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Abstract. We consider the problem of data dissemination in a broadcast network. In contrast to previously studied models, broadcasting
is among peers, rather than client server. Such a model represents, for example, satellite communication among widely distributed nodes,
sensor networks, and mobile ad hoc networks. We introduce a cost model for data dissemination in peer to peer broadcast networks. The
model quantifies the tradeoff between the inconsistency of the data, and its transmission cost; the transmission cost may be given in terms
of dollars, energy, or bandwidth. Using the model we first determine the parameters for which eager (i.e. consistent) replication has a lower
cost than lazy (i.e. inconsistent) replication. Then we introduce a lazy broadcast policy and compare it with several naive or traditional
approaches to solving the problem.
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1. Introduction

A mobile computing problem that has generated a signifi-
cant amount of interest in the database community is data
broadcasting (see, for example, [2]). The problem is how
to organize the pages in a broadcast from a server to a large
client population in the dissemination of public information
(e.g., electronic news services, stock-price information, etc.).
A strongly related problem is how to replicate (or cache) the
broadcast data in the Mobile Units that receive the broadcast.

In this paper we study the problems of broadcasting and
replication in a peer to peer rather than client server archi-
tecture. More precisely, we study the problem of data dis-
semination, i.e. full replication at all the nodes of a set that
is distributed over a wide area, and communicates by satel-
lite broadcasts. Namely, a node broadcasts a message to all
the other nodes by sending it to the satellite, which in turn
broadcasts it. Assume that the nodes collaborate to assemble
an aggregate database out of fragments of information at each
each node. For instance, the nodes may be helicopters pho-
tographing a terrain, and the database renders a global picture
out of local images collected by individual helicopters; or, the
database consists of the location of each helicopter, or another
meaningful database constructed from a set of widely distrib-
uted fragments. Or, the nodes are traveling salesmen, and the
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database consists of the total items sold. Or, the nodes are
soldiers of a reconnaissance unit.

We model such applications using a “master” replication
environment (see [13]), in which each node i “owns” the mas-
ter copy of a data item Di , i.e. it generates all the updates
to Di . For example, Di may be the latest in a sequence of
images taken periodically by the node i of its local surround-
ings. Each new image updatesDi . Or, Di may be the location
of the node which is moving; Di is updated when the Global
Positioning System (GPS) on board the node i indicates a cur-
rent location that deviates from Di by more than a prespeci-
fied threshold. The database of interest is D = {D1, . . . ,Dn},
where n is the number of nodes and also the number of items
in the database.1

It is required that D is accessible from each node in the
network,2 thus each node stores a (possibly inconsistent) copy
of D.3 Our paper deals with various policies of broadcasting
updates of the data items. In each broadcast a data item is
associated with its version number, and a node that receives

1 In case Di is the location of i, the database D is of interest in what are
called Moving Objects Database (MOD) applications (see [3,20,21,31,33]).
If Di is the location of object i in a battlefield situation, then a typical
query may be: retrieve the friendly helicopters that are in a given region.
Other MOD applications involve emergency (fire, police) vehicles and local
transportation systems (e.g., city bus system).

2 For example, the location of the members of a platoon should be viewable
by any member at any time.

3 By inconsistency of D we mean that some data items may not contain the
most recent version.
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a broadcasted data item updates its local database if and only
if the local version is older than the newly arrived version. In
the broadcast policies there is a tradeoff between data consis-
tency and communication cost. In satellite networks the com-
munication cost is in terms of bandwidth, or actual dollars the
customer is charged by the network provider.

