
• p .-

" ..

13-lS December 2004

IEEE~
COMPUTER

SOCIETY

+.IEEE

o n

With support of Florida Interna tional Universitu. Florida. USR
IEEE/CS Technical Committee on Computationallntellioence

IEEEICS Technical Commit tee on Multimedia Computino
IEEE!CS Technical Co mm ittee for Services Computino

Proceedings

IEEE Sixth International Symposium on
Multimedia Software Engineering

Miami, Florida

December 13 - 15, 2004

Supported by
IEEE Computer Society Technical Committee on Computational Intelligence

IEEE Computer Society Technical Committee on Multimedia Computing
IEEE Computer Society Technical Community for Services Computing

IEEE~
COMPUTER

SOCIETY
http:/ I computer.org

Los Alarni tos, California
Washington • Brussels • Tokyo

:e
d
11
e
e
n
.-
0

r
n
e
e
r
f
s
j

j

A Flexible and Effective XML Storage and Retrieval System1

Li Yang
Department of Computer Science
State University of West Georgia

Carrollton, GA 30118, USA
lyang@ westga. edu

Abstract

As XML becomes increasingly pervasive on the web, it
is necessary to provide a good solution to storing and
retrieving huge amount of XML data that includes not
only textual data, but also multimedia documents in XML
format. Using the Sem-ODB, a multimedia database
system, as the underlying repository, we show how the
XML storage and retrieval issue can be tackled in a
flexible and effective way. We present a prototype that
effectively maps and stores XML data into a Sem-ODB
through the use of a meta-schema-based approach. Our
approach is flexible and effective because (1) users are
given control over the resulting mapping scheme via the
manipulation of the KnowledgeBase; (2) it greatly
reduces the number of joins generated in the final Sem
SQL query when translating an X Query query.

1. Introduction

Recently XML (eXtensible Markup Language) has
increasingly become the de facto standard in representing
and exchanging data that include not only textual but also
multimedia data (image, audio, video, etc.) over the
Internet. In an XML document, the content is independent
of its data presentation, which brings a lot of flexibility in
exchanging data and rendering them in customized ways.
For instance, the result of a query against a multimedia
document can be adapted to reflect different presentation
contexts according to user preferences, capabilities of
physical devices (W AP phones, PDAs, PCs), etc. At the
same time, how to efficiently store and retrieve XML data
is an open issue in both industry and the research
community. A plethora of approaches have been proposed
and implemented [12, 11, 5, 4, 3, 14]. Most of the systems
generate a target schema before storing XML data.
However, the schema generated is often either a generic
one that does not naturally reflect the structure of XML
data or a fixed one that cannot be changed once it is
produced. In addition, excessive join operations are
frequently used to translate long path expressions of XML

Naphtali Rishe
High Performance Database Research Center

School of Computer Science
Florida International University

Miami, FL 33199, USA
rishen@cs.fiu.edu

queries. Furthermore, none of them take into
consideration the multimedia data types in their work.

In this paper, we describe a prototype that is being built
at the High-Performance Database Research Center
(HPDRC) [7] at Florida International University, which
provides a solution to this issue using the Semantic
Binary Object-Oriented Database System (Sem-ODB).
The Sem-ODB, developed at HPDRC, is a multimedia
spatial database system that is capable of storing textual
data as well as remotely sensed and graphic data such as
maps, and aerial imagery data, among others. As a fully
functional multi-user, multimedia object-oriented DBMS,
Sem-ODB has been successfully deployed for highly
complex applications such as applications intended for
storage and processing of large amounts of Earth science
observations and the Terrafly Geographic Information
System (GIS) [10]. The Sem-ODB's high-level data
model, Sem-ODM [8], which features simple constructs,
multi-valued attributes, explicit relationship description,
inheritance and surrogates (object ids), and its navigation
oriented query language, Sem-SQL [9], suggest a natural
and expressive approach to tackling this problem.

The system we are building stores XML documents
conforming to DTDs [1] into Sem-ODB and provides an
XQuery [2] facility for users to query the XML data. Our
approach is distinguished by three features. Firstly, a
meta-schema based mapping approach is used for coping
with data model heterogeneity and schema heterogeneity.
Thus, the mapping between XML and Sem-ODM is not
hard-coded in the system. Secondly, th,e mapping
information is made accessible and updateable via the use
of KnowledgeBase. Unlike the other systems, where
mapping information is hidden from end users, who have
no control over the mapping process, our system allows
users to query and update the mapping information so that
they can specify more appropriate mapping schemes
when such needs arise. Finally, it reduces the number of
join operations involved when translating an XQuery
query into a Sem-SQL query, whereas a common problem
of relational approaches in translating XML queries into
SQL is that the number of join operations is proportional
to the length of the path expressions [12].

