
Transforming Sem-ODM Semantic Schemas to DTDs
Li Yang

Department of Computer Science
University of West Georgia
Carrollton, GA 30118, USA

1-678-839-6656

lyang@westga.edu

Naphtali Rishe
High Performance Database Research Center

School of Computer Science
 Florida International University

Miami, FL 33199, USA
1-305-348-2025

rishen@cs.fiu.edu

ABSTRACT
Exporting data in traditional databases as XML documents so that
non-XML data can be accessed and exchanged seamlessly among
applications has been studied in a number of projects. In this
paper, we present an algorithm that automatically derives a
Document Type Definition (DTD) from a Semantic Schema of
the Semantic Binary Object-Oriented Data Model (Sem-ODM)
based on the formal definitions of DTDs and Semantic Schemas.
The structure and semantic information of a Semantic Schema is
captured and expressed naturally in a DTD without applying any
complicated operators or scanning the actual data stored in the
database. Furthermore, the formalization of the two schemas
connects the two data models and helps us better understand the
capabilities brought about by publishing Sem-ODB data as XML.

Categories and Subject Descriptors
H.2.1 [Logical Design]: Data models, Schema and subschema;
H.2.5 [Heterogeneous Databases]: Data translation

General Terms
Algorithms

Keywords
DTD, Semantic Schema, Formal Definition, Schema
Transformation

1. INTRODUCTION
While XML (eXtensible Markup Language) [1] becomes the de
facto standard for data representation and exchange on the World
Wide Web (WWW), most of the data in the world still resides in
traditional databases and legacy systems. These systems are
backbones of lot of businesses, thus it is not realistic to give them
up completely. Yet, it is feasible to provide XML interfaces to
those systems. In this way, one can access non-XML applications
using available XML tools. And non-XML data in the systems
can be published as XML so that different applications can

exchange their data seamlessly with each other. In this paper, we
study the conversion in this respect. In particular, we study the
transformation of a Semantic Schema of the Semantic Binary
Object-Oriented Data Model (Sem-ODM) [10] to a DTD
(Document Type Definition) [1] in order to facilitate publishing
data in Semantic Binary Object-Oriented Database System (Sem-
ODB) as XML.

Sem-ODB was developed at the High-Performance Database
Research Center (HPDRC) at Florida International University and
is based on a conceptual data model, Sem-ODM. As a fully
functional multi-user object-oriented DBMS, Sem-ODB has been
successfully deployed for highly complex applications such as
applications intended for storage and processing of large amounts
of earth science observations and the Terrafly Geographic
Information System (GIS) [11].

In this paper, we present an algorithm that automatically derives a
DTD from a Semantic Schema based on the formal definitions of
DTDs and Semantic Schemas. Because Sem-ODM is a high-level
and conceptual level data model, which supports inheritance,
explicit relationships and 1:m attributes, and other features, it is
simpler and easier converting a Semantic Schema to a DTD than
converting a relational schema to a DTD. The structure and
semantic information of a Semantic Schema is captured and
expressed naturally in a DTD without applying any complicated
operators or scanning the actual data stored in the database to
come up with the nested structure in the resulting DTD as NeT
did in [4, 5]. Furthermore, the formalization of the two schemas
connects the two data models and helps us better understand the
capabilities brought about by publishing Sem-ODB data as XML.

The rest of the paper is organized as follows. We first present
related work in Section 2. We then introduce the formal
definitions of DTDs and Semantic Schemas in section 3. Section
4 formally describes the mapping from a Semantic Schema to a
DTD. Section 5 concludes this paper and points out the future
work.

2. Related Work
Publishing data in traditional databases into XML has been
studied in various projects. Most DBMS commercial products,
such as MS SQL Server 2000, IBM DB2, among others, provide
support for publishing relational data as XML. However, they all
either generate a simple flat mapping where the resulting XML
doesn’t have reasonable nested structure or require users
explicitly specify the mapping via a means such as an annotated
language or macro file. For instance, DB2 databases can export

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
43rd ACM Southeast Conference, March 18-20, 2005, Kennesaw, GA,
USA.
Copyright 2005 ACM 1-59593-059-0/05/0003…$5.00.