Now let us discuss the broadcast policies. One obvious
policy is the following: for each node i, when Di is updated,
node i broadcasts the new version of Di to the other nodes
in the network. We call this the Single-item Broadcast Dis-
semination (SBD) policy. In the networks and applications
we discuss in this paper, nodes may be disconnected, turned
off or out of battery. Thus, the broadcast of Di may not be
received by all the nodes in the system. A natural way to deal
with this problem is to rebroadcast an update to Di until it is
acknowledged by all the nodes, i.e. Reliable Broadcast Dis-
semination (RBD). Clearly, if the new version is not much
different than the previous one and if the probability of dis-
connection is high (thus necessitating multiple broadcasts),
then this increase in communication cost is not justified. An
alternative option, which we adopt in SBD, is to broadcast
each update once, and let copies diverge. Thus the delivery of
updates is unreliable, and consequently the dissemination of
Di is “lazy” in the sense that the copy of Di stored at a node
may be inconsistent.

How can we quantify the tradeoff between the increase in
consistency afforded by a reliable broadcast and its increase in
communication cost? In order to answer this question we in-
troduce the concept of inconsistency-cost of a data item. This
concept, in turn, is quantified via the notion of the cost differ-
ence between two versions of a data item Di . In other words,
the inconsistency cost of using an older version v rather than
the latest version w is the distance between the two versions.
For example, if Di represents a location, then the cost differ-
ence between two versions of Di can be taken to be the dis-
tance between the two locations. IfDi is an image, an existing
algorithm that quantifies the difference between two images
can be used (see, for example, [9]). If Di is the quantity-on-
hand of a widget, then the difference between the two ver-
sions is the difference between the quantities. Now, in order
to quantify the tradeoff between inconsistency and communi-
cation one has to answer the question: what amount of band-
width/energy/dollars am I willing to spend in order to reduce
the inconsistency cost on a data item by one unit? Using this
model we establish the cost formulas for RBD and SBD, i.e.
reliable and unreliable broadcasting, and based on them for-
mulas for selecting one of the two policies for a given set of
system parameters.

For the cases when unreliable broadcast, particularly SBD,
is more appropriate, consistency of the local databases can be
enhanced by a policy that we call Full Broadcast Dissemina-
tion (FBD). In FBD, whenever Di is updated, i broadcasts
its local copy of the whole database D, called D(i). In other
words, i broadcasts Di , as well as its local version of each
one of the other data items in the database. When a node j re-
ceives this broadcast, j updates its version of Di , and j also
updates its local copy of each other item Dk , for which the

version number in D(i) is more recent. Thus, these indirect
broadcasts of Dk (to j via i) are “gossip” messages that in-
crease the consistency of each local database. However, again,
this comes at the price of an increase in communication cost
due to the fact that each broadcast message is n times longer.

The SBD and FBD policies represent in some sense two
extreme solutions on a consistency-communication spectrum
of lazy dissemination policies. SBD has minimum communi-
cation cost and minimum local database consistency, whereas
FBD has maximum communication cost and maximum (un-
der the imperfect circumstances) local database consistency.

In this paper we introduce and analyze the Adaptive
Broadcast Dissemination (ABD) policy that optimizes the
tradeoff between consistency and communication using a cost
based approach. In the ABD policy, when node i receives an
update to Di it first determines whether the expected reduc-
tion in inconsistency justifies broadcasting a message. If so,
then i “pads” the broadcast message that contains Di with a
set S of data items (that i does not own) from its local data-
base, such as to optimize the total cost. One problem that
we solve in this paper is how to determine the set S, i.e. how
node i should select for each broadcast message which data
items from the local database to piggyback on Di . In order
to do so, i estimates for each j and k the expected benefit (in
terms of inconsistency reduction) to node k of including in
the broadcast message its local version of Dj .

