
f
I·

An Architecture for Operating System Support of
Distributed Multimedia Systems*

Ya Xu, Cyril Orji, Yi Deng and Naphtali Rishe
High Performance Database Research Center

School of Computer Science
Florida International University

Miami, FL. 33199

Abstract
Distributed multimedia applications introduce new

design challenges at all systems levels from network
protocols and operating systems to application support
platforms. This paper describes an object-oriented ar
chitecture integrating the network services with oper
ating system to support distributed multimedia sys
tems . The architecture, called Dynamic Object Archi
tecture (DOA), is based on Open Distributed Process
ing (ODP), the international standard on distributed
system and client-server architecture. DOA utilizes
object-oriented technology to address the requirements
of distributed multimedia systems such as continuous
media, natural synchronization, dynamic Quality of
Service (QoS) and group communication. The ar
chitecture also provides a path using mature industry
standards to develop new applications while retaining
compatibility of old applications.

1 Introduction
Distributed multimedia applications introduce new

design challenges at all systems levels from network
protocols and operating systems to application sup
port platforms. Early multimedia systems (MMSs)
provided a hardware front-end to support the trans
mission and presentation of different media types such
as video and audio. However, it is now recognized that
this is not sufficient and that a class of applications
that requires direct access to continuous media data
types exists. It has always been recognized that the
operating system was needed to facilitate multimedia
applications, and in addition it was also recognized
that micro-kernels, user-level threads and split level
scheduling have important roles to play in supporting
continuous media. Little research, however, was done
on integrating network services with operating system
functionality to support Distributed Multimedia Sys
tems (D MSs). The main goal of this integration is to
retain the transparency between the network commu
nication protocols and application programs thereby
allowing programmers to use familiar concepts while
invoking remote operations .

'T'his work has been supported in part by g rants from NASA
'F' .

.oS-8/95 $04.00 © 1995 IEEE
56

MMSs have certain characteristics which existing
supports in traditional systems are illequipped to ad
dress. These include continuous media, natural syn
chronization, dynamic Quality of Service (QoS) and
group communications [2] . For example, due to the
continuous nature of mllftimedia data, caching can
not be effectively used to improve data access rate in
MMSs. Moreover, this continuous nature of the data
makes the static semantics of the traditional remote
procedure call (RPC) inappropriate in MMSs. Al
though parallel 1/0 techniques have been effectively
used to improve 1/0 rate in traditional systems, the
synchronization delay requirements of multimedia ap
plications introduce another dimension to the prob
lem. Specifically, sets of real-time presentation de
vices in multimedia systems must be tied together
so that they consume data in fixed ratios even when
their incoming data originate from different sources.
While data transmission in traditional applications
emphasizes only data reliability, the synchronization
delay requirements of multimedia systems require data
transmission not only to be reliable but also delay
sensitive.

The OSI reference model and protocol also exhibit
certain limitations to multimedia applications. In par
ticular, in traditional applications, the value of the
QoS parameter is static during the lifetime of a con
nection. However, in multimedia applications, it is de
sirable to be able to re-negotiate the value of a QoS pa
rameter at runtime [1] . This cannot be done with the
current OSI protocols. Moreover, the point-to-point
characteristics of the OSI reference model also make
it unsuitable for group communication [15]. Group
communication - a typical multimedia application, is
typified by multimedia conference.

Distributed multimedia environments will generally
be heterogeneous, consisting of many different work
stations interconnected by one or more types of net
works. With this inherent heterogeneity, it is impor
tant that DMSs are open. The guarantees of open
property need interconnectivity, interoperability and
portability. Although client-server distributed sys
tems support a level of interoperability, experience
with such systems has been predominantly with local
area networks (LANs) . The basic client-server model
is unlikely to provide the total solution for DMSs

because of the complexity of migrating from locally
distributed systems to more global systems [9). The
object-oriented approach shows promise in add~ess~ng
this complexity. Therefore, we adopt standardizatiOn
work of Open Distributed Processing (ODP) of ISO
and use the encapsulation and inheritance property of
object orientation to increase interoperability.

