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Abstract—Learning from imbalanced data sets is a
hot and challenging research topic with many real
world applications. Many studies have been conducted
on integrating sampling-based techniques and ensem-
ble learning for imbalanced data sets. However, most
existing sampling methods suffer from the problems
of information loss, over-fitting, and additional bias.
Moreover, there is no single model that can be applied
to all scenarios. Therefore, a positive enhanced ensemble
learning (PEEL) framework is presented in this pa-
per for effective video event detection. The proposed
PEEL framework involves a novel sampling technique
combined with an ensemble learning mechanism built
upon the base learning algorithm (BLA). Exploratory
experiments have been conducted to evaluate the re-
lated parameters and performance comparisons. The
experimental results demonstrate the effectiveness of the
proposed PEEL framework for video event detection.
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I. INTRODUCTION

Learning from imbalanced data sets for binary
classification problems has been a hot and chal-
lenging topic in the research communities and has
many real-world applications such as fraud detection,
medical diagnosis, intrusion detection, face recogni-
tion, information retrieval, and video event detection
[1][2][3][4][5][6][7][8]. The class imbalance problem
has been amplified and aggravated as the world steps
into the big data era. The underlying nature of the
class imbalance issue is that the number of samples
(instances) in the majority (negative) class dramati-
cally exceeds that of the minority (positive) class of
interest, which undermines the classification process.
For example, the positive to negative ratio is about
1:100 and 5:1000 for fraud detection and video event
detection [2][8], respectively. Many attempts have
been made to address the class imbalance problems
in different occasions [9]. However, there is no single
method that triumphs in all scenarios. In this paper, the
focus is on addressing the class imbalance challenge
for video event detection.

A video event is defined as an activity of a par-
ticular user interest, for example, a goal event in a
soccer video. The rareness of a video event (positive
instance) makes the detection task extremely difficult

because of the aforementioned class imbalance issue
[10][11][12][13]. By further analyzing the problem,
it is found that most of the false alarms (or false
positives) are pretty close to the real events in a certain
sense (e.g., goal attempt and foul) which might also
attracts users’ interests. A good video event detec-
tion framework should retrieve as many true positive
instances as possible, although it might potentially
include more false positive instances. In other words,
the video event detection learner should enhance the
favor of the positive class. With this objective in
mind, a positive-enhanced ensemble learning (PEEL)
framework is presented for video event detection. The
proposed framework integrates the sampling-based
technique and the ensemble learning mechanism, and
is able to detect most of the real events at the expense
of including a small amount of related events. The
proposed framework outperforms most of the well-
known single models and ensemble classifiers under
the Receiver Operating Characteristic (ROC) or the
Area Under the Curve (AUC) criterion [14].

The paper is organized as follows. Section II pro-
vides an overview of the existing work for solving the
class imbalance issue. Section III discusses the details
of the proposed PEEL framework. Section IV presents
a thorough experimental analysis. Finally, section V
gives the conclusion.

II. RELATED WORK

A considerable amount of efforts have been done
in the research community on learning from the im-
balanced data sets, especially for binary classification
problems. He et al. [9] presented an overview of those
methods and generally grouped them into three cate-
gories, namely (1) sampling-based methods [15][16],
(2) cost-sensitive methods [17][18], and (3) kernel-
based and active learning methods [19][20]. Among
those approaches, the sampling-based methods and the
integration with ensemble learning ones have been
widely studied and have shown their success over
the years [21]. Therefore, they will be the focus
of this paper. Studies have demonstrated that a bal-
anced data set usually outperforms an imbalanced
one, which justifies the use of various sampling meth-
ods [22], such as random under-sampling and over-



Figure 1: The proposed PEEL framework.

sampling [23][24], informed under-sampling [21][25],
synthetic over-sampling [16][26][27], and clustering-
based sampling [16][24][28]. The mechanics behind
under-sampling and over-sampling are the random
removal of the majority instances and the replication
of minority instances respectively [9]. Both ways
have their intrinsic problems such as the loss of
majority information and over-fitting [29]. The under-
sampling approaches alleviate those problems by us-
ing some statistical knowledge [21]. More recently,
the clustering-based sampling methods have been
proved effective by dealing with both within-class
and between-class imbalance issues. For example,
in [16], Barua et al. proposed the so-called Majority
Weighted Minority Oversampling TEchnique (MW-
MOTE), which generates the synthetic samples from
the weighted minority class using a clustering ap-
proach. Although the synthetic oversampling methods
provide a better balance in the distribution between
the majority and minority classes, they unavoidably
introduce error-prone instances [16].