Let us now put this paper in the context of existing work on
consistency in distributed systems. Our approach is new as far
as we know. Although gossiping has been studied extensively
in distributed systems and databases (see section 6), none
of the existing works uses an inconsistency-communication
tradeoff cost function in order to determine what gossip mes-
sages to send. Furthermore, in the emerging resource con-
strained environments (e.g., sensor networks, satellite com-
munication, and MANET’s) this tradeoff is crucial. Also our
notion of consistency is appropriate for the types of novel ap-
plications discussed in this paper, and is different than the tra-
ditional notion of consistency in distributed systems discussed
in the literature, e.g., [6,11,26,29]. Specifically, in contrast to
the traditional approaches, our notion of consistency does not
mean consistency of different copies of a data item at different
nodes, and it does not mean mutual consistency of different
data items at a node. In this paper a copy of a data item at a
node is consistent if it has the latest version of the data item.
Otherwise it is inconsistent, and the inconsistency cost is the
distance between the local copy and the latest version of the
data item. Inconsistency of a local database is simply the sum
of the inconsistencies of all data items. We employ gossiping
to reduce inconsistency, not to ensure consistency as in using
vector clocks [6,26].

In this paper we provide a comparative analysis of dissem-
ination policies. The analysis is probabilistic and experimen-
tal, and it achieves the following objectives. First, it gives a
formula for the expected total cost of SBD and RBD, and a
complete characterization of the parameters for which each
policy has a cost lower than the other. Second, for ABD we
prove cost optimality for the set of data items broadcast by a



COST BASED DATA DISSEMINATION IN SATELLITE NETWORKS 51

node i, for i’s level of knowledge of the system state. Third,
the analysis compares the three unreliable policies discussed
above, namely SBD, FBD, and ABD, and a fourth traditional
one called flooding (FLD)4 [32]. ABD proved to consistently
outperform the other two policies, often having a total cost
(that includes the cost of inconsistency and the cost of com-
munication) that is several times lower than that of the other
policies.

In summary, the key contributions of this paper are as fol-
lows.

• Introduction of a cost model to quantify the tradeoff be-
tween consistency and communication.

• Analyzing the performance of eager and lazy dissemina-
tion via reliable and unreliable broadcasts, respectively,
obtaining cost formulas for each case and determining the
data and communication parameters for which eager is su-
perior to lazy, and vice versa.

• Developing and analyzing the Adaptive Broadcast Dis-
semination policy, and comparing it to the other lazy dis-
semination policies.

The rest of the paper is organized as follows. In section 2
we introduce the operational model and the cost model. In
section 3 we analyze and compare reliable and unreliable
broadcasting. In section 4 we describe the ABD policy, and
in section 5 we analyze it. In section 6 we compare the unreli-
able broadcast policies by simulation. In section 7 we discuss
relevant work, and in the last section we summarize the pa-
per. In appendix A we provide the proofs of our theorems
and lemmas. In appendix B we describe further experimental
results.

2. The model

In section 2.1 we precisely define the overall operational
model, and in section 2.2 we define the cost model.

2.1. Operational model

The system consists of a set of n nodes that communicate
by message broadcasting. Each node i (1 � i � n) has a
data item Di associated with it. Node i is called Di ’s owner.
This data item may contain a single numeric value, or a com-
plex data structure such as a motion plan, or an image of the
local environment. Only i, and no other nodes, has the au-
thorization to modify the state of Di . A data item is updated
at discrete time points. Each update creates a new version of
the data item. In other words, the kth version of Di , denoted
Di(k), is generated by the kth update. We denote the latest
version of Di by Di . Furthermore, we use v(Di) to represent
the version number ofDi , i.e. v(Di(k)) = k. For two versions
Di(k) and Di(k

′), we say that Di(k) is newer than Di(k
′) if

k > k′, and Di(k) is older than Di(k
′) if k < k′.

4 In flooding a node i broadcasts each new data item it receives either as a
results of a local update of Di , or from a broadcast message.

