
Ot-t 
World Multi:on~nCP on--:::::::::= 

SystA tli:s. Cyberneti:s 
and lnfot111atrs 

July 22-25, 2001 
Orlando, Florida, USA 

PR[IEEDINEiS 
Volume I 

Information Systems Development 

Organized by IllS 
International 
Institute of 
Informatics 
and Systemics 

Member of the International 
Federation of Systems Research 

IFSR 
Co-organized by IEEE Compute1· Society 

(Chapter: Venezuela) 

EDITORS 
Nagib Callaos 

Ivan Nunes da Silva 
Jorge Molero 



XML Wrapper: Storing and Retrieving XML Documents Using Semantic 
Binary Object-Oriented Database (Sem-ODB)• 

Li YANG, Naphtali RISHE, Jun YUAN, Maxim CHEKMASOV, 
Luis PACHAS, Alejandro MENDOZA 

High-performance Database Research Center 
School of Computer Science 

Florida International University 
Miami, FL 33199, U.S.A. 

ABSTRACT 

As a fast growing data representation and exchange 
standard on the World Wide Web, XML has recently 
gained a lot of attention from both the academic and 
industrial communities. This paper addresses the issue of 
employing the power of database technologies on XML 
data. In this paper, a system called XMLWrapper, which 
is used to store and retrieve XML using the Semantic 
Binary Object-Oriented Database (Sem-ODB), is 
described. The Sem-ODB is based on Semantic Binary 
Object-Oriented Data Model (Sem-ODM), which is a 
data model that supports richer semantics than the 
traditional relational data model. The mapping 
mechanisms, which include the algorithms to map DID 
constructs to Sem-ODM constructs and the meta-schema 
used to store the mapping information, are explaine.d in 
detail in this paper. 

Keywords: XML, DID, Semantic Database, Semantic 
Schema, Mapping Mechanisms. 

1. INTRODUCTION 

XML, the eXtensible Marlcup Language [1], has become 
an increasingly popular data representation and exchange 
format in recent years due to its simplicity, flexibility, 
and self-describing nature. Unlike liTML (Hyper-Text 
Markup Language), which uses tags to specify the format 
of data, XML uses tags to represent the semantics of the 
data that it presents. Associating semantics with content 
makes XML documents not only human readable but also 
machine understandable. 

There has been some research going on designing 
special-purpose systems to store XML documents ([10], 
[11]) as well as storing them in traditional databases ([3], 
[5], [6], [7], [8], [9]). Special-purpose XML data systems 
have the advantage of being well designed for fitting and 
tuning for "native" XML. However, the idea of starting 
from scratch rather than utilizing mature database 

technologies may not be easily accepted by people who 
are accustomed to traditional DBMSs. Though relational 
DBMSs have matured for the past 20 years, its structured 
two-level table and attribute based representation is not 
well suited for the nested structure of XML. In order to 
support XML, some extensions, such as support for set
valued attributes, must be added to reduce the 
fragmentation that may occur while mapping XML to 
relational tables [6]. Object-Oriented DBMSs support 
complex data types that can easily support the set-valued 
and nested structures in XML. We believe that it would 
be very natural to extend an OODB with XML-specific 
functions to support the storage and retrieval issues 
relevant to XML. 

In our design of XML Wrapper, we use the Semantic 
Binary Object-Oriented Database System (Sem-ODB), as 
our underlying XML repository. Sem-ODB was 
developed at the High-Performance Database Research 
Center (HPDRC) [12] and is based on a conceptual data 
model, the Semantic Binary Object-Oriented Data Model 
(Sem-ODM [13]). It has been successfully deployed for 
highly complex applications such as applications 
intended for storage and processing of large anx>unts of 
earth science observations and ttie Terrafly Geographic 
Information System (GIS) [15]. 