To overcome the limitation of the sampling-based
methods, the integration of ensemble learning mech-
anism (such as bagging [30] and boosting [31]) is
introduced. For example, Chawla et al. [32] integrated
SMOTE [26] with Adaboost [31] for boosting the
performance of the minority class. In [33], Guo et al.
combined the synthetic data generation technique [34]

and the Adaboost algorithm [31] to improve the
overall accuracy. Although the “sampling-ensemble”
methods have been proved to be efficient and effective,
there is no single approach that can be applied to all
scenarios.

III. ENSEMBLE LEARNING FRAMEWORK

As illustrated in Figure 1, the proposed PEEL
framework contains three phases, i.e., pre-processing,
training, and testing. In phase I, the input raw videos
are pre-processed to generate a pre-filtered candidate
instance set with the extracted features. In phase II,
the proposed PEEL framework is applied to obtain an
ensemble of the base learners. Finally, in phase III,
the ensemble learner is applied to classify the target
video event. The details of each of the three phases
are discussed in the following subsections.

A. Pre-processing

The pre-processing phase of the proposed frame-
work consists of three main steps: shot boundary
detection, low-level feature extraction, and instance
pre-filtering. Usually, a video shot is treated as the
basic unit for video event detection. Therefore, the
first step of pre-processing is shot boundary detection,
which provides the shot boundaries for video fea-
ture extraction. In this paper, the unsupervised multi-
filtering method proposed in [35] is adopted for ef-
fective shot boundary detection. Due to the prevalence



Algorithm 1 Positive Enhanced Ensemble Learning Algorithm
Input: Training set Tr, BLA, positive ratio r, voting confidence v ∈ [0,1].
Output: Ensemble learner C(x).

1: procedure PEEL(Tr) . training phase
2: M←∅;
3: separate Tr into positive set P and negative set Q;
4: NP← |P| ; NQ← |Q|; . obtain the sizes (numbers of instances) of P and Q respectively
5: nq← NP ∗ r; . determine split size based on the given positive ratio
6: K← NQ / nq; . calculate the number of split for Q
7: evenly split Q into K subsets, denoted as S = {S j | j = 1, · · · ,K};
8: for all j = 1, · · · ,K do
9: if r >= 1 then

10: D j← S j ∪P; . perform merge
11: else if r < 1 then . i.i.d. sample with replacement
12: D j← randomly sample nq instances from P and merge with S j;
13: end if
14: train model M j based on D j using BLA; M←M j;
15: end for
16: return the hypothesis:

17: C(x) =
{

1 if ∑
K
j=1 M j(x)> K ∗ v, M j(x) ∈ {0,1};

0 othersise
18: end procedure

and effectiveness of multi-modal features for video
content analysis, a set of visual and audio features
are extracted for each video shot, which cover both
low-level characteristics (such as pixel change) and
mid-level semantics (such as grass ratio and audience
volume) [36]. After feature extraction, the video data
set is ready for event detection. However, the data set
is highly imbalanced with a large number of irrelevant
instances. As reported in [8], the interesting events
(such as goal, goal attempt, and foul) only count less
than 1% in the whole data set, not to mention only
the goal event. As the first attempt to relieve the class
imbalance issue to some extent, a pre-filtering step
is performed to remove as many irrelevant instances
as possible. For more details about the pre-processing
process, please refer to [8].

B. Positive Enhanced Ensemble Learning

As aforementioned, most of the existing sam-
pling algorithms (e.g., random under/over-sampling
and synthetic sampling) suffer from the problems of
information loss, over-fitting, and the introduction of
bias. To overcome these limitations, we propose a
novel sampling method which makes the full usage
of all the positive and negative instances in the
training set and builds an ensemble learner based on
the base learning algorithm (BLA, as presented in
section III-C). As shown in Algorithm 1, the proposed
PEEL framework first separates the given training set
Tr into the positive set P and negative set Q. Then
Q is evenly split into K subsets (S j, j = 1, · · · ,K)
based on the given positive ratio r (lines 4 to 7),