1-237

their data as XML via IBM Net.Data Macro, which is basically a
macro file with programmer-specified SQL query and output
XML structure. SQL Server [12] provides XML virtual views
over relational tables via an annotated XDR (XML-Data
Reduced) schema language, in which annotations are used to
specify the mapping between relational tables/columns and XML
elements/attributes. Our approach is automatic and doesn’t require
users to specify the mapping scheme, and it takes into account the
hierarchical structure of DTD when mapping Sem-ODM schemas.
Lee et al. [4, 5] devised two algorithms, NeT and CoT to map
relational schemas to DTDs. To avoid a flat DTD, Net uses the
nest operator and can only deal with one table. Cot, on the other
hand, is able to convert multiple interconnected relational tables
into DTDs based on inclusion dependencies obtained from the
underlying relational databases. Like Cot, we rely on inclusion
dependencies to generate the hierarchical structure of XML.
However, since inclusion dependencies are explicitly expressed as
relations between categories in the Sem-ODM, our conversion
can be performed in a much simpler way than theirs.
Additionally, NeT is only applicable in a single table case and is
costly since it requires to scan the entire data to determine
whether or not a column in a table should be nested and have
multiple occurrence * or +. Though CoT deals with a complete
relational schema case, to generate a nested structure for columns
that are not involved in inclusion dependencies, NeT has to be
performed first. Our algorithm can handle both single categories
as well as a database schema, which involves the interleaving of
multiple categories (similar to tables in the relational model). This
is enabled by Sem-ODM’s support for 1:m attributes. These
attributes can be naturally translated into sub-elements with * or +
occurrence.

Several XML schema languages, such as DTD and XML Schema
[3] among others, have been proposed to describe the structure
and semantics of XML documents. [8] formally described several
XML schema languages (DTD, XML Schema, RELAX [9], and
others) based on regular tree languages. It represented a DTD as a
local regular tree grammar, whereas [14] represented a DTD as an
extended context free grammar and [2] presented a DTD in terms
of Description Logic. Lee et al. [4] formalized relational schemas
and DTDs, and presented a nesting-based translation algorithm to
transform a relational schema into a DTD. In [6], Mani et al.
formally defined XGrammar, which combines the features of
several XML schema languages, and studied its data modeling
capability and performed the transformation between XGrammar
and an extended ER model. Our definition is similar to the one in
[4] and has been influenced by the formalism presented in [6].
However, [6] formalized not just one particular XML schema
language, but rather a core set of features for several XML
schema languages; our work is more specific. Moreover, we are
concerned with transformation from a Sem-ODM Semantic
Schema to a DTD, not from a relational schema to a DTD.

Another closely related research direction is storing XML data in
traditional databases, which involves the opposite direction of the
conversion. We have finished the research on DTD to Semantic
Schema mapping. Our study shows that storing XML in Sem-
ODB is feasible and efficient in terms of shorter and fewer join
queries in translating XML Query into Semantic queries
compared to traditional approaches. Since it is outside the scope
of this paper, we do not discuss further.

3. Formal Definitions of DTDs and Semantic
Schemas
3.1 Definition of DTDs
Since the appearance of DTDs, many XML schema languages
such as XML Schema, and RELAX, among others, have been
proposed to describe the structure and semantic constraints of
XML documents. Our focus here is on DTDs due to their
simplicity and wide acceptance. Our study has been influenced by
the research in [6, 2, 4]. For simplicity, we do not consider
ENTITY, ENTITIES, NMTOKEN, and NMTOKENS attribute
types in this paper.