The XML Wrapper project aims to exploit the power 
of Sem-ODB in modeling, querying and retrieving semi
structured data, while maintaining the autonomy of 
legacy database applications and XML applications. A 
key assumption is that XML Wrapper is based on the 
existence of a DTD (Data Type Definition) (2] for each 
XML document DTDs are used to describe the structure 
of XML documents and are very much like schemas in 
databases. XML Wrapper can map any DTD to a 
Semantic Schema and then load XML documents 
conforming to this DTD into the Sem-ODB. After this. 
users can pose XML queries over the XML data and get 
results in XML without being aware of the underlying 

*This research was supported in part by NASA (under grants NAG5-9478, NAGW-4080, NAGS-5095, NASS-97222 and NAG5-Q30) 
and NSF (CDA-9711582, IRI-9409661, HRD-9707076. and ANl-9876409). ' 

82 



storage they are using. The focus of this paper will be on 
the mapping mechanism between DIDs and Semantic 
Schemas. 
1.1. Related Work 

The potentials and limitations of using relational database 
engines for processing XML documents conforming to 
DTDs are discussed and explored in [6]. One big 
limitation of RDBMSs is that they do not support set
valued attributes. This might result in fragmentation 
when representing set sub-elements of XML in an 
RDBMS. [6] However, Sem-ODM supports 1-to-m 
attributes, which allows it to support set-valued attributes. 

Storing and querying XML data using an RDBMS is 
also discussed in [8], but the focus of that paper is on 
mapping XML documents directly to relational tables; 
only very simple schemes are handled. It is not necessary 
for an XML document to conform to a DID. However, 
without DIDs, tags in XML documents can be arbitrary 
and not interoperable. Though each XML document is 
self-describing, no common semantics for a group of 
similarly structured XML doeuments exists if they do not 
agree on some DID. XML conforming to a DID helps 
to solve problems in application interoperability and data 
integration on the Internet and business-to-business 
infonnation exchange in E-commerce [3](4]. Hence, it is 
required that each XML document that users provide 
conforms to a DID when using our approach. 

Our approach is very similar to the one in [5], which 
describes an approach to mapping XML DTDs to 
relational schemas and to keeping the mapping 
infonnation in a meta-schema to solve the problem of 
data model and schema heterogeneity. However, in our 
~pproach, we use the Sem-ODB (a kind of OODB) 
mstead of a RDB as the XML repository. Sem-ODM has 
~e features of Object-Oriented data models, such as 
~ritance, oid, explicit description of relationships and 
a high-~evel data model, while maintaining the simplicity 
of relational data models such as simple consttucts. It is 
very easy to represent set-valued attributes and nested 
structures in Sem-ODM, thus avoiding the common 
problem of fragmentation when using RDBMSs to store 
XML. In our mapping mechanism, we first simplify 
DTDs before mapping them to Semantic Scbemas. 

1.2. Road Map 

The rest of the paper is organized as follows. In Section 
~· the XML Wrapper architecture and main modules are 
~~uced. Section 3 first gives an overview on Semantic 
be mas and DIDs, and then the data model mapping 

d 
twc:en DIDs and Semantic Schemas is further 

escrtbed . m the rest of the section We present our 
conclusio d · ns an plans for future work in section 4. 

It,;, 

83 

2. XMLWRAPPER ARCHITECTURE 

As illustrated in Figure 1, there are five basic 
components, each of which may further consist of 
component modules, in the XMLWrapper architecture. 

The first component is composed of two sub
modules: the DTD V alidator and the DTD Mapping 
Modules. The DID V alidator is used to check that the 
DIDs users provided are syntactically correct The DID 
Mapping module maps the DIDs to Semantic Scbemas 
and stores the mapping information and the meta
scbemas of the DID and corresponding semantic schema 
in the KnowledgeBase, which is the second component 
of the architecture. 

The third component is composed of the XML 
Parser and the XML Loader. The XML Parser parses 
the XML documents that users intend to store in the 
Semantic DB and make sure that it is well-formed and 
valid according to the DID that was validated in previous 
step. After this, The XML Loader extracts the XML data 
and stores it in the Semantic DB via SDB Engine APis. 

The fourth component processes XML queries that 
users input First, the XML Query Parser parses the 
XML query and generates a parse tree, then the Query 
Translator & Optimizer translates the XML query into 
basic queries that are supported by SDB Engine APis, 
generates an optimal execution plan, and sends it to the 
SOB Engine for execution. The last component, the 
XML Document Generator, reconstructs the data, 
which is retrieved from the underlying database system, 
into a readable XML document and returns it to users. 

This paper will focus on the mapping component of 
the architecture and explain the mapping mechanisms in 
detail in the following section. 