I This material is based on work supported by the National Science Foundation under Grants No. HRD-0317692, EIA-0320956, and EIA-0220562.

0-7695-2217-3/04 $20.00 ~ 2004 IEEE 227

The remainder of this paper is organized as follows. A
brief overview of the Sem-ODM and Sem-SQL is given
in section 2. Section 3 describes the overall system
architecture with the details of two major components,
DTD Mapping component and XQuery Query Translator.
Section 4 concludes the paper and points out the future
work.

2. Overview of Sem-ODM and Sem-SQL

Sem-ODM, a conceptual and high level data model, is
the underlying data model of Sem-ODB. Two constructs,
category and relation, are used to describe a Sem-ODM.
Categories (represented as rectangles) are like Entities in
the Entity Relationship (ER) model, except that the
Attributes in the ER model are represented as relations in
Sem-ODM. Binary relations (represented as solid arrows)
between two categories are used to represent the
association between them.

Semantic SQL (Sem-SQL) was adopted from
traditional SQL92 and incorporated with some advanced
concepts, such as the navigation operator and inverse
relation operator, which significantly reduce the length of
a complex query and provide an easier query facility.

3. System architecture

An overall system architecture is illustrated in Figure
1. The system first maps a DTD into a Semantic Schema,
then loads and stores XML documents conforming to the
DTD into a Sem-ODB database. When a user issues an
XQuery to the system, the query gets translated into Sem
SQL and sent to the underlying Sem-ODB database. After
data is retrieved, it is converted to XML format and
returned to the user. Each component and its sub
components are further explained as follows.

Figure 1. System Architecture

DTD Validation and Mapping Component consists
of two sub-components, DTD Validator and DTD
Mapping Module. The former takes a user-provided DTD

228

and performs validation against the common DTD syntax.
The latter takes the output of the DTD Validator and then
performs the schema mapping from a DTD to a Semantic
Schema and stores the mapping information and the meta
schemas of DTDs and corresponding Semantic Schemas
in the KnowledgeBase. The mapping approach is further
explained in section 3.1.

KnowledgeBase (KB): This is a repository used to
store the meta-schema information of schemas (such as
the subschema shown in Figure 2), including meta
schemas of DTDs and Semantic Schemas, and the
mapping information between them. A semantic database
is used as the KB in our system.

XML Processor: Its subcomponent, XML Parser,
takes an XML document and validates it against its DTD;
then XML Loader loads the XML data into the underlying
Sem-ODB if it passes the validation.

XQuery Query Translator: This component
translates a query specified in XQuery into an equivalent
Sem-SQL query and sends it to the SDB SQL Server,
which is a query engine evaluating Sem-SQL queries, for
execution. Section 3.2 details the translation scheme for
FLWOR expressions.

XML Document Generator: This component
reconstructs the data retrieved from the Sem-ODB
database into a readable XML document using the XML
template extracted from the input XQuery and schema
information stored in the KB, and returns the result to
users. We use a variant of the sorted outer union approach
[11] to structure the data for an easy tagging process.

3.1. DTD mapping component

To deal with the schema and data model heterogeneity,
we utilize a meta-schema based approach in converting a
DTD into a Semantic Schema. The basic idea of our
meta-schema based approach is capturing the meta-data
of both DTDs and Sem-ODM Semantic Schemas, and
then mapping the basic constructs of a DTD to their
counterparts in a Semantic Schema, while preserving the
structure and semantic information of the DTD as much
as possible.

Figure 2. Sub-schema Representing the Mapping
between Sem-ODM and DTD

Figure 2 shows the Sem-ODM representation of the
mapping sub-schema between DTD and Sem-ODM
Semantic Schema. Each DTD construct, either an element
or attribute, is mapped into one Semantic Construct,
which could be either a category or relation. In our study,

'

we further extract the meta-data of both DTD Construct
and Semantic Construct and capture the sub-schemas of
both constructs. Space constraints prevent a detailed
description. Interested readers are referred to [13].

After extracting the meta-data, we apply some
mapping rules to transform a DTD construct into a
Semantic Schema construct. The basic idea of the rules is
to map the majority of elements into categories. Some
special elements (e.g. ANY and PCDATA) are mapped
into categories if they do not have any parent element, or
are shared by multiple parent elements, or appear in their
only parent element multiple times, and are otherwise
mapped into attributes. The insight here is to inline a sub
element as an attribute of its parent element if it does not
appear in its parent element multiple times to reduce the
number of categories created. The attributes in a DTD are
mapped as relations in a Semantic Schema. Additionally,
we map the relationships between sub-elements and their
parent elements to relations of two categories
corresponding to the elements in DTD. Because the actual
multimedia data are not contained in the XML document,
an extra attribute needs to be created for storing them.
This can be accomplished by the designer at the end of
the mapping process when she tunes the resulting schema.
For instance, Figure 3 shows a DTD example that is
extracted from [12] and slightly modified and used as the
DTD running example throughout this paper. There is a
pic element for each author whose attribute fileref
contains an image file location of the author.