which represents the percentage of positive instances
used in each batch (D j, j = 1, · · · ,K) for the base
model training (lines 8 to 15). When r >= 1 (case
1), all positive instances will be used for training
in each batch with the number of negative instances
increased as r goes up; otherwise, when r < 1 (case
2), the positive instances will be randomly sampled
with replacement (assuming independent identical dis-
tribution, i.i.d.) based on the calculated nq (line 5).
Therefore, the numbers of positive and negative in-
stances are identical for each batch in this case. In
either cases, all of the negative instances in Tr will
participate in the training process. When the value of
r is relatively small (<= 1), the positive class will
dominate the characteristic of each batch data set due
to the superior inter-class coherency compared with
the negative class, hence the name PEEL. After each
base model (M j, j = 1, · · · ,K) is properly trained,
the final ensemble learner (hypothesis) is built based
on the equation in line 17. As can be inferred from
Algorithm 1, there are two critical parameters in this
algorithm, i.e., the positive ratio r and the voting
confidence v. While r decides the dominant level of
the positive class in each base model, v reflects the
confidence level for each model. The higher the value,
the larger the number of positive outcomes is required
from the base models for classifying an instance x as
positive for C(x). The selection and evaluation of r
and v will be presented in the experimental section.



C. Base Learning Algorithm

The BLA is constructed based on a set of weak
learners (L = {Lh | h = 1, · · · ,H}) as shown in
Algorithm 2. The output of each weak learner is
linearly combined using the given weight vector w =
{wh | h = 1, · · · ,H}, where each element represents
the confidence for the corresponding weak learner.
The combined results will be used to determine the
final outcome of the base learner B(x) as depicted
in the equation in line 6. Theoretically, a “stronger”
classifier should be assigned a larger weight. If all
the weak learners are with equal weights, then the
base learner reduces to a majority voting algorithm.
The combination of BLA and PEEL framework has an
“ensemble of ensemble” flavor. Considering the small
sample size of each training batch, the computation
overhead of the overall PEEL framework is negligible,
compared with the performance gain. The construction
of BLA will be analyzed in section IV-B.

Algorithm 2 Base Learning Algorithm
Input: Training set Tr′, weak learners L = {Lh | h =
1, · · · ,H}, weight vector w = {wh | h = 1, · · · ,H}, s.t.
∑

H
h=1 wh = 1.

Output: Base learner B(x).
1: procedure BLA(Tr′)
2: for all h = 1, · · · ,H do
3: train model Lh on Tr′;
4: end for
5: return the hypothesis:

6: B(x) =
{

1 if ∑
H
h=1 Lh(x)∗wh > 1/2;

0 othersise
7: end procedure

IV. EXPERIMENTAL ANALYSIS

The proposed framework was extensively tested
upon a large data set, which contains 58 soccer videos
collected from the FIFA World Cup of 2003, 2010,
and 2014. The total number of frames is over 4.7
millions and the total duration of the videos is about
52 hours. Among the total 32k video shots, only 105
of them contain the goal event, which contributes less
than 0.5% to the total number of shots. A summary
of the data set is shown in Table I.

Table I: Data set summary.

No.
Files

No.
Frames

Total
Time

No.
Shots

No.
Goal

Events

58 4,731,807
51

hours
48 min.

32,463 105

A. Evaluation Criteria

The receiver operating characteristic (ROC) curve
is chosen as the evaluation method (under stratified
cross-validation scheme) over the precision recall (PR)
curve since we care more about the true positive rate
(recall) than the precision [14]. In other words, a low
precision is more tolerable than a low recall. This is
because some false positives are also of user interests,
especially in the video event detection scenario as
mentioned before. Therefore, when determining the
threshold for classification, we tend to retrieve a
high true positive rate (or low false negative rate)
and reduce the impact of negative data on the total
classification costs. Table II shows the definition of
the confusion matrix (CM) and Equation 1 presents
the basic metrics for the analysis.

Table II: Confusion Matrix

CM
Predicted
positive

Predicted
negative

Actual positive TP FN
Actual negative FP TN

True Positive Rate (TPR) =
T P

T P+FN
(1)

False Positive Rate (FPR) =
FP

FP+T N
(2)

False Negative Rate (FNR) =
FN

FN +T P
(3)