In this paper we develop the Dynamic Object Ar
chitecture (DOA) as a framework for integrating net
work services with operating system. This architec
ture is based on Open Distributed Processing (ODP),
the international standard on distributed system and
client-server architecture. The DOA utilizes object
oriented technology to address new requirements in
distributed multimedia systems such as continuous
media, natural synchronization, dynamic QoS and
group communication. The architecture also provides
a path whereby well established industry standards
can be used to develop new applications facilitating
compatibility with old applications.

The remainder of the paper is organized as follows.
Section 2 surveys related work in this area. Section 3
presents a brief overview of the OSI and ODP stan
dards . Section 4 presents our Dynamic Object Archi
tecture (DOA) based on ODP Reference Model and
object-oriented technology. Section 5 discusses the im
plementation of key components of the DOA. We con
clude the paper in Section 6 briefly noting on-going
work.

2 Related Work
In this section we review some previous work in this

area. Research in operating system support for mul
timedia applications has so far fallen into two broad
categories. In the first category, effort was directed
mostly in building custom software running on spe
cialized hardware to support multimedia applications.
Typical efforts in this direction include the Pandora
system [5], the Pegasus project (6] and the IBM HeiTS
system [4]. In the second category, existing operating
systems are modified to include support for multime
dia applications. Examples include work on the UNIX
SVR4 scheduler (8], extensions to the Chorus micro
kernel (3] and thread implementation in the ARTS op-

. erating system (11].
Pandora (5], an experimental system for networked

multimedia applications, uses a sub-system to handle
the multimedia peripherals. It uses transputers and
associated Occam code to implement the time crit
ical functions . Stream implementation is based on
self-contained segments of data containing informa
tion for delivery, synchronization and error recovery.
Buffer allocation scheme allows for the transport of
audio and video format data. This is achieved by us
ing two specialized types of buffers: decoupling buffers
between processes or hardware units that do not run
synchronously, and clawback buffers to enable streams
with jitter to be synchronized with the local clock.

In the Pegasus Project (6] , an attempt is made
to design and implement a general-purpose operat
ing system to support distributed multimedia appli
cations. One of the primary goals of this project was
to facilitate user-level interactive processing of multi-

57

media data while at the same time maintaining all the
desirable properties of a distributed system such as
resource sharing, data sharing, security, and fault tol
erance. Pegasus uses a shared address space for local
groups of mutually trusted machines that share the
same data representation . Object storage is tailored
to efficient management of persistent objects and mul
timedia data, and the file system is log-structured.

IBM has developed a new-generation end-to-end
communication system called HeiTS (4]. HeiTS is
designed to handle high-speed data applications as
well as multimedia applicat ions within IBM's Small
Systems line (PS/2 under OS/2 and the RISC Sys
tem/6000 under AIX). Two of the many attractive fea
tures in HeiTS are the satisfaction of real-time require
ments and efficient data handling capability. HeiTS
uses threads to handle audiovisual data streams with
real-time requirements. A Resource Management Sys
tem has been implemented in HeiTS to support this
kind of scheduling. It allows best effort and guaran
teed connections, and supplies the scheduler with the
necessary information for real-time scheduling. With
respect to efficient data handling, a high performance
Buffer Management System has been implemented
which supports segmenting and recombining of data
units , chaining and locking of buffers. The net effect
of these features is reduced overhead and the reduc
tion of many unnecessary data movements in the sys
tem. HeiTS also implements the lower four layers of
the OSI Reference Model that allows multicast on the
network layer, multiplexing up to the data link layer,
segmentation, and end-to-end flow control.

In (8] an approach on the use of existing operating
systems for the processing of continuous media data is
provided. It is shown that existing scheduler in UNIX
SVR4 is unacceptable when dealing with continuous
media applications. A new scheduling class for SVR4
that provides significant improvements in performance
over the existing UNIX SVR4 scheduler is proposed
and analyzed.

A micro-kernel based approach for dealing with the
requirements of continuous media has also been pro
posed (3]. Specifically, in (3], extending the Chorus
micro-kernel architecture to support end-to-end qual
ity of service (QoS) was proposed. The key concept
deals with representing QoS controlled communication
between user level threads on potentially different ma
chines, a split level scheduling architecture and a rate
based transport protocol.