Before proceeding with the definition of DTDs, we first present
some notation assumptions. Assume Â is a finite set of attribute
names, Ê is a finite set of element names, τ) is a finite set of
attribute types permitted in a DTD and τ) ::= {CDATA,ENUM,

ID, IDREF, IDREFS}, d
)

is a set of default types that are allowed

in a DTD attribute and d
)

::={IMPLIED, REQUIRED, FIXED} or
є which represents the case where no default type is specified, and
that û is a set of default values of attributes where û ::= {u | u is a
string or an integer allowed in a DTD, or є }. Note that u =є
represents no default value is provided.

(Definition 1) A Document Type Definition (DTD) is formally
denoted by a 4-tuple G = (E, A, S, P), where:

− E is a finite set of element names, representing elements, E⊆
Ê;

− A is a finite set of attributes. Each item of A is of the form X(a:
τ: d: v), where X∈ E, a ∈ Â, τ ∈τ) , d ∈ d

)
, v ∈ û, representing

a is an attribute of element X with τ as the attribute type, d as
the default type, and v as the default value of a;

− S is a finite set of start symbols, i.e., a set of root elements;
− P is a set of element definition rules in the form of X → r,

where X, Y∈ E and r is the content model of X and can be
generalized in the following abstract syntax:

r::= є | Y | PCDATA | (r) | r|r | r,r | r? | r* | r+
In the above definition, є represents the empty string (i.e. EMPTY
content), PCDATA represents content that consists of any string,
‘,’ represents concatenation (Sequence content), ‘|’ represents
Choice content, ‘?’ represents zero or one occurrence of r, ‘*’
represents zero or more occurrences of r, and ‘+’ represents one
or more occurrences of r. Another content model, ‘ANY’, is not
specified in the above syntax. Elements of ANY content can
contain any information, tagged or untagged, i.e., it can be
denoted as X*, where X∈ E and X can be of any content defined
above.

For example, the DTD in Figure 1 which is extracted from [13]
and slightly modified can be represented formally as G1 = (E, A,
S, P), where:

− E={publication, book, article, title, author, contactauthor,
name, first, last, address}

− A={contactauthor(authorID:IDREF:IMPLIED:є),
author(id:ID:REQUIRED: є)}

− S = {publication}

1-238

− P= {publication→ (book*, article*), book→ (title,author),
title→PCDATA, author→ (name, address), name→
(first?, last), first→PCDATA, last→PCDATA,
address→ANY, article→ (title, author*, contactauthor),
contactauthor→ (є) }

Figure 1. DTD Running Example

3.2 Definition of Semantic Schemas
The Sem-ODM (Semantic Binary Object-Oriented Data Model) is
a high-level data model. As a conceptual level data model, it can
mirror the real world enterprise scenarios naturally as the ER
(Entity Relationship) model does. It supports 1:m attributes,
which makes natural nesting an attribute as the sub-element with
* or + occurrence of its parent element. In addition, it has some
advantages of the Object-Oriented data model, such as
inheritance, oids, and explicit relationships among objects, etc.

book_author
(total)

contact_author

author_name
(total)

article_author
(m:m)

the_contactauthor
(total)

AUTHOR
address: String

(total)
id: String (total)

NAME
first:String

 last:String (total)

ARTICLE

CONTACTAUTHOR

PUBLICATION
title: String(total)

BOOK

Figure 2. Semantic Schema Example Representing

Publication

The basic constructs in the Sem-ODM are Categories and
Relations, which are like Entities and Relationships in ER model,
respectively. There are two kinds of categories in the Sem-ODM,
Concrete Categories and Abstract Categories. Concrete