An owner i periodically broadcasts its data item Di to
the rest of the system. Each such broadcast includes the
version number of Di . Since nodes may be disconnected,
some broadcasts may be missed by some nodes, thus, each
node j has a version of each Di which may be older than
Di . The local database of node i at any given time is the set
〈Di

1,D
i
2, . . . ,D

i
n〉, where each Di

j (for 1 � j � n) is a ver-
sion of Dj . Observe that since all the updates of Di originate
at i, then Di

i = Di . Node i updates Di
j (j 	= i) in its local

database when it receives a broadcast from j .
Nodes may be disconnected (e.g., shut down) and thus

miss messages. Let pi be the percentage of time a node i

is connected. Then pi is also the probability that i receives
a message from any other node j . For example, if i is con-
nected 60% of the time (i.e. pi = 0.6), then a message from
j is received by i with probability 0.6. We call pi the connec-
tion probability of i.

2.2. Cost model

In this subsection we introduce a cost function that quan-
tifies the tradeoff between consistency and communication.
The function has two purposes. First, to enable determin-
ing the items that will be included in each broadcast of the
ABD policy, and second, to enable comparing the various
policies.

2.2.1. Inconsistency cost
Assume that the distance between any two versions of a data
item can be quantified. For example, in moving objects data-
base (MOD) applications, the distance between two data item
versions may be taken to be the Euclidean distance between
the two locations. If Di is an image, one of the many existing
distance functions between images (e.g., the cross-correlation
distance [9]) can be used.

Formally, the distance between two versions Di(k) and
Di(j), denoted DIST(Di(k),Di(j)), is a function whose do-
main is the nonnegative reals, and it has the property that the
distance between two identical versions is 0. If the data item
owned by each node consists of two or more types of logical
objects, each with its own distance function, then the distance
between the items should be taken to be the weighted aver-
ages of the pairwise distances.

We take the DIST function to represent the cost, or the
penalty, of using the older version rather than the newer
one. More precisely, consider two consecutive updates on Di ,
namely the kth update and the (k + 1)st update. Assume that
the kth update happened at time tk and the (k + 1)st update
at time tk+1. Intuitively, at time tk+1 each node j that did not
receive the kth version Di(k) during the interval [tk, tk+1),
pays a price which is equal to the distance between the lat-
est version of Di that j knows and Di(k). In other words,
this price is the penalty that j pays for using an older ver-
sion during the time in which j should have used Di(k).
If j receives Di(k) sometime during the interval [tk, tk+1),
then the price that j pays on Di is zero. Formally, assume
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that at time tk+1 the latest version of Di that j knows is v

(v � k). Then j’s inconsistency cost on version k of Di is
COST_INCOj (Di(k)) = DIST(Di(v),Di(k)).

The inconsistency cost of the system on Di(k) is COST_
INCO(Di(k)) = ∑

1�j�n COST_INCOj (Di(k)).
The total inconsistency cost of the system on Di up

to the mth update of Di , denoted COST_INCO(i,m), is∑
1�k<m COST_INCO(Di(k)).
The total inconsistency cost for the system up to time t is

COST_INCO(t) = ∑
1�i�n COST_INCO(i,mi), where mi

is the highest version number of Di at time t .

2.2.2. Communication cost
The cost of a message depends on the length of the message.
In particular, if there are m data items in a message, the cost
of the message is C1 +m · C2.5

C1 is called the message initiation cost and C2 is called
the message unit cost. C1 represents the cost of energy con-
sumed by the CPU to prepare and send the message. C2 repre-
sents the incremental cost of adding a data item to a message.
The values of C1 and C2 are given in inconsistency cost units.
They are determined based on the amount of resource that one
is willing to spend in order to reduce the inconsistency cost
on a version by one unit. For example, if C1 = C2 and one is
willing to spend one message of one data item in order to re-
duce the inconsistency by at least 50, then C1 = C2 = 1/100.

The total communication cost up to time t is the sum of
the costs of all the messages that have been broadcast from
the beginning (time 0) until t .

2.2.3. System cost
The system cost up to time t , denoted COST_SYS(t), is the
sum of the total inconsistency for the system up to t , and the
total communication cost up to t . The system cost is the ob-
jective function optimized by the ABD policy. When com-
paring ABD with other broadcast policies, there are two ad-
ditional costs, namely computation and storage, which will
come into play. We will explain the inclusion of these costs
in the model in section 6.