An implementation of user level threads in the
ARTS operating system is discussed in (11]. Two types
of threads - periodic and aperiodic threads are de
scribed. Periodic threads, are defined by start time,
period, deadline and worst case execution time, while
aperiodic threads are defined by deadline, worst case
execution time and worst case interval time. ARTS
supports a split level scheduling scheme where a user
level scheduler manages user level threads while a
meta-level scheduler takes a global view across all pro
cesses. A deadline handler can also be defined on a
thread-to-thread basis to manage quality of service
degradation. These works demonstrate that the use of
micro-kernel, user-level threads and split level schedul-

ing have important roles to play in supporting contin
uous media. However, considerable work is required
on integrating operating system functionalities with
network services.

Other related work in DMSs has been in the area of
communications and networking [12). On end-system
architectures, the work in [10, 7, 17) are rather too
abstract to represent a practical end system. More
over, by assuming the basic ISO/OS! model and not
suggesting extensions to it , these various research ef
forts were limited in their abilities to meet the new
requirements of DMSs.

3 OSI and ODP standards
Before we begin to discuss the DOA architecture,

first let us review the OSI and ODP standards. The
ISO OSI 1 provides a framework for communcation
protocols [16). It organizes the protocols as seven lay
ers and specifies the functions of each layer with user
programs running on the application layer.

Open System Open System

Application Application

Presentation Presentation

Session Session

Transport Transport

Network Network

DataUnk DataUnk

Physical Physical

Figure 1: OSI Reference Model

Although a detailed description of the OSI-RM is
beyond the scope of this paper (see [16, 13]), we briefly
highlight the purpose of each layer in the model.
Layer 1 or the physical layer hides the nature of the
physical media from the data link layer to maximize
the transportability of higher layer protocols. Layer 2
or the data link layer is responsible for error free data
transmission over a data link. Layer 3, the network
layer, provides interconnection services. It provides
transparency over the topology of the network as well
as transparency over the transmission media used in
each sub-network comprising the network. Layer 4,
the transport layer, is responsible for moving data re
liably from one end system to another end system.
While the end-to-end service provided by the trans
port layer deals with data transfer between the end
systems, the three topmost layers (session, presenta
tion and application) provide an inter-working service.
Layer 5, the session layer is primarily responsible for

1 International Standards Organization Reference Model of
Open Systems Interconnection

58

the coordination function , while layer 6, the presen
tation layer is responsible for the representation func
tion. Layer 7 or the application layer provides the rest
of the communication functions that may be specific
or generic to a class of applications.

As already noted, the standards to achieve
interoperability include communication and non
communication standards. ODP is the evolving non
communication standards that addresses distributed
processing in an open system environment.

ODP is the result of a joint effort by ISO and
CCITT to develop uniform standards across multi
ple systems and their components. The initial goal of
ODP is a reference model to integrate a wide range of
future ODP standards for distributed systems and to
maintain consistency across such systems, despite het
erogeneity in hardware, operating system, networks,
programming languages, databases , and management
authorities [9].

The ODP Reference Model(ODP-RM) [14) serves
to:

• model distributed processing in terms of func
tional components,

• identify levels of abstractions at which services
can be described,

• classify the boundaries between components,

• identify the generic functions performed by dis
tributed systems, and

• show how the elements of the model can be com
bined to achieve ODP.

The ODP standard identifies seven different aspects
of an ODP system. Each aspect is a logical grouping
of the functional requirements of a distributed sys
tem. These seven aspects are storage, process, user
access, separation, identification, management, and
security. Each aspect can be viewed in five differ
ent ways. These five viewpoints are enterprise, infor
mation, computational, engineering, and technology
v.iewpoints [9j. Ea~ viewpoint leads to a representa
tiOn or an abstractiOn of an aspect of the system with
emphasis on a particular set of concerns. The enter
prise viewpoint is concerned with the social, manage
rial, financial, and legal policy issues that constrain
the human and machine roles of a distributed sys
tem and its environment. The information viewpoint
concentrates on information modeling and flow , plus
structure and information manipulation constraints.
The computational viewpoint focuses on the structure
of application components and the exchange of data
and control among them. The engineering viewpoint
concerns the mechanisms that provide the distribution
transparencies to the application components. The
technology viewpoint focuses on the constraints im
posed by technology and the components from which
the distributed system is constructed.