Categories are atomic data types such as String, Number, and
Boolean, among others. Abstract Categories are categories
composed of abstract objects, such as person and book. The
relations in a Semantic Schema are binary. Each of them is
created from an abstract category, which is called the Domain of
the relation, to another category, which is called the Range of the
relation. Relations from an abstract category to a concrete
category are called attributes in the ER model (we also call them
attributes in a Semantic Schema). Relations from an abstract
category to an abstract category are just like associations in an
Object-Oriented model. Graphically, in the Sem-ODM, categories
are represented by rectangles. Solid arrows, starting from the
domain categories and ending at the range categories, are used to
represent non-attribute relations. Inheritance is represented by
dashed arrows from sub-categories to super-categories. Attributes
are represented inside category rectangles with a colon (:)
delimiting the attribute’s name and type. Cardinality and other
constraints (such as totality1) of a relation are placed alongside its
type in parentheses. Figure 2 shows an example Semantic Schema
for publications. For example, publication is a super-category,
which has two sub-categories: book and article. publication has a
total attribute called title with a range of Concrete Category
String. The category book has a relation called book_author
pointing to the category author. Note that in a Semantic Schema,
relations without specifying cardinalities have m:1 cardinality by
default.

We now formally define the Sem-ODM model. Before we start,
we assume that aC

)
 is a finite set of abstract category names,

cC
)

is a finite set of concrete category names, R
)

, is a finite set of

relation names, and V
)

is a finite set of strings representing the

values of cardinality and totality, and V
)

::= {m_1, m_m,
1_m,1_1, total, not_total}.

(Definition 2) A Sem-ODM Semantic Schema can be formally
denoted as a 4-tuple H =(Ca, W, Cc, R) where:

− Ca is a finite set of abstract category names, Ca ⊆ aC
)

;
− W is a finite set of inheritance relationships and each item in W

has the form of (O, S1, S2...Sn), where O, Si ∈ Ca, and O is the
super-category of Si, (i=1..n);

− Cc is a finite set of concrete category names, Cc ⊆ cC
)

;
− R is a finite set of relations in the form of r(c: t :: d → f),

where r ∈ R
)

, c, t ∈ V
)

, d∈Ca , f ∈Ca∪Cc and c denotes the
cardinality of r , t the totality, d the domain, and f the range;

For example, the Publication Semantic Schema in Figure 2 can be
formalized as H1 = (Ca, W, Cc, R), where:

− Ca={PUBLICATION, BOOK, CONTACTAUTHOR, ARTICLE,
AUTHOR, NAME}

− W ={(PUBLICATION, BOOK, ARTICLE)}
− Cc ={String}

1 A relation R whose domain is C is total if at all times, for every object x

in category C, there exists an object y such that xRy.

<!DOCTYPE publication [
<!ELEMENT publication (book*, article*)>
<!ELEMENT book (title, author)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (name, address)>
<!ATTLIST author id ID #REQUIRED>
<!ELEMENT name (first?, last)>
<!ELEMENT first (#PCDATA)>
<!ELEMENT last (#PCDATA)>
<!ELEMENT addressANY>
 <!ELEMENT article (title, author*, contactauthor)>
<!ELEMENT contactauthor EMPTY>
<!ATTLIST contactauthor authorID IDREF #IMPLIED>

] >

1-239

− R ={title(m_1:total::PUBLICATION→ String),
adress(m_1:total::AUTHOR→ String),

 id(m_1: total::AUTHOR→ String),
 first(m_1:not_total::NAME→ String),

 last (m_1:total::NAME→ String),

book_author(m_1:total::BOOK→AUTHOR),
article_author(m_m:not_total::ARTICLE→AUTHOR),

the_contactauthor(m_1:total::ARTICLE→ CONTACTAUTHOR),
author_name(m_1:total::AUTHOR→NAME),
contact_author(m_1:not_total: CONTACTAUTHOR → AUTHOR)}

4. TRANSFORMATION FROM A
SEMANTIC SCHEMA TO A DTD
Converting a Semantic Schema to a DTD is straightforward,
compared to converting a relational schema to a DTD. There are
two basic constructs in DTDs, elements and attributes. The
relationships among elements can be represented by either parent-
child element relationships or ID and IDREF/IDREFS attribute
pairs. We present the mapping rules and algorithm below.
Intuitively, we can map categories to elements, and relations to
parent-child element relationships or ID and IDREF/IDREFs
pairs. Sometimes both mapping alternatives are correct, while one
might be better and more semantically meaningful than the other
in other situations. Attributes can be mapped to either elements or
attributes according to the circumstances. However, there are still
some subtle points which need special attention in the
transformation process, for example, how to deal with inheritance,
etc.
The detailed mapping rules from a Semantic Schema H =(Ca, W,
Cc, R) to a DTD G = (E, A, S, P) are described as follows.