3. Reliable versus unreliable broadcasting

In this section we completely characterize the cases in which
lazy dissemination by unreliable broadcasting outperforms
eager dissemination by reliable broadcasting, and vice versa.
Lazy dissemination is executed by the Single-item Broadcast
Dissemination (SBD) policy, in which each node i unreliably
broadcasts each update it receives, when i receives it. Eager
dissemination is executed by the Reliable Broadcast Dissem-
ination (RBD) policy, in which each node i reliably broad-
casts each update it receives, when i receives it; by reliable
broadcast we mean that i retransmits the message until it is
acknowledged by all the other nodes. Performance of the two

5 Actually, the cost of a message can be any non-decreasing function of the
length of the message. In section 4.2 we will discuss how our approach can
be extended to this more general case.

policies is measured in terms of the system cost, as defined
at the end of the previous section. We first derive the closed
formulas for the system costs of SBD and RBD. Then, based
on these formulas, we compare SBD and RBD.

3.1. Quantification of SBD and RBD performance

In the following discussion, we assume that for each node i,
the updates at i are generated by a Poisson process with in-
tensity λi . Let λ = ∑

1�i�n λi . The number of nodes in the
system is n, the connection probability pi for each node i,
message initiation cost C1, and the message unit cost C2.

The following theorem gives the system cost of SBD up to
a given point in time.

Theorem 1. The system cost of SBD up to time t (i.e.
COST_SYSSBD(t)) is a random variable whose expected
value is

E
[
COST_SYSSBD(t)

]
= λ · t · (C1 + C2)+

∑
1�i�n

∞∑
m=1

(
e−λi ·t · (λi · t)m

m!

×
m−1∑
q=1

∑
1�j�n, j 	=i

(
(1 − pj )

q · DIST
(
Di(0),Di(q)

)

+
q−1∑
k=1

pj · (1 − pj )
q−k · DIST

(
Di(k),Di(q)

)))
. (1)

Now we analyze the system cost of the reliable broadcast
dissemination (RBD) policy. First let us introduce a lemma
which gives the expected number of times that a message is
transmitted from node i (remember that in RBD a message is
retransmitted until it is acknowledged by all the other nodes).

Lemma 1. Let Ri be the number of times that a message is
transmitted. Then Ri is a random variable whose expected
value is

E[Ri] =
∞∑
k=1

(
k ·
( ∏

1�j�n, j 	=i

(
1 − (1 − pj )

k
)

−
∏

1�j�n, j 	=i

(
1 − (1 − pj )

k−1))). (2)

Theorem 2. The system cost of RBD up to time t (i.e.
COST_SYSRBD(t)) is a random variable whose expected
value is

E
[
COST_SYSRBD(t)

]
= (C1 + C2) · t ·

n∑
i=1

λi · E[Ri] + (n − 1) · C1 · λ · t (3)

(the value of E[Ri ] was derived in lemma 1).
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3.2. Comparison of SBD and RBD

The objective of this subsection is to identify the situations in
which SBD outperforms RBD, and vice versa.

Theorem 3. E[COST_SYSSBD(t)] < E[COST_SYSRBD(t)]
if and only if

C1 >

∑
i E[COST_INCOi (t)] − (

t
∑

i λiE[Ri] − λt
)
C2

t
∑

i λiE[Ri] + λ · t · (n− 2)
,

(4)
where E[COST_INCOi (t)] is the expected value of inconsis-
tency cost of SBD on Di up to t (see Appendix A).

The meaning of theorem 3 is visually expressed by fig-
ure 1(a), where

K1 =
∑n

i=1 E[COST_INCOi (t)]
t ·∑n

i=1(λi ·E[Ri ])+ λ · t · (n− 2)

and

K2 =
∑n

i=1 E[COST_INCOi (t)]
t ·∑n

i=1(λi ·E[Ri])− λ · t .