Our goal is to integrate the network services with
operating system to support distributed multimedia

systems. The most important requirement is trans
parency. Moreover, we are concerned about interop
erability and portability from the viewpoint of oper
ating system support that is end system-related, not
communication-related. Given these requirements and
some of the deficiencies of the OSI model with respect
to multimedia applications (see Section 1), we adopt
the ODP as the appropriate model to address these
problems.

4 Dynamic Object Architecture
(DOA)

In this section we describe the dynamic object ar
chitecture (DOA) and show its relationship to the
reference model of open distributed processing (RM
ODP).

The DOA is a layered architecture for integrating
network services with operating system in order to
support DMSs. It supports mechanisms that hide the
underlying system's heterogeneity from users and ap
plications. These mechanisms not only address such
general issues on network services as access, location,
migration, concurrence, failure, and transparency, but
also support the characteristics of multimedia applica
tions, such as continuous media, natural synchroniza
tion, dynamic QoS and group communication. The
most fundamental architectural concept that we use
is the notion of dynamic object. The dynamic object
utilizes the object-oriented technology and provides
the network services with dynamic functionality and
semantics to meet the new requirements of DMSs.

The DOA is constructed fully according to the
ODP system's general architecture. Because ODP is
an international standard on distributed systems, the
DOA which is based on ODP appropriately reflects
the nature of distributed applications and maintains
consistency across systems, despite heterogeneity in
hardware, operating system, networks, programming
languages, databases, and management authorities.
Therefore, DOA integrates distribution, interoperabil
ity and portability and provides an open infrastructure
for DMSs. The DOA consists of four object layers as
shown in Figure 2. These are

• the computational object,

• the engineering object,

• the transparency object and

• the nucleus object layers.

4.1 The computational object layer
The computational object layer specifies the com

putational structures and statements of properties for
interaction between objects. It focuses on the struc
ture of application components and the exchange of
data and control among them. This is a typical appli
cation platform based on client/server model.

The computational object layer includes client and
object entities. A client is an entity that wishes to in
yoke an operation on a target object entity. An object
1s an identifiable, encapsulated entity providing one or

59

Computational Object Layer

Nucleus ObJect Layer

Computatiooal model

Co~121ion~
Objects

'··· o----o
Engineering model

Encin«rin&
objects

Nucleus obja:ts

Figure 2: Dynamic object architecture map
ping to open distributed processing reference
model. On the left is shown the dynamic object ar
chitecture {DOA) and on the right is the correspond
ing reference model of the open distributed processing
{RM-ODP).

more services that a client can request. A client can
identify the object and knows the services that the
object can provide, but it can not access the internal
structure of an opject. An object can be created and
destroyed as a result of executing object requests. For
example, in a multimedia conference, when a person
joins the conference, an object entity is created. When
the person exits from the conference, the correspond
ing object entity is destroyed.
4.2 The engineering object layer

The engineering object layer focuses on the mecha
nisms to assure the realization of properties of applica
tion components whose structures were defined in the
computational object layer. In the engineering object
layer, the components of a client entity include the
dynamic object interface (DOI), the interface reposi
tory (IR) and the interface definition language (IDL),
while the components of an object entity include the
IDL and the object adapter (OA).

4.2.1 The dynamic object interface (DOl)

A client program uses DOI to name the request's tar
get object and calls on the Object Communication
Support (OCS) services to add the required arguments
to the request. When a client program invokes an op
eration on an object, the corresponding DOl for the
target object is called. The DOI is responsible for or
ganizing the information required to execute the oper
ation before calling on a transport mechanism, such as
RPC, Socket, TLI , or NetBIOS, to deliver the request
to the target object for execution. In a traditional
call, each DOl object corresponds to a particular op
eration on a particular object. We call it the static
call interface.