1) Category mapping:
Map each abstract category C∈Ca to an element Ec, i.e.,
E=E∪ { Ec }. For example, Categories BOOK and ARTICLE
in Figure 2 are mapped as elements BOOK and ARTICLE,
respectively.

2) Attribute mapping:
For each relation r∈R, where r(c: t ::d → f) , c, t ∈ V, d ∈
Ca, f ∈ Cc (i.e. r is an attribute of d)
a) If c = 1_1 or m_1

i) If f = Enumerate
Then r is mapped to an attribute ar of ENUM type of
Ed, where Ed is the element corresponding to category
d, i.e. Ed (ar: ENUM: d: v), and the default type d is
determined as follows:

• If t = total, then d = REQUIRED
• else, d = є

Additionally, the default value v is determined by the
default value of the relation r.

ii) Otherwise (r is not of ENUM type)
Then r is mapped to an attribute ar of CDATA type of
Ed, where Ed is the element corresponding to category
d, i.e. Ed (ar: CDATA: d: v), and default type d and
default value of the attribute are determined in same
procedure as the above.

For example, Category PUBLICATION in Figure 2
has a total attribute called title which is of String type.
It will be mapped as a REQUIRED attribute of the
element PUBLICATION, i.e., we will have
PUBLICATION (title: CDATA: REQUIRED: є).

b) If c = 1_m or m_m
Then r is mapped to a sub-element Er of Ed, where Ed is the
element corresponding to the category d, Ed→ (…Er…)
and Er→PCDATA. The cardinality of Er in Ed is
determined as follows:

i) If t =not_total, then Ed→ (… Er*…)

ii) If t =total, then Ed→ (… Er+…)

In the above mapping algorithm, a 1:m or m:m attribute is
mapped as an element instead of an attribute. This is
because in DTDs no attribute type except the IDREFS type
can express the 1-to-m multiplicity. Since in some
situations the IDREFS type is not appropriate for this
transformation, a general solution is to map 1:m or m:m
attributes to sub-elements of their domain elements, as
shown above.
Note that because Sem-ODM supports 1:m attributes, we
don’t have to go through the nesting process that was
proposed in the NeT algorithm [5], where scanning the
entire table has to be done in order to find out the multi-
valued attributes. A 1:m attribute is naturally converted to a
sub-element of a parent element corresponding to the
category that this attribute belongs to.

3) Relation Mapping:
For each relation r∈R, where r(c: t:: d → f) , c, t ∈ V, d∈Ca,
f ∈Ca (i.e. r is a relation between two abstract category d and f)
Then r is mapped to the sub-element relationship between Ed
and Ef, and Ed→ (.....Ef….), where Ed and Ef are elements
corresponding to the abstract category d and f. The cardinality
of Ef in Ed is determined as follows:

i) If c = m_1 or 1_1, and t = not_total,
 then Ed→ (… Ef?…)

ii) If c = m_1 or 1_1, and t = total, then Ed→ (… Ef…)

iii) If c = m_m or 1_m, and t = not_total,
 then Ed→ (… Ef*…)

iv) If c = m_m or 1_m, and t = total,
 then Ed→ (… Ef+…)

In the above transformation, we put the range element directly
as a sub-element of the domain element, for instance, the
relation book_author with domain BOOK and range AUTHOR
is mapped as the sub-element relationship between BOOK and
AUTHOR as in BOOK→ (AUTHOR). This is because a
relation in a Semantic Schema actually indicates the
relationship between the domain category and range category.
In a DTD, such a relationship is embodied by the sub-element
relationship between the parent element (corresponding to the
domain) and child element (corresponding to the range).
Hence, it is not necessary to keep the relation name in the