In figure 1(a), inside and only inside the shadowed triangular
area RBD is better than SBD. In other words, if the communi-
cation cost is relatively high, then it is better to use unreliable
rather than reliable broadcasting. The intuition is that since
in RBD each message may be transmitted more than once, as
C1 and C2 increase, the system cost of RBD increases faster
than that of SBD.

Observe that the characterization of theorem 3 is depen-
dent on the total cost of inconsistency of each data item (since
K1 and K2 are dependent on these inconsistencies). In some
cases, however, the difference between any two versions of
Di is a constant. For example, assume that if a node j does
not have the latest version of Di , then it pays a fixed cost (be-
cause, say, j makes an erroneous decision), regardless of the
version of Di that j actually has. In this case, the difference
between any two arbitrary versions is a constant. Now we
characterize when SBD is better than RBD in this case.

Theorem 4. Assume that for any node i, the difference be-
tween two arbitrary versionsDi(k) and Di(j) is a constant d .
Then the expected system cost of SBD up to t is

E
[
COST_SYSSBD(t)

]
= λ · t · (C1 + C2)

+ d

n∑
i=1

((
λi t + e−λi t − 1

) ∑
1�j�n, j 	=i

(1 − pj )

)
. (5)

Theorems 2 and 4 enable us to compare the performance
of SBD and RBD for given C1, C2, and d . We identify the
ranges of C1, C2, and d for which SBD outperforms RBD
and vice versa. This is illustrated in figure 1(b), where α is

Figure 1. (a) RBD outperforms SBD inside and only inside the shadowed
area; K1 and K2 depend on the inconsistency cost of each data item. (b) SBD

outperforms RBD below and only below the shadowed plane.

the angle between the line OM and the axis C1, and β is the
angle between the line ON and the axis d .

tan(α) = A− B∑n
i=1

(
(λit + e−λit − 1)

∑
1�j�n, j 	=i (1 − pj )

)
and

cot(β) = A + B · (n − 2)∑n
i=1

(
(λi t + e−λi t − 1)

∑
1�j�n, j 	=i (1 − pj )

) .
Specifically, SBD is better than RBD if and only if the pa-
rameters C1, C2, and d denote a point which is below the
shadowed plane of figure 1(b). One of the implications of this
result is that as a point on the (C1, C2) plain moves farther
away from the origin, SBD is better for a wider range of d’s.
This quantifies the intuition that SBD becomes the preferred
policy as the communication cost increases.

4. The adaptive broadcast dissemination policy

In this section we describe the Adaptive Broadcast Dissem-
ination policy. Intuitively, a node i executing the policy be-
haves as follows. When it receives an update to Di , node i

constructs a broadcast message by evaluating the benefit of
including in the message each one of the data items in its local
database. Specifically, the ABD policy executed by i consists
of the following two steps.

(1) Benefit estimation. For each data item in the local data-
base, estimate how much the inconsistency of the system
could be reduced if that data item is included in the mes-
sage.

(2) Message construction. Construct the message which is a
subset of the local database so that the total estimated net
benefit of the message is maximized. (The net benefit is
the difference between the inconsistency reduced by the
message and the cost of the message.) Observe that the
set of data items to be broadcast may be empty. In other
words, when Di is updated, node i may estimate that the
net benefit of broadcasting any data item is negative.

Each one of the above steps is executed by an algorithm
which is described in one of the next two subsections.
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4.1. Benefit estimation

Intuitively, the benefit to the system of including a data
item Dj in a message that node i broadcasts is in terms of
inconsistency reduction. This reduction depends on the nodes
that receive the broadcast, and on the latest version of Dj

at each one of these nodes. Node i maintains data structures
that enable it to estimate the latest version of Dj at each node.
Then the benefit of including a data item Dj in a message that
i broadcasts is simply the sum of the expected inconsistency
reductions at all the nodes.