Because of the dynamic requirements of multimedia
communication, the static call interface is ill-equipped

to handle multimedia communication. For example,
in a multimedia conference, the requirements on sys
tem resources are dynamic. This could be a result of
members joining or leaving a conference in session. A
result of this could be that the quality of service (QoS)
negotiated at the start of the conference is no longer
appropriate. There is, therefore, a need to re-negotiate
the QoS. Traditionally, this would be handled by ter
minating the current session and starting a completely
new session. This technique is clearly inappropriate,
hence the need to be able to dynamically re-negotiate
the QoS in a manner that is transparent to the parties
in the on-going conference.

There are also other motivations for a dynamic in
terface in multimedia applications. Consider for ex
ample a typical getvideo() function with a static inter
face that retrieves a video program on demand. Two
major problems with this type of static interface will
be:

1. A bulk of video data will be transferred to client
at one time saturating the network.

2. The synchronization between intra-media and
inter-media is impossible.

A dynamic interface will solve these problems. In
our DOA, the DOI is used to realize dynamic interface.
Its main functions are two fold:

1. Interface reconstruction: The client call is recon
structed to satisfy the dynamic semantics. For ex
ample, the Get Video is, typically, added with re
quired limitation on media synchronization. The
process is hidden from the client. Once it con
structs the new request, the OCS delivers it to
an object adapter that parses the request before
arranging for its execution.

2. Interface inheritance: This is used for traditional
data communication interface and fixed multime
dia application interface. Typically, the interface
for data communication can be static. Thus, if we
treat all interface calls as dynamic calls, the effi
ciency of the interface would degrade because the
overhead of a dynamic call is clearly larger than
that of a static call. In other words, it is desirable
to make dynamic calls only where needed. We use
interface inheritance to directly utilize an existing
interface instead of reconstructing the request to
object entity. On the other hand, we may also
save some calls on multimedia communication in
the interface repository thereby improving system
efficiency. This is done by using inheritance on a
current interface instead of constructing a new in
terface.

4.2.2 Interface repository

The Interface repository supports the DOI by storing
objects representing lDL information in a form used
at runtime. On receipt of an application's request, a
client typically interrogates the interface repository by

60

the DOl to determine the interfaces capable of satisfy
ing the request. If needed, the client may use dynamic
invocation interface primitives to construct the argu
ment list of a request to the selected target object.
Once it constructs the request, the communication
support delivers it to an object adapter that parses
the request before arranging for its execution. The
client can call the interface repository directly and de
cide the interface satisfying the requirement. Then it
uses DOl primitives to construct the request .

4 .2.3 Interface definition language (IDL)

The lDL describes the operations and associated at
tributes of an object interface in terms that the rest of
the system can understand. lDL also makes it possible
to translate the functionality offered by resources into
object-oriented interface. In fact, it is used to define
DOI and provide the information that existing pro
gramming languages do not provide. From the IDL,
DOI and object adapter can be generated automati
cally by an IDL compiler. The IDL is derived from
C++ and adds extra information including the direc
tion in which parameters travel, discriminators and so
on.

4 .2.4 Object adapter

The distributed multimedia systems make it possi
ble that the synthesis of existing objects exists in the
whole system. These object entities can have different
constructions . The object adapter provides the ob
ject communication platform for portable object im
plementations.

Object adapters serve a dual purpose. First , they
provide the main interface through which object im
plementations invoke the object communication sup
port services. Second, they augment the basic object
communication support model by implementing sup
port for richer object-modeling features. Furthermore,
object adapters provide a generic interface for all ob
ject entities. The generic interface supports reference
for new object entities while providing compatibility
for old object entities. Through inheritance, an object
adapter can be extended to a library of object adapters
to support different object entities. Figure 3 shows the
components and interface of the DOA. Note in partic
ular the callback call interface from object adapter to
object entity. This is similar to the callback function
in X/Window.

4 .3 The transparency object layer
A computational object can call on a number

of transparency objects of the transparency object
layer. Each transparency object represents a system
property required to realize distribution transparency.
Transparency objects at each end-system require the
services of nucleus object layer, an abstraction of the
local host environment, and the communication ser
vices necessary for inter-nucleus interactions.