<!ELEMENT publication (aniclel monograph)*>
<!ELEMENT anicle (title. author*. contactauthor)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT contactauthor EMPTY>
<!ATTLIST contactauthor author!D JDREF #IMPLIED> .
<!ELEMENT monograph (title, author, editor)>
<!ELEMENT editor (monograph*)>
<!A TTLIST editor name CDATA #REQUIRED>
<!ELEMENT author (name, addr, pic)>
<!A TTLIST author id JD #REQUIRED>
<!ELEMENT name (firnt?,last)>
<!ELEMENT firnt (#PCDATA)>
<!ELEMENT last (#PCDATA)>
<!ELEMENT addr ANY>
<!ELEMENT pic EMPTY>
<!A TTLIST pic fileref CDATA >

Figure 3. DTD Example

Figure 4 (a) illustrates the resulting Sem-ODM
Semantic Schema after applying the mapping rules to
element author and its sub-elements of the example DTD
of Figure 3. For clarity, the corresponding part for other
elements in Figure 3 is not shown here. Basically, article,
title, contactauthor, author, name and pic are mapped into
categories, while addr, first and last are mapped to
attributes, and the parent-child element relationships are
mapped to relations between categories. Notice that an
attribute data of Binary data type is created in the schema
representing the image of the author. The number in
parentheses represents the ordering of each relation.

229

-- --- ----- -·- ··---- ···- -

Attribute order is used to represent the document order of
each element.

author
id: String (l : l,IOlal)

finc:String, (I)
last:String. (2,total)

addr: String, (3, total)
fileref. String (4)

name
firsc:String, (I)

lasc:String. (2),total
order: int (a)

data: Binary, (5) (b)
order: int

Figure 4. Semantic Schema Representation of (a)
author and its Sub-elements; (b) User-Preferred

Mapping

Because of the extraction of the meta-schemas of both
data models, the mapping information is not hard-coded
in an application; rather it is generated dynamically
during the mapping process and kept in the KB for future
query translation and result reconstruction phase. This
enables user-defined mappings and brings a lot of
flexibility in generating user-friendly transformations.
For instance, if one feels that all the information about an
author should be included as its attributes, she can do so
by adjusting the mapping scheme stored in the KB as long
as the change does not violate the semantic constraints of
the XML documents. In this case, first, last and pic will
be inlined as attributes of author, and relation
author _name and author _pic and category name and pic
will be dropped. Consequently, the ordering information
has to be adjusted. For instance, the order of addr will
become 3 instead of 2, since front and last have an
ordering number 1 and 2, respectively. Figure 4 (b) shows
the user-preferred mapping.

3.2. XQuery query translator

An XQuery query is first simplified before being
translated as per normalization rules proposed in [6] to
reduce its complexity and to ease the Sem-SQL
translation process. The result of the process is a
simplified XQuery query. We then consider the
translation schemes on the principal expressions of
XQuery, including path expressions, FLWOR
expressions, functions, etc. For clarity, we only present
the translation scheme on FLWOR expressions in this

paper. Interested readers may refer to [13] for more
details.

Table 1 (a) shows an informal representation of the
FLWOR expression. Note that l 1, l2, OJ, o2, and g; (i=l .. n)
represent expressions. Except g;, which appears to
construct the result documents and denotes the ith
expression appearing in the return clause, the rest of the
notation is self-explanatory; (b) shows a high-level
translation scheme to Sem-SQL. Our preliminary
experiment proves the argument that our approach greatly
reduces the number of joins generated in the final Sem
SQL query.

Table 1. (a) Informal Representation of a FLWOR
Expression (b) FLWOR to Sem-SQL Translation
Scheme: the result is ordered by the ordering
specifications o1and o2 in the order by clause
and document order of h1

for $x, in Exp,, $x2 in Exp2
let $a, :• , $a2: •
where 11 ond l2
order by o,, 02
return g 1 g2 g. (a)

• Expand g1 with its descendant information: insert all the descendant
information into appropriate positions in a template which contains
the return clause of the FL WOR, so that we know what expressions
are needed to be evaluated in the return clause. For instance, return
/author should be translated into return <author id = $u> <name>
<first>$J<Ifirst> <last> $1<1/ast> <!name> <addr> $addr<laddr>
<!author> . In this way, we might get more expressions than those
present in the original FL WOR expression. Suppose we will have m
expressions in the form of h1 (i =l..m) after inserting the descendants
of g1 (i = l..n), where m ~ n.