1-240

DTD. However, in some situations, it may be desirable to keep
the relation name to indicate the semantics of the sub-
elements. For instance, suppose there are two relation r1 and r2
from category d to category f. We would have the following
mapping result if we followed the above mapping scheme:
Ed→ (f c,f c’),where c and c’ represent the mapped cardinality
for r1 and r2, respectively, and are determined according to the
above description. It’s not clear to users what these two fs
represent. A better solution is to transform such relations into
Ed→ (r1

c,r2
c’), r1→Ef and r2→Ef . Therefore, to make the

mapping semantically easier to understand, we let the designer
to tune the DTD at the end of the transformation. In this way,
they can introduce appropriate intermediate elements which
can correctly represent the semantics of the sub-element
relationship.
Note that we mentioned at the beginning of the section that the
relations in Sem-ODM can also be mapped to ID and
IDREF/IDREFS pairs in DTD. Though it is possible, we feel
that it reduces the level of nesting in the resulting DTD. Thus,
we adopt the sub-element approach and leave it to the users to
decide whether or not to tune the mapping at the end.

4) Inheritance mapping
For each u = (O, S1, S2, ….Sn) ∈ W in H, where O, Si ∈ Ca,
(i=1..n), and O is the super-category of Si, create an attribute id
of ID type with #REQUIRED default type in EO and an
attribute id of IDREF type with #REQUIRED default type in
each siE , where EO is the element corresponding to super-

category O and siE is the element corresponding to Si (i=1..n).
For example, PUBLICATION is the super-category of BOOK
and ARTICLE in Figure 2, we map this inheritance relationship
to

 PUBLICATION→ (є),
PUBLICATION(id:ID:REQUIRED:є),
BOOK(id:IDREF:REQUIRED:є)
ARTICLE(id:IDREF:REQUIRED: є).

 The reasoning behind using an ID and IDREF pairs instead of
a sub-element relationship is ID and IDREF pairs have the
semantic of “is-a” while sub-element relationships have the
“has” semantic. While it is obvious, inheritance between sub-
categories and super-categories exhibits an “is-a” relationship.

5) Determine the root element set S
Since any element in the DTD can become a root element, we
set S = E.

The mapping algorithm from a Sem-ODM Semantic Schema
H = (Ca, W, Cc, R) to a DTD G = (E, A, S, P) is described as
follows:

1. For each unmapped abstract category C∈Ca, create an
element C in E, then

• Check if it has super-category, if it does, follow the
above rule 4)

• For each attribute att ∈ R , follow the above rule 2)
for Attribute Mapping

• For each relation rel ∈ R, follow the above rule 3) for
Relation Mapping using the depth-first search to map
all the categories that are reachable from C

• Mark this category as mapped

2. Repeat the above step 1 until all the categories are marked
3. Set S=E

At the end of the mapping process, users can tune the resulting
DTD into one that better expresses the semantics by, for example,
using a relation name representing the parent-child relationship as
explained in the rule 3 above or changing the sub-element
relationship mapping to IDREF reference mapping. For instance,
in Figure 2 the relation contact_author between category
CONTACTAUTHOR and AUTHOR is mapped to the sub-element
relationship between CONTACTAUTHOR and AUTHOR as in
CONTACTAUTHOR→ (AUTHOR?) since contact_author is
m:1, not_total. An alternative way to express this relationship is
to create an attribute id of ID type with #REQUIRED default type
in AUTHOR (omitted in our example, since there is already such
an attribute) and then create an attribute ref_author of IDREF
type with #IMPLIED default type in CONTACTAUTHOR, i.e.,

AUTHOR(id: ID: REQUIRED: є)
CONTACTAUTHOR(ref_author: IDREF: IMPLIED: є)