I . 

i 
'· 

i 
d 
•: 

3. SCHEMA MAPPING 

This section will describe how to map a DTD to a 
Semantic Schema of Sem-ODM. We first give a brief 
oveiView of the DTDs and the Semantic Schemas of 
Sem-ODM. then make a classification of DID constructs 
and describe the mapping mechanisms drawn from the 
classification in XMLWrapper. Finally, this section will 
illustrate the meta-schemas used in XMLWrapper to help 
resolve data model heterogeneity. 

3.l.DTD 

A Data Type Definition (DID) [2] describes the structure 
and constraints of XML documents. The purpose of a 
DTD is to define the legal building blocks of an XML 
document. Figure 2 is a DID example that was extracted 
from [7] and is used as a running example in this paper. 

<!-book-> 
<!ELEMENT book (front. body, references)> 
<!ELEMENT front (title, author+, edition, 

publisher)> 
<!ELEMENT title (IPCDATA)> 
<!El£MENT author (lint. second, email?)> 
<!ELEMENT first (IPCDATA)> 
<!ELEMENT second (#PCDATA)> 
<!El£MENT email (IPCDAT A)> 
<!ELEMENT edition (IPCDA TA)> 
<!El£MENTpubli.sber(IPCDATA)> 
<!El£MENT body (part+ I chapter+)> 
<!El£MENT part (ptitle, cbapter+ )> 
<!A TILIST part id 10 #REQUIRED> 
<!ELEMENT ptitle (IPCDATA)> 
<!ELEMENT chapter (ctitle, section+)> 
<!A TI1...IST chapter id 10 IREQUIRED> 
<!ELEMENT ctitle (#PCDATA)> 
<!El£MENT section (stitle, paragraph+)> 
<!A TILIST section id 10 #REQUIRED> 
<!ELEMENT stitle (IPCDATA)> 
<!ELEMENTparagraph(IPCDATA)> 
<!El£MENT references (publications*)> 
<!A TILIST references reftype (book I article! 
conferences I wwwaddress) "article"> 

Figure 2. A DID Example 

It can be seen from this DTD, that some elements 
and attributes are defined. Elements can be composed of 
s~lements, which results in XML documents' nested 
structure. For example, each book can have front, body 
and references as its sub-elements. Each sub-element may 
have a cardinality of • or+ or ?, which indicates how 
many times the sub-element can appear in that element 
Elements may have attributes, for example, element 
chapter has an attribute named id which has an ID data 
type. Elements which are sub-elements of other elements 
can appear in some order (indicated by , ) or without any 
order (indicated by I ). For example, for a book, its front 
must appear before its body and references, but both of 
parts and chapters can appear in the body of a book 
regardless of their ordering. 

84 

3.2. Semantic Schemas in Sem-ODM 

There are two constructs, category and relation, that are 
used to describe a Sem-ODM. Categories are like Entities 
in an ER model except that the Attributes in an ER model 
are represented as relations in the Sem-ODM. A Category 
can either be a Concrete Category or an Abstract 
Category. Concrete Categories are categories like String, 
Number, and Boolean. Abstract Categories are composed 
of abstract objects. For example, categories like person 
and book are abstract categories. In a Semantic Schema 
there can be binary relations from an abstract category, 
which is called the Domain of the relation, to another 
category, which is called the Range of the relation. 
Relations from an abstract category to a concrete 
category correspond to attributes in an ER model. 
Relations from an abstract category to an abstract 
category are just like associations in an 00 model. 

With the help of relations in the Sem-ODM, the 
nested structure of XML can be represented in a 
Semantic Schema. Sem-ODM also has the concept of 
Cardinality of relations. There isn't any ordering concept 
in Sem-ODM. We would have to extend the relations in 
Sem-ODM with ordering to support this feature of XML 
And we also add an XMLtype as a concrete category in 
the Sem-ODB to support XML-specific data types. 

3.3. Mapping DTDs to Semantic Schemas 

After describing the basic constructs of DIDs and 
Semantic Schemas, we show how to map DTDs to 
Semantic Schemas in this sub-section. 