The transparency object layer includes an OCS.
The OCS provides services to deliver requests be
tween clients and objects. These services include re-

. ...

~ .. • Computational Object
Layer

•··•

- Interface between srub and object Communication Support

~ Normal call inlelfacc

t Callback call interface

Transparency Ob1ect
Layer

Nucleus Ob1ect Layer

Figure 3: The components and interface of
DOA.

source negotiation, object location, message delivery
and method binding. Here, method binding means
that a virtual call is bound to multimedia seman
tics with concrete network connections. On the other
hand, the host environment and communication pro
tocols of end-systems may be different because of the
nature of the distributed system. OCS provides inter
faces that mask differences between the mechanisms
found across different end-systems. While the dy
namic object interface provides a client with multime
dia semantic interface, the OCS is fully transparent to
the client.

4.4 The nucleus object layer

The nucleus object layer includes the communica
tion protocol stacks. The communication protocol
stacks provide network services depending on end
system. The transport layer which is the top layer of
the communication protocol stacks, provide network
and communication services to the OCS in the trans
parency object layer. The reason is that many hetero
geneous systems could be interconnected by TCP /IP
that typically provides the transport layer services.
This will facilitate the use of de facto industry stan
dards in the development of new services to meet the
requirements of DMSs. The service interfaces that the
communication protocol stacks provide include RPC,
Socket, TLI or NetBIOS. These widely used industry
standards facilitate compatibility between new appli
cations and old applications. Moreover, they also pro
vide a path of smooth transition from traditional data
communication services to new DMSs services.

61

5 Implementation of DOA
In this section we present implementation details

of the dynamic object architecture (DOA). We use
object-oriented technology and C++ in our implemen
tation. The key components in the DOA are the dy
namic object interface (DOI) and the object commu
nication support.
5.1 Dynamic object interface

The DOl encapsulates the request to object from
the client . Its basic structure is shown below using
C++:

class doi { II doi class
public: II doi interfaces

doi *registerOE();
II register the service to object entity
void callOE();
II request the service to object entity

protected: II doi parameters and attribute
qostruct qosdata ; II QoS requirement
Oeid id; II ID of object entity
BufiD Rbuffer;
II The pointer to receiver buffer
BufiD Sbuffer ;
II The pointer to sender buffer

private:
listDOI *doistruc;
II dynamic list of doi structure
}

In the doi class, two main services are provided.
The first is registerOE, which is used for registration
for object entity services and the second is callOE,
which is used for requesting object entity services.

RegisterOE() registers the service using parameter
including object entity information, such as port, host
name, and QoS requirements. The register process
might include the QoS negotiation according to the
system resources . It typically returns a new doi ob
ject pointer and records the new object pointer in the
listDOI of old doi object.

Because of the natural synchronization and group
communication of multimedia, the semantics of re
quest might include mutiple requests to multiple ob
jects, distributed in different location. For example,
the retrieve of multimedia database will include video
frames, audio samples and text pieces. It is not appro
priate to transfer all these in a single communication
channel because they have different QoS requirement.
If the best QoS is selected as the QoS of communica
tion channel , system resources would be wasted. Con
versely, if the worst QoS is selected as the QoS of the
communication channel, media data requiring higher
QoS would be greatly affected. Moreover, if the infor
mation is distributed in different locations, it is not
possible to transfer them in the same channel. An
other example is the group communication in mul
timedia conference where a request is typically sent
to multiple sites . Using a simple channel and single
QoS to address the application would be very diffi
cult. Therefore, in the DOl, every media registers its

own object entity re9.uest a~cording to its. ow~ Qo.S
requirements and object entity. A. new dm. object 1s
created dynamically to record the mformat10n about
the request. The old doi object maintains a d:ynamic
list of new doi objects to keep track of the ent1re call
status and for synchronization.

The structure of a dynamic doi object list is:

struct listDOI{
doi * dp; II the pointer to old doi
listDDI* next; II next pointer
}

The callOE function is polymorphic. It can call dif
ferent procedures according to different media require
ments. On the other hand, callOE() can inherit inter
face from run-time interface repository. Typically, it
inherits the interface on traditional data communica
tion. This helps it to avoid much work after registra
tion because a new object would have to be created to
construct the session between client and object entity
after registration. This process is complex, and to im
prove efficiency, some fixed interfaces may b~ ~tored in
the interface repository so that callOE() utiliZe them
using inheritance.