In computing the inconsistency reduction for a node k we
attempt to be as accurate as possible, and we do so as follows.
Node i maintains a “knowledge matrix” which stores in entry
(k, j) the last version number of Dj that node i received from
node k (this version is called v(Dk

j )), and the time when it was
received. Additionally, i saves in the “real history” for each
Dj all the versions of Dj that i has “heard” from other nodes,
the times at which it has done so, and from which node they
were received.6 The reason for maintaining all this informa-
tion is that now, in estimating which version ofDj node k has,
node i can take into consideration two factors: (1) the last ver-
sion ofDj that i received from k at time, say t , and (2) the fact
that since time t node k may have received updates of Dj by
“third party” messages that were transmitted after time t , and
“heard” by both, k and i. Node i also saves with each version
v of Dj that it “heard”, the distance (i.e. the inconsistency
caused by the version difference) between v and the last ver-
sion of Dj that i knows; this difference is the parameter nec-
essary in order to compute the inconsistency cost reduction
that is obtained if node i broadcasts its latest version of Dj .

In section 4.1.1 we describe the data structures that are
used by a node i in benefit estimation. In section 4.1.2 we
present i’s benefit estimation method.

4.1.1. Data structures
(1) The knowledge matrix. For each data item Dj (j 	= i),
denote by v(Dk

j ) the latest version number of Dj that i re-

ceived from k, and denote by t (Dk
j ) the last time when Dk

j

was received at i. The knowledge matrix at node i is

Mi =




(t (D1
1), v(D

1
1)) (t (D1

2), v(D
1
2)) . . . (t (D1

n), v(D
1
n))

(t (D2
1), v(D

2
1)) (t (D2

2), v(D
2
2)) . . . (t (D2

n), v(D
2
n))

.

.

.
.
.
.

. . .
.
.
.

(t (Dn
1 ), v(D

n
1 )) (t (Dn

2 ), v(D
n
2 )) . . . (t (Dn

n), v(D
n
n))


.

Node i updates the matrix whenever it receives a message.
Specifically, when i receives a message from k that includes
Dj , i updates the entry (k,j ) of the matrix. In addition, if
the version of Dj received is newer than the version in i’s
local database, then the newer version updates Dj in the local
database.

(2) Version sequence. A version sequence records all the
version numbers that i has ever known about a data item. Due

6 There is a potential storage problem here, which we address, but we post-
pone the discussion for now.

(a)

(b)

Figure 2. Data structures in benefit estimation. (a) Version sequence and
dissemination history. (b) Effective version sequence and effective dissemi-

nation number.

to unreliability, it is possible that i has not received all the
versions of a data item. In particular, the version sequence of
Dj is VSj = 〈v1, v2, . . . , vh〉, where v1 < v2 < · · · < vh
are all the version numbers that i has ever known about Dj .
For each v ∈ VSj , i saves in the distance between Dj (v)

and Dj (vh). Figure 2(a) illustrates an example of a dissem-
ination history. The number in parentheses besides a ver-
sion number is the distance between that version of Dj and
the last version of Dj which is 5. Thus, in this example
DIST(Dj (v),Dj (v

′)) = |v − v′|.

(3) Dissemination history. For each version number v in
each VSj , i maintains a dissemination history DHj (v). This
history records every time point at which i received Dj (v)

from a node. DHj (v) also contains every time point at which
i broadcast Dj(v). Figure 2(a) gives an example of a version
sequence and its dissemination histories. Figure 2(a) shows
that node i received version 1 ofDj at time 15, and it received
version 3 at times 10, 18 and 20.

Now we discuss how we limit the amount of storage
used. Observe that the lengths of each version sequence VSj
and dissemination history DHj (v) increases unboundedly as
i receives more broadcasts. This presents a storage prob-
lem. A straightforward solution to this problem is to limit
the length of each version sequence to α and the length of
each dissemination history to β. We call this variant of the
ABD policy ABD(α, β). The drawback of ABD(α, β