3.3.1. Simplifying DTDs As shown in Figure 2, 
elements in a DID, especially composite elements that 
are composed of other elements, look much like regular 
expressions except that there is no ordering concept and 
explicit cardinality in regular expressions. A regular 
expression could be very complex, such as ((afb*lc)*ab)*. 
In this sense, a DTD could also have very complex 
structure, for instance, <!ELEMENT e ((a,b,c)*Kd*,f))* 
>, though this might not be needed in practice. To ease 
the mapping process, we transform complex DTDs to 
simpler, but equivalent ones before performing the real 
mapping. This idea is adopted from [6][16]. 

3.3.2. DTD Constructs Clasmf"JCation While 
considering the mapping from DTDs to Semantic 
Schemas, we would usually start with mapping the 
constructs of DTDs to the constructs of Semantic 
Schemas. Before we get to the mapping algorithm. we 
need to make a classification of the information that we 
can get from a DTD. 

The basic constructs of a DID are elements and 
attributes, which are depicted in Figure 3 in the form of a 
Sem-ODM Semantic Schema. Therefore, mapping can be 
considered from these two perspectives, element-related 
and attribute-related mapping. 



----------------------------------

~.!!ire , , 

According to the content type of elements, elements 
can be classified into EmptyContent, AnyContent, 
MjxcdContent and ChildrenContent, as illustrated in 
Figure 4. Furthermore, MixedContent elements can be 
categorized as DataOnly, which only contains 
#fCDATA, and real Mixed, which contains both 
#fCDATA and sub-elements. A ChildrenContent 
element can either be a Choice element in which the 
ordering of sub-elements doesn't matter or sequence 
element in which the ordering of sub-elements matters. 

I IJIDGnmrl 

.·7 ~\'-. 

Bemtt .... 
Nm:~ " 

(l:l,n;i) (l:ui 

Order_card (I : m) 

. . . . 
.---~----, : : 

~Fmpt;:=)Con==ten=t ~I j I Mi_;Cootent 

An)Content 1 ~ ~ 
• 0 .------., 

I 
AllrilUe 
Nm:~ 
(l:l,ni) 

ParentOlildOrder 
PName:String(IOial) 

Order : int 
CardiDality: String 

Has_ child 
'•,, , (m : l.m,tolal) 

........ 

Oloice II Scqueoce 

Figure 4. DID Element Schema 

Figure 5. DTD Attnl>ute Scbcma 

Attributes in DTDs can be further refined according 
to their type and default, as shown in Figure 5. An 
attribute can have type CDATA, Tokenized, or 

85 

Enumerate. Each attribute could have a FIXED, 
IMPLIED, DEFAULT, or REQUIRED default value. 

3.3.3. Schema Mapping Based on the above 
categorization, we have come up with the following 
mapping rules related to elements. 

( 1) Every Element E of ChildrenContent, EmptyContent, 
and Mixed type is mapped to a Category Ec in the 
Semantic Schema. For example, the element book, 
which is of ChildrenElement type, is mapped to 
category Book in the Semantic Schema. 

(2) For every Element E of AnyContent type, 
• If E has parent element P (might be many), tben E 

is mapped to a relation from the category Ep, 
which is the category corresponding to the element 
Pin the Semantic Schema. to XMLType. 

• IfE doesn't have any parent element, E is mapped 
to Category Ec with a relation R from Ec to 
XMLType. 

(3) For every Element E of DataOnly type, 
• If E has parent element P (might be many), then E 

is mapped to a relation from the category Ep, 
which is the category corresponding to the element 
P in the Semantic Schema. to String. 

• IfE doesn't have any parent element, E is mapped 
to Category Ec with a relation R from Ec to String 
For example, the element first is mapped to a 
relation called first with category Author as its 
Domain and String as it Range. 

To map relationships between elements and sub
elements, and relationships between attributes and 
elements in DTDs into relations in Semantic Schema, the 
following rules exist. 

(1) Every sub-element E; of element E of Choice type is 
mapped into a relation of its parent Category Ec. 
which is the category corresponding to E. 

(2) Every sub-elements E; of element E of Sequence type 
is mapped into a relation of its parent Category Ec. 
which is the category corresponding to E. In 
addition, we need pay special attention to the 
ordering of each sub-elements of E. We include this 
information in the corresponding relations of the 
Semantic Schema. For example, sub-elements front, 
body and references of element book are mapped to 
relations of Category book with ordering of 1, 2 and 
3, respectively. 