B. Selection of Weak Learners for BLA

The multiple correspondence analysis (MCA) ap-
proach [37][38] has found its success in various
video analysis tasks, especially the interesting event
detection problem [8][39]. In this paper, it is combined
with the traditional decision tree (DT) algorithm [40]
for constructing the BLA, since DT is usually used
as a weak learner in the ensemble learning mecha-
nism and it has been proved effective for goal event
detection [36][41]. In our experiment, MCA and DT
are assigned with equal weights. MCA is a continu-
ous classifier which outputs probability-like ranking
scores for the testing instances. Thus, the selection
of a proper threshold for binary classification greatly
affects the performance of MCA. To evaluate the
impact of the threshold for MCA, the ROC curve
is plotted in Figure 2 using a subset of the training
data set. As can be seen from the figure, the MCA
algorithm has a satisfactory performance for video
event detection with an AUC value of 0.918. The AUC
of the Conv Hull (shorted for convex hull) illustrates
the theoretical maximum performance of the target
algorithm for the corresponding evaluation data set.
For the comparison purpose, the performance of the
DT algorithm (as a discrete classifier with the binary



Figure 2: MCA ROC curve.

output) on the same testing set is also depicted in
the figure (as a red circle), where the green dotted
line represents a random (by chance) classifier. As
can be inferred from the figure, the MCA has over
10% gain of TPR over the DT in the ideal situation.
The optimal threshold is obtained by minimizing the
average expected cost of classification at point (y,z)
in the ROC space as follows.

Cost(y,z) = (1− p)∗α ∗ y+ p∗β ∗ (1− z) (4)

where α and β are the penalties of a false positive
and a false negative respectively, and p is the positive
portion calculated as

p =
NP

NP +NQ
(5)

where NP and NQ are the numbers of positives and
negatives in the training as illustrated in Algorithm 1.
In our scenario, α and β are assigned with the values
of 0.2 and 0.8 respectively in order to emphasize the
importance of TPR.

C. Analysis of Positive Ratio

To evaluate the performance and impact of the
positive ratio r, the ROC curve over r is plotted with
a fixed value of v (=0.5) as shown in Figure 3. There
are two main observations and conclusions from the
figure. First, the PEEL framework outperforms the
individual weak learner (i.e., DT) in the sense of TPR
by about 10% while maintaining comparable FPR.
Second, the performance of PEEL boosted rapidly
with relatively low FPR. Based on our experimental
analysis, the PEEL framework achieves the best per-
formance when the value of r is around 1.0, which
means the positives and negatives are comparable. In
other words, the training set is relatively balanced for
each batch.

Figure 3: ROC curve on positive ratio (r).

Figure 4: ROC curve on voting confidence (v).

D. Analysis of Voting Confidence

The ROC curve over the voting confidence v for
the proposed PEEL framework is shown in Figure 4
with r = 0.8. As can be seen from the figure, Figure 4
is similar to Figure 3. The AUC (=0.937) is slightly
better than in Figure 3 (with AUC=0.934), which
means v has a relatively higher impact than ron the
performance of PEEL. It is also observed that FPR
degrades relatively faster with varying v values than
r values. Based on the experimental results, the best
performance is achieved when v is about 0.5, which is
equivalent to majority voting among the base learners
(M j).

E. Comparison with Other Methods

Finally, the proposed PEEL framework is compared
with various traditional single models (e.g., KNN,
SVM, Naive Bayes, and DT) and other ensemble
learners (e.g., Adboost, Bagging, and RandomForest).



Figure 5: Comparison on various methods.

All the comparison methods (treated as discrete classi-
fiers) are based on the implementation of WEKA [42]
with the default parameter settings. As can be seen
from Figure 5, our PEEL framework outperforms
all the other methods with over 90% of TPR and
comparable FPR. To be specific, it achieves about 10%
TPR gain over the DT and Bagging algorithms; 20%
TPR gain over the SVM, NaiveBayes, RandomForest,
and Adaboost algorithms; and finally almost 40% TPR
gain over the KNN algorithm.

V. CONCLUSION

In this paper, an effective ensemble learning al-
gorithm called PEEL is proposed for video event
detection. The PEEL framework contains a novel
sampling method which makes the full use of all
negative instances while enhancing the impact of the
positive class for base learner training in the ensemble
mechanism. The experimental analysis demonstrates
the effectiveness of the proposed PEEL framework. In
the future, more data sets and additional measurements
should be applied to further evaluate the framework.
Moreover, the within-class distribution should also be
explored to develop better sampling mechanisms. In
addition, it has great significance to study the opti-
mization strategies for critical parameter estimation.
Finally, it becomes gradually important to introduce
big data analytics and technologies to accommodate
ever-growing data sets.
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