In case contact_author is 1:m or m:m (no matter what totality it
has), an IDREFS, instead of IDREF, attribute is created in
CONTACTAUTHOR. If contact_author is total (no matter what
cardinality it has), then the attribute ref_author of IDREF type (if
with m:1 or 1:1 cardinality) or IDREFS type (if with m:m or 1:m
cardinality) has #REQUIRED default type in
CONTACTAUTHOR.
For example, the DTD corresponding to the Publication Schema
in Figure 2 is G2 = (E, A, S, P), where:

− E= {PUBLICATION, BOOK, ARTICLE, AUTHOR,
CONTACTAUTHOR, NAME }

− A= {PUBLICATION(title: CDATA: REQUIRED: є),
PUBLICATION(id: ID: REQUIRED: є),
BOOK(id: IDREF: REQUIRED: є),
ARTICLE(id:IDREF:REQUIRED:є),
AUTHOR(address:CDATA:REQUIRED:є),
AUTHOR(id: ID: REQUIRED: є),
NAME(first: CDATA: є: є),
NAME(last: CDATA: REQUIRED: є)}

− S ={PUBLICATION, BOOK, ARTICLE, AUTHOR,
CONTACTAUTHOR, NAME }

− P ={PUBLICATION → (є), BOOK→AUTHOR),
 ARTICLE→ (AUTHOR*, CONTACTAUTHOR),

 AUTHOR→ (NAME), NAME→ (є)

 CONTACTAUTHOR → (AUTHOR?) }

Figure 3 shows the typical DTD representation of the above
formal DTD representation.
Note that Data in traditional databases is often regarded as un-
ordered. This characteristic also holds in the Sem-ODM.
However, this is not the case for the XML data model. For
instance, in the DTD example in Figure 1, there is an order
between title and author: the title must appear before author in a
book. This ordering concept is expressed by the concatenation
operator (,) between title and author in the content model of
element book. Such an order is sometimes called the Element
Order [7]. When translating a Semantic Schema into a DTD, an

1-241

implicit ordering is created according to the order of processing.
For example, in our example, category ARTICLE and its two
relations article_author and the_contactauthor are translated into
ARTICLE→ (AUTHOR*, CONTACTAUTHOR), where
AUTHOR is listed as the first element of ARTICLE. It’s also
possible that CONTACTAUTHOR is listed first depending on
which relation gets translated first. Again, the designer can tune
the ordering as it fits best.

Figure 3. Generated DTD

The mapping algorithm we present here has several properties.
First, it’s lossless in the sense that all the structure (such as
categories and attributes) and semantic information (such as
relationships between categories) are kept in the resulting DTD.
Second, the resulting DTD has desirable nested structure. We can
prove the correctness of the algorithm. But due to space
constraints, it is not provided here. The complexity of the
algorithm is Θ(N+M) where N is the total number of categories
(vertices) and M is the total number of relations including
attributes (edges) in the Semantic Schema.

5. CONCLUSION AND FUTURE WORK
In this paper, we formally described DTDs and Sem-ODM
Semantic Schemas in order to facilitate the explanation of schema
transformation between the two data models. A Sem-ODM
Semantic Schema can be converted into a DTD by mapping
categories to elements, attributes to attributes or elements, and
relations to parent-child element relationships. The differences,
similarities, and possible connection of the two data models are
expressed via the formal representation of the two schemas.
We are working on extending this work to Semantic Schemas to
XML Schemas mapping and the implementation. Compared to
XML Schema, DTD has some limitations, such as very limited
data types, untyped IDREF(S), among others. Some data type
information in the Semantic Schema is lost during the Semantic
Schema to DTD transformation process because DTD is geared
toward the support of String data. Some features of the Sem-ODM
cannot be exploited when mapping Semantic Schemas to DTDs.
For example, the Sem-ODB supports user-defined Integer, Real,
Enumerate, and String categories while providing a way to
specify the data format for each type. Users can specify the
minimum and maximum number of an Integer Category, or use
regular expressions to denote the format of a String category.
Similar features are supported in XML Schema. We expect to be

able to utilize these rich semantic features of the Sem-ODM in
publishing Sem-ODB data as XML.