• Search the KB for the starting categories S1, S2 based on Exp1 and
Exp2.

• Look up the Path Table PT to find all the paths that are necessary for
evaluating o,, o2 , 1,, 12 and h1 (i =l..m).

• Check the KB to generate the navigation paths for all the above
XQuery paths. Suppose they are o1_path. OLJXlth. 11_path. /,_path,
hLJJath (i=1 .. m).

• Create the following Sem-SQL statement for the FLWOR expression
select 0, o,_path . o2_path, h,_order, h, path, null, ... ,njlll

fromS1 , S2 m+1
where Predicate(J,_path) AND Predicate(ILJX1th)
union all

select 1, o1_path , o,_path, h,_ord&.c...E._ull,h,_path, ... ,null,
fromS1, S2 ------_;
where Predicate(11_path) AND Predicate(ILJX1th) m+1

union all
select m-1, o1_path . OLJXlth, h,._ordu.null, null, .. . ,h..._pj'th
fromS1, S2 - m+1
where Predicate(11_path) AND Predicate(I ,_path)
orderby 2,3,4 (b)

4. Conclusion and future work

In this paper, we have described an approach to
tackling the XML storage and retrieval issue using Sem
ODB, a multi-media object-oriented database system. The
system we present here effectively maps and stores XML
data into a Sem-ODB via the meta-schema approach. The
mapping approach is flexible since users are given control

230

to some degree over the resulting mapping scheme via
manipulation of the KnowledgeBase. The approach also
greatly reduces the number of joins generated in the final
Sem-SQL query.

We have implemented all the components except
XQuery Query Translator and XML Document
Generator. Future work will include the completion of the
remaining components and extensive experiments on
large XML documents for performance evaluation. To be
able to provide metadata-based, content-based, and
semantic-based multi-media data query capability,
components accomplishing those tasks need to be
incorporated. In addition, the manipulation of the KB is
still done manually via writing code using SDB java
APis; we will automate this process and provide a user
friendly GUI in the future.

References

[1] Bosak, J., Bray, T ., Connolly, D., Maler, E., et. al., "W3C
XML Specification DTD",
http ://www.w3.org/XML/1998/Q6/xmlspec-report.html .

[2] Boag, S., Chamberlin, D., et a! (Eds.), "XQuery 1.0: An
XML Query Language", W3C Working Draft, November
2002, http://www. w3 .orgffRJxquery/.

[3] Deutsch, A., Fernandez, M., Suciu, D., "Storing
Semistructured Data with STORED", Proceedings of ACM
SIGMOD, 1999, pp. 431-442.

[4] Kappel, G., Kapsarruner, E., Rausch-Schott, S.,
Retschitzegger, W., "X-Ray -Towards Integrating XML
and Relational Database Systems", Proceedings of ER'OO,
pp. 323-338.

[5] Lee, D., Chu, W.W., "CPI: Constraints-Preserving Inlining
Algorithm for Mapping XML DTD to Relational Schema",
Journal of DKE, 39(1), 2001, pp. 3-25.

[6] Manolescu, I., Florescu, D., Kossmann D., "Pushing XML
queries inside relational databases", Tech. Report No.
4112, INRIA, January 2001.

[7] Rishe, N., Sun W., Barton D., Deng Y., et al. , " Florida
International University High Performance Database
Research Center", SIGMOD Record, 24(3),1995, pp. 71-76.

[8] Rishe, N., Database Design: The Semantic Modeling
Approach, McGraw-Hill, 1992.

[9] Rishe, N., "Semantic SQL", Internal Document, High
Performance Database Research Center, School of
Computer Science, Florida International University, 1998.

[10] Rishe, N., "TERRAFL Y: A High-Performance Web-based
Digital Library System for Spatial Data Access", ICDE'O/
(Demo), 2001, pp.l7-19.

[1 1] Shanmugasundaram, J ., Shekita, E. J., Barr, R., Carey, M.
J., et al., "Efficiently Publishing Relational Data as XML
Documents", Proceedings ofVWB'OO, pp. 65-76.

[12] Shanmugasundaram, J., Tufte, K., et al., "Relational
Databases for Querying XML Documents: Limitations and
Opportunities", Proceedings of VLDB '99, pp.302-314.

[13] Yang, L., "XML Storage and Retrieval Using the Semantic
Binary Object-Oriented Database System (Sem-ODB)",
PhD Dissertation, Florida International University, 2003 .

[14] Yoshikawa, M., Amagasa, et al. , "XRel: A Path-Based
Approach to Storage and Retrieval of XML Documents
Using Relational Databases" , ACM Transactions on
Internet Technology, 1(1), 2001 , pp. 110-141.