Another factor that should be considered is the 
cardinality of sub-elements. We represent cardinality of 
sub-elements in the corresponding relations as following: 

(1) Cadinality • is mapped to 1:0 .. m 
(2) Cadinality? is mapped to 1:0 .. 1 
(3) Cadinality +is mapped to l :l..m 

I :1 

' ' 1 

I! 



p 

I. 

( 4) Any sub-elements appearing in their parent elements 
with no cardinalities specified are mapped as having 
1:1 cardinality. 

Attributes in DTDs are mapped to relations with the 
parent Category as the Domain and a Concrete Category 
as the Range. The mapping rules are generalized as 
follows. 

(1) For <! ATITJSf E att CDATA>, where E is an 
element and att is its attribute of type CD AT A. 
Attribute att is mapped to a relation att: Ec 7 String 
(m:l). 

(2) For <!ATILIST E att evalljeva12leval3 >, where E 
is an element and att is its attribute of type 
Enumerate. 
Attribute att is mapped to a relation att: Ec 7 
Enumerate(m:1). 

(3) For<! ATILISf E att ID>, where E is an element 
and att is its attribute of type ID. 
Attribute att is mapped to a relation att: Ec 7 String 
(1:1, unique). 

(4) For <! ATITJSf E att IDREF>, where E is an 
element and att is its attribute of type IDREF. 
Attribute att is mapped to a relation att: Ec 7 String 
(m:1). 

(5) For <! ATITJSf E att IDREFS>, where E is an 
element and att is its attribute of type IDREFS. 
Attribute att is mapped to a relation att: Ec 7 String 
(m:m). 

For example, in <!ATITJSf part id ID 
#REQUIRED>, attribute id is mapped to a relation id: 
part7String(l:l) 

As discussed in section 3.3.2, Attributes in DTDs 
may have default options. The mapping rules about the 
default options are generalized as follows. 

(1) Attribute A with #REQUIRED default option: the 
corresponding relation is total, 

(2) Attribute A with #IMPLIED default option: the 
corresponding relation is normal, 

(3) Attribute A with #FIXED default option: no mapping 
for the #FIXED value, 

(4) Attribute A with #DEFAULT default option: set 
default value for this relation in Sem-ODB. 

For example. in the above attribute example, the 
attribute id of element part is mapped to a total relation 
id: part7String (1:1, total) 

Based on the above mapping rules, we can transform 
the DID in Figure 2 into the Semantic Schema shown in 
Figure 6. 

Note that in Figure 6, the relations are enhanced 
with ordering which is denoted by the ordering number 

86 

along with the relation name and + represents one or 
more cardinality. 

Front 
T~!I(I:I.(J )) 

Editton:Scrina(J: 1, O)) 
PllbiUba: Scrinll( 1:1, 

Publiatiro 
(m:m. (I)) 

figure 6. 1'be Semantic Schema for lhc Rlllming ~le 

(4)) 

3.3.4. The Mapping Meta-Schemas In the previous 
sections, we have discussed the rules for mapping DTDs 
to Semantic Schemas. During the mapping process, 
mapping information must be kept somewhere to 
facilitate XML document loading and querying in the 
subsequent steps. Because Sem-ODM is a powerful 
expressive data model capable of capturing advanced 
complex modeling constructs, we used Sem-ODB as the 
storage medium of the knowledge. We have successfully 
deployed a similar structure (called KnowledgeBase) in 
SemAccess [14] to help resolve the schema heterogeneity 
between relational and semantic databases. We applied 
this structure in XMLWrapper to efficiently resolve the 
mapping between DIDs and Semantic Schemas. The 
meta-schema that maps a DID Construct to a Semantic 
Schema Construct is illustrated in Figure 7. 

is derived from 

.------.1 <1=1• ,kllal) ::,.I I 
UID Cmslnx:t : 7: Scntidlcma Cmslrud . 

Figure 7. Mlpping Infmmtim between Ser& 
CDM~andiJID 

4. CONCLUSIONS AND FUTURE WORK 

This paper proposes a systematic approach to store and 
retrieve XML documents using Sem-ODB, a database 
system with a powerful and expressive data model. By 
using Sem-ODB, we can avoid the common problem of 
fragmentation found when using a RDBMS to store 
XML. The system architecture of the XMLWrapper was 
presented and the mapping module of it was further 
discussed in detail. Storing mapping information between 
DTDs and Semantic Schemas in a Sem-ODB helps 
resolve schema heterogeneity and allows transformations 
from one to the other more to be made efficiently. This 



-----------------------------
teChnique has been proven in our previous development 

of SemAccess. 