6. ACKNOWLEDGEMENTS
This research was supported in part by NSF Grants EIA-0320956,
EIA-0220562, and HRD-0317692.

7. REFERENCES
[1] T. Bray, J. Paoli, C. M. Sperberg-McQueen and E. Maler

(Eds), “Extensible Markup Language (XML) 1.0 (Second
Edition)”, W3C Recommendation, October 2000,
http://www.w3.org/TR/2000/REC-xml-20001006.

[2] Diego Calvanese, Giusepe D. Giacomo, Maurizio Lenzerini,
“Representing and Resaoning on XML Documents: A
Description Logic Approach”, Journal of Logic and
Computation, Vol. 9, No. 3, pp 295-318, Oxford University
Press, 1999.

[3] David C. Fallside (Ed), “XML Schema Part 0: Primer”, W3C
Recommendation, May 2 2001,
http://www.w3.org/TR/xmlschema-0/.

[4] Dongwon Lee, Murali Mani, Frank Chiu, Wesley W. Chu,
“Net & CoT: Translating Relational Schemas to XML
Schemas using Semantic Constraints”, CIKM’02.

[5] Dongwon Lee, Murali Mani, Frank Chiu, Wesley W. Chu,
"NeT & CoT: Inferring XML Schemas from Relational
World", Proc. of (ICDE), San Jose, CA, USA, 2002.

[6] Murali Mani, Dongwon Lee, Richard R. Muntz, “Semantic
Data Modeling using XML Schemas”, Proc. 20th Int'l Conf.
on Conceptual Modeling (ER), Yokohama, Japan, 2001.

[7] Ioana Manolescu, Daniela Florescu, and Donald Kossmann,
“Pushing XML queries inside relational databases”, Tech.
Report No. 4112, INRIA, January 2001.

[8] Makoto Murata, Dongwon Lee, Murali Mani, “Taxonomy of
XML Schema Languages using Formal Language Theory”,
Extreme Markup Languages, Montreal, Canada, 2000.

[9] M. Murata, “RELAX (Regular Language description for
XML)”, Aug. 2000, http://www.xml.gr.jp/relax

[10] Naphtali Rishe, “Database Design: The Semantic Modeling
Approach”, McGraw-Hill, 1992.

[11] Naphtali Rishe, “TERRAFLY: A High-Performance Web-
based Digital Library System for Spatial Data Access”,
ICDE’01 (Demo), pp17-19, 2001.

[12] Michael Rys, “Bringing the Internet to Your Database: Using
SQLServer 2000 and XML to Build Loosely-Coupled
Systems”, In Proceedings of ICDE 2001, pp. 465-472,
Heidelberg, Germany, April 2001.

[13] Jayavel Shanmugasundaram, Kristin Tufte, Gang He, Chun
Zhang, David DeWitt, Jeffrey Naughton, “Relational
Databases for Querying XML Documents: Limitations and
Opportunities”, Proc. of VLDB, Edinburgh, UK, 1999.

[14] Victor Vianu, “A Web Odyssey: from Codd to XML”,
Proceedings of the 20th ACM SIGACT-SIGMOD-SIGART
Symposium on (PODS), Santa Barbara, CA, USA, 2000.

<!ELEMENT publication EMPTY>
<!ATTLIST publication id ID #REQUIRED>
<!ATTLIST publication title CDATA #REQUIRED>
<!ELEMENT book (author)>
<!ATTLIST book id IDREF #REQUIRED>
<!ELEMENT article (author*, contactauthor)>
<!ATTLIST article id ID #REQUIRED>
<!ELEMENT contactauthor (author?)>
<!ELEMENT author (name)>
<!ATTLIST author id ID #REQUIRED>
<!ATTLIST author address CDATA #REQUIRED>
<!ELEMENT name EMPTY>
<!ATTLIST name first CDATA>
<!ATTLIST name larst CDATA #REQUIRED>

1-242

