than one input links and one output

link are associated with this type of node. The node

starts the sub-tasks in its output link once one of sub-

tasks in its parent nodes is finished.

7) End Node Any valid workflow should have one and

only one end node. It indicates the end of the workflow.

Based on the generated template in Figure 6, two simple

workflows can be constructed in Figure 8. These two work-

flows accomplish the same spatial data analysis task described

in Figure 6. In the subfigure (1) of Figure 8, the two sub-tasks

(i.e., SearchStreet and SearchHotel) are executed sequentially.

End

Start

Action

(SearchStreet)

Action

(SearchHotel)

End

Start

Action

(SearchStreet)

Action

(SearchHotel)

Parallel

Synchronize

#arg1#, #arg2#, #arg3# #arg1#, #arg2#, #arg3#

#arg1#, #arg2#, #arg3#

#arg1#
#arg2#, #arg3#

result

result result

(1) (2)

result

Fig. 8: Workflow examples.

However, SearchStreet needs the template parameter #arg1#

as its input, while SearchHotel needs all three parameters.

Provided with the three parameters, both sub-tasks can be

executed independently. Thus, in the subfigure(2) of Figure 8,

a parallel workflow is introduced to complete the spatial data

analysis task. Since our data analysis tasks are scheduled

by FIU-Miner, which takes full advantage of the distributed

environment, the parallel workflow is more preferable to our

system in terms of efficiency.

V. EMPIRICAL STUDY

In this section, the empirical study is conducted to demon-

strate the efficiency and effectiveness of our system.

A. Setup

Besides providing the powerful API to support GIS appli-

cations, the TerraFly platform has a rich collection of GIS

datasets. TerraFly owns the US and Canada roads data, the

US Census demographic and socioeconomic data, the property

lines and ownership data of 110 million parcels, 15 million

records of businesses with company stats and management

roles and contacts, 2 million physicians with expertise detail,

various public place datasets, Wikipedia, extensive global

environmental data, etc. Users can explore these datasets by

issuing MapQL queries in our system. A case study on house

property exploration is conducted to show how our system

works.

B. House Property Exploration

The proposed system provides an optimized solution to

spatial data analysis problem by explicitly constructing a

workflow. It supports many different applications by analyzing

the corresponding datasets. One typical application scenario is

to locate the house property with a good appreciation potential

for investment. Intuitively, it is believed that a property is

deserved for investment if the price of the property is lower

than the ones of surrounding properties. Our system is capable

258



Fig. 9: The workflow of searching for house properties with a good appreciation potential. All the sub-tasks in the workflow

are scheduled by FIU-Miner and are executed in the distributed environment.

of helping users (e.g.,investors) to easily and conveniently

identify such properties. According to the historical query

logs collected in our system, the sequential query patterns are

extracted. Based on the discovered sequential query patterns,

the query templates are then generated automatically. The tem-

plates related to the house property case study are assembled

to build a workflow for house property data analysis. The

workflow is presented in Figure9.

In the workflow, there are nine sub-tasks, denoted as rectan-

gles, to constitute the complete house property analysis task. A

user can view the detailed information of each sub-task from a

pop-up layer as long as the mouse hovers on the corresponding

node. The workflow begins with a start node, which is used

to prepare the required setting and parameters. The start node

links to the parallel node with three out links. The parallel

node indicates that the three sub-tasks along its out links are

able to be executed simultaneously.

Fig. 10: Average property prices by zip code in Miami.

The AvgPropertyPriceByZip node in the workflow calcu-

lates the average property price. The overview of the analysis

results is presented in Figure 10. Note that the property prices

of red regions are higher than those of blue regions. From the

overview, users often interested in the regions marked with a

green circle since the average property price of the region is

lower than the ones of its surroundings.

Fig. 11: Detailed properties in Miami.

In the next step, users check more detailed information on

the region in the green circle by conducting the data analysis

in the AreaDetail node. The spatial auto-correlation analysis

on the average property prices by zip code data in Miami

is conducted in this node and the analysis results are shown

in Figure 11. Each point in the scatter plot corresponds to

one zip code. Moran’s I measure is applied during the auto-

correlation analysis [2], [6]. The points in the first and third

quadrants show positive associations with its surroundings,

while the points in the second and fourth quadrants indicate

negative associations. Herein, users are generally interested

in the points of second quadrants, having lower property price

than the ones of its surrounding regions. The interesting points

are marked with yellow circles. The analysis leads to the

result that most of the cheap properties with good appreciation

potential are along the Gratigny Pkwy.
In order to make sure that the areas with cheap properties

have good appreciation potential, spatial data analysis to

investigate the crime rate and average income of these areas

are conducted. The two data analysis sub-tasks are described in

CrimeAnalysis and AvgIncome nodes, respectively. These two

259



sub-tasks are executed in parallel with the properties analysis.

The Synchronize node waits for the completion of all three

sub-tasks along the in links. Parallel execution accelerates the

whole spatial data analysis and reduces the time cost.

��������
�����

���
�+���BF�G.....������0!������� �
	
��	


	�������	��;������������������!����� �
���
�+���#��0����-.....���1�G.....����0!������� ��
	
��	


	�������	�+��������������������!����� �
���
�+���#��0����$.....���1�-.....����0!������� ���
	
��	


	�������	�+��������������������!����� �
	
��	


	�������	;��?�������������������������� ���

������� ��!����1���� "�
����� '������ �

()�*�
��3�@+������ �

��(��E����
���,��@+���;��������������������

���
���1��,����2�����"������7�8�.�.%���� �

0!�)��
����3��F�C���$C� ������ ��1

���������,;��
�+���8�.� ���1
���,;��+��
�+���B�.:�������

Fig. 12: A template for searching the neighborhood, given the

partial name of street.