The data buffer used for storing user data for trans
mission is also dynamically used. After registration,
a client gets a pointer to the data buffer. The size of
buffer depends on the media type. As discussed above,
each media communication uses a different communi
cation channel corresponding to a different doi object.
Therefore the intermedia synchronization needs to be
completed by the client while intrame~iia synchron~za
tion is completed by the DOl and object commuruca
tion support . Inter-media synchronization is required
where some temporal relationship exists between two
objects in a multimedia obj~ct, such as ~ip-sync be
tween an object of type aud1o and an obJect of type
video. We consider real-time data like audio and video
as these have well-defined intermedia temporal rela
tionships. Transmission of such data generates peri
odic, asynchronous data streams.

The data buffer size, is organized according to
the requirements of inter-media synchronization. The
time synchronization does not mean that every stream
has the same number of bytes. It is apparent that
video frames and audio samples have different byte
sizes and are synchronized according to the number of
video frames and number of audio samples.

The DOl utilizes the object-oriented mechanism
to realize the support of dynamic characteristics of
DMSs. Meanwhile, in order to improve efficiency, we
utilize inheritance to realize the interface repository.
In a sense, this is, in fact , a static interface. DOA
combines the static interface with dynamic interface
to provide services for new application. The inheri
tance keeps the compatibility to the old application
besides improving efficiency.
5.2 Object communication support

When the interface is constructed, the objects of
object communication support need to be created to
provide services for DOl. We define the OCS class as
follows:

62

class ocs{
public:
void setqos(); II negotiating QoS parameters
void canoes() ;
II request services of underlying layer

private:
void adjustqos();
II adjusting QoS parameters
qostruct qosdata; II QoS parameters
BufiD •Sbuff; // send buffer area
BufiD *Rbuff; II receive buffer area

}

Two important functions are realized in OCS.
These are intra-media synchronization and dynamic
QoS negotiation. Intra-media synchronization is con
cerned with delivering each object in time to meet
the respective playout deadline. When the request
arrives at the OCS through DOl, the OCS object au
tomatically realizes the intra-media synchronization.
A step toward achieving this goal is to generate a
transmission schedule by deriving transmission dead
lines from the player deadlines after taking network
and other delay into account. To compensate for
anomalies, appropriate handling schemes are required
at the OCS object. Intra-stream synchronization also
requires calculation of maximum buffer sizes needed
for each stream, prior to the transmission. This is
completed by QoS negotiation. Buffers serve to syn
chronize the stream data by smoothing out network
delays and jitter in the individual streams. The intra
stream synchronization is a very low level synchro
nization that deals with maintaining synchronization
of individual data streams originating from commu
nication channels. The high level synchronization is
completed by the client program as already discussed.

The dynamic QoS negotiation occurs during the
communication. In the beginning, the client proce
dure calls DOl to negotiate the QoS parameter. The
parameter is typically defined as a tuple that includes
speed ratio , utilization, average delay, maximum jit
ter, maximum Bit Error Rate (BER) and maximum
Packet Error Rate (PER). The reliability, expressed
in terms of BER and PER, represents the number of
errors per time unit for bits and packets, respectively.
Each OCS object uses the QoS parameters to estab
lish the communication channel for DOl object. Dur
ing communication, however, the change of resource
might lead to a re-negotiation of QoS value. A new
QoS tuple should be set up according to the resource
utilization. The OCS object selects a temporal syn
chronization mechanism to mask the process of chang
ing the value of QoS. After QoS is re-negotiated, the
OCS stops the temporal synchronization mechanism
and returns to normal communication status. The
client procedure is unaffected by the adjusting of QoS
value.

6 Conclusion and Future Work
We have presented a novel architecture - the Dy

namic Object Architecture (DOA) for integrating net-

work services with operating system to support dis
tributed multimedia systems. This architecture is
based on the Open Distributed Processing Reference
Model (ODP-RM). The architecture ensures trans
parency of applications to networks and allows for de
velopment of new applications.