There are some issues that have not been addressed 
in this paper, such as mapping NMrOKEN, 
NM'fOKENS. and ENITfY of XML documents, as well 
as the XML query translation and optimization and the 
XML document generator modules depicted in the 
system architecture. Our future work: will focus on these 
issues. 

5. REFERENCES 

[1) Extensible Markup Language (XML) 1.0 (Second 
Edition) W3C Recommendation, October 2000, 
http://www. w3 .orgffR/2000/REC-xml-20001006. 

[2) J. Bosak, T . Bray, et. al., "W3C XML Specification 
DTD," http://www. w3.org!XMI.Jl998/06/xmlspec
reoort.html 

[3) Jennifer Widom, "Data Management for XML: 
Research Directions", IEEE Data Engineering 
Bulletin 22(3): 44-52(1999) 

[4) Alon Levy, More on Data Management for 
XML,http://www .cs. washington.edulhomes/alon/wid 
om-resoonse.html 

[5) Gerti Kappel, Elisabeth Kapsammer, S. Rausch
Schott, Werner Retschitzegger, "X-Ray - Towards 
Integrating XML and Relational Database Systems", 
19th International Conference on Conceptual 
Modeling, Salt Lake City, Utah, USA. October, 
2000. 

[6] J. Shanmugasundaram, et al., "Relational Databases 
for Querying XML Documents: Limitations and 
Opportunities", Proceedings of the 25th Int. Conf. On 
Very Large Data Bases (VLDB), Edinburgh, 
Scotland, UK. 1999 

[7] M. Klenke, H. Meyer, "XML and Object-Relational 
Database Systems - Enhancing Structural Mappings 
Based on Statistics", Proceedings of the Third 
International Workshop on the Web and Databases, 
WebDB 2000, Dallas, Texas, USA. May, 2000. 

[8) D. Florescu, D. Kossmann, "Storing and Querying 
XML Data Using an RDBMS", IEEE Data Engi
neering Bulletin, Special Issue on XML, Vol. 22, No. 
3, September, 1999 

[9) V. Christophides, S. Abiteboul, S. Cluet, M. Scholl, 
''From Structured Documents to Novel Query 
Facilities", Proceedings of the 1994 ACM SIGMOD 
International Conference on Management of Data, 
Minneapolis, Minnesota, May, 1994 

[lO)R. Goldman, J. McHugh, and J. Widom, ''From 
Semistructured Data to XML: Migrating the Lore 
Data Model and Query Language", Proceedings of 
the 2nd International Worlcshop on the Web and 
Databases (WebDB '99), Philadelphia, Pennsylvania, 
June 1999 

UIJTamino XML Database Home Page, 
http://www .softwareag.cornftamino/ 

87 

[12]Rishe N., Sun W., Barton D., Deng Y., Otji C., 
Alexopoulos M., Loureiro L., Ordonez C., Sanchez 
M., Shaposhnikov A., ' 'Florida International 
University High Performance Database Research 
Center''. In SIGMOD Record, 24 (1995), 3, pp. 71-
76. 

[13]Naphtali Rishe, Database Design: The Semantic 
Modeling Approach, McGraw-Hill, 1992. 

[14]Naphtali Rishe, Jun Yuan, Rukshan Athauda, et al., 
"SemanticAccess: Semantic Interface for Querying 
Databases", Proceeding of the VLDB conf. , Cairo, 
Egypt, 2000. 

[ 15] Shu-Ching Chen, Xinran Wang, Naphtali Rishe, and 
Mark Allen Weiss, "A high-Performance Web-Based 
System Design for Spatial Data Access", Eighth 
Symposium of ACM GIS, Washington D.C., USA. 

[16] A. Deutsch, M. Fem'ndez, and D. Suciu, ••storing 
Semistructured Data with STORED", Proceedings of 
the ACM SIGMOD International Conference on 
Management of Data, Philadelphia, Pennsylvania, 
USA June, 1999. 

. j 



980-07-7541-2 