Without discovering any abnormalities in the crime rate and

average income, users proceed to acquire more detailed prop-

erty information along the Gratigny Pkwy by executing the

sub-task in the NeighborhoodSearch node. The MapQL query

listed in Figure 12 is executed in the NeighborhoodSearch

node by passing the ‘Gratigny Pkwy’ as the input parameter.

The MapQL statement employs different colors to mark the

regions with various property prices. The final analysis results

are presented in Figure 13. The regions painted in dark have

the cheapest property prices and good appreciation potential.

Fig. 13: The final analysis results.

With the completion of the sub-task in the Neighbor-

hoodSearch node, the control flow reaches the end node of

the workflow. Comparing to the analysis procedure without

workflow, where sub-tasks can only be executed sequentially,

our system takes full advantage of FIU-Miner to schedule

multiple tasks simultaneously in the distributed environments.

It greatly reduces the time consumed by a complex spatial data

analysis task and increases the throughput of our system.

VI. CONCLUSION

This paper proposes an approach to optimize spatial data

analysis by integrating the FIU-Miner framework and the

TerraFly system. Our approach makes use of sequential query

patterns, which are discovered from the query logs, to facil-

itate the data analysis with query templates and optimized

workflows. A case study is presented to demonstrate the

effectiveness and efficiency of our system.
There are several future research directions to improve

our current system such as developing more efficient and

effective algorithms for discovering the query patterns and

designing better techniques for generating query templates and

constructing workflows.

ACKNOWLEDGMENT

The work is partially supported by the National Science

Foundation under grants CNS-0821345, HRD-0833093, IIP-

0829576, CNS-0959985, CNS-1126619, IIP-1338922, IIP-

1237818, IIP-1330943, and IIS-1213026, the U.S. Depart-

ment of Homeland Security under Award Number 2010-

ST-062000039, the U.S. Department of Homeland Securitys

VACCINE Center under Award Number 2009-ST-061-CI0001,

and Army Research Office under grant number W911NF-

1010366 and W911NF-12-1-0431.

REFERENCES

[1] Javad Akbarnejad, Gloria Chatzopoulou, Magdalini Eirinaki, Suju
Koshy, Sarika Mittal, Duc On, Neoklis Polyzotis, and Jothi S Vindhiya
Varman. Sql querie recommendations. VLDB, 3(1-2):1597–1600, 2010.

[2] Luc Anselin. Local indicators of spatial associationłlisa. Geographical
analysis, 27(2):93–115, 1995.

[3] Gloria Chatzopoulou, Magdalini Eirinaki, and Neoklis Polyzotis. Query
recommendations for interactive database exploration. In Scientific and
Statistical Database Management, pages 3–18, 2009.

[4] Minos N Garofalakis, Rajeev Rastogi, and Kyuseok Shim. Spirit:
Sequential pattern mining with regular expression constraints. In VLDB,
volume 99, pages 7–10, 1999.

[5] Jiawei Han, Jian Pei, Behzad Mortazavi-Asl, Qiming Chen, Umeshwar
Dayal, and Mei-Chun Hsu. Freespan: frequent pattern-projected sequen-
tial pattern mining. In ACM SIGKDD, pages 355–359, 2000.

[6] Hongfei Li, Catherine A Calder, and Noel Cressie. Beyond moran’s i:
testing for spatial dependence based on the spatial autoregressive model.
Geographical Analysis, 39(4):357–375, 2007.

[7] Yun Lu, Mingjin Zhang, Tao Li, Yudong Guang, and Naphtali Rishe.
Online spatial data analysis and visualization system. In SIGKDD
Workshop on Interactive Data Exploration and Analytics, pages 71–78,
2013.

[8] Jian Pei, Helen Pinto, Qiming Chen, Jiawei Han, Behzad Mortazavi-Asl,
Umeshwar Dayal, and Mei-Chun Hsu. Prefixspan: Mining sequential
patterns efficiently by prefix-projected pattern growth. In ICDE, pages
215–224, 2001.

[9] N Rishe, M Gutierrez, A Selivonenko, and S Graham. Terrafly: A tool
for visualizing and dispensing geospatial data. Imaging Notes, 20(2):22–
23, 2005.

[10] Naphtali Rishe, Shu-Ching Chen, Nagarajan Prabakar, Mark Allen
Weiss, Wei Sun, Andriy Selivonenko, and D Davis-Chu. Terrafly:
A high-performance web-based digital library system for spatial data
access. In ICDE, pages 17–19, 2001.

[11] Ramakrishnan Srikant and Rakesh Agrawal. Mining sequential patterns:
Generalizations and performance improvements. Springer, 1996.

[12] Mohammed J Zaki. Spade: An efficient algorithm for mining frequent
sequences. Machine learning, 42(1-2):31–60, 2001.

[13] Chunqiu Zeng, Yexi Jiang, Li Zheng, Jingxuan Li, Lei Li, Hongtai
Li, Chao Shen, Wubai Zhou, Tao Li, Bing Duan. Fiu-miner: a fast,
integrated, and user-friendly system for data mining in distributed
environment. In ACM SIGKDD, pages 1506–1509, 2013.

260