This research is ongoing, and is actually a part of
a broader research to study multimedia applications
under a heterogeneous, distributed environment. The
research is currently being done under two major com
puter platforms - personal computers and Sun work
stations. When different operating systems, hardware
architectures and network protocols co-exist, it be
comes necessary to integrate network services with
operating system so that the complex network com
munication is transparent to applications. However,
because the traditional RPC protocol does not meet
the new requirements of distributed multimedia appli
cations, and because the static interface and semantics
for traditional data transmission do not meet the dy
namic property of multimedia applications, there is a
need for an architectural framework to address these
problems. Hence our design of a new architecture for
the distributed multimedia application.

References
[1) A. Campbell, G. Coulson, and D. Hutchison. A

Quality of Service Architecture. ACM Computer
Communication Review, pages 6-27, 1994.

[2) G. Coulson, G. Blair , P. Robin, and D. Shep
herd. Extensions to ANSA for multimedia com
puting. Computer Network and ISDN Systems,
pages 306-323, 1992.

[3) G. Coulson, G. Blair, P. Robin, and D. Shepherd.
Extending the Chorus Micro-Kernel to Support
Continuous Media Applications. Proceedings of
the 4th International Workshop on Network and
Operating System Support for Digital Audio and
Video, pages 49-60, 1993.

[4) D. Hehmann, R. Herrtwich, W. Schulz, T. Schutt,
and R. Steinmetz. Implementating HeiTS: Archi
tecture and Implementation Strategy of the Hei
delberg High-Speed Transport System. 1993.

[5) A. Jones and A. Hopper. Handling Audio and
Video Streams in a Distributed Environment.
Proceedings of ACM SIGOPS'93, pages 231-243,
12 1993.

[6) I. Leslie, D. McAuley, and S. Mullender. Pega
sus - Operating System Support for Distributed
Multimedia Systems. pages 69-78, 11 1992.

[7) T. Little and A. Ghafoor. Network Considera
tions for Distributed Multimedia Object Compo
sition and Communication. IEEE Network Mag
azine, pages 32-49, nov 1990.

[8) Neih, J . Hanko, D. Northcutt, and G. Wall.
SVR4 UNIX Scheduler Unacceptable for Multi
media Applications. Proceedings of the 4th In
ternational Workshop on Network and Operat-

63

ing System Support for Digital Audio and Video,
pages 35-47, 1993.

[9) J . Nicol, T . Wilkes, and F. Manola. Object Ori
entation in Heterogeneous Distributed Comput
ing Systems. IEEE Computer, pages 57-67, June
1993.

[10) C. Nicolaou. An Architecture for Real-time Mul
timedia Communication System. IEEE Journal
on Selected Areas in Communications, 8(3):391-
400, apr 1990.

[11) Oikawa and H. Tokuda. User-Level Real-Time
Threads. Proceedings of the 4th International
Workshop on Network and Operating System
Support for Digital Audio and Video, pages 61-
71, 1993.

[12] K. Ravindran and V. Bansal. Delay Compensa
tion Protocols for Synchronization of Multimedia
Data Streams. IEEE Transactions on Knowledge
and Data Engineering, 5(4):574-589, aug 1993.

[13) A. Tanenbaum. Network Protocols. ACM Com
puting Surveys, 13(4):453-489, December 1981.

[14) A. Tang and S. Scoggins. Open Networking with
OS!. Prentice Hall, Englewood Cliffs, NJ, 1992.

[15] M. Woo, N. Qazi, and A. Ghafoor. A Synchro
nization Framework for Communication of Pre
orchestrated Multimedia Information. IEEE Net
work Magazine, pages 52-61, January 1994.

[16] H. Zimmermann. OSI Reference Model - The
ISO Model of Architecture for Open Systems In
terconnection. IEEE Transactions on Communi
cations, Com-28, pages 425-432, April 1980.

[17) T. Znati, Y. Deng, B. Field, and S. Chang. A
Multilevel Specification and Protocol Simulation
Tool for Distributed Multimedia Communication.
International Journal in Computer Simulation,
pages 355-382, 1993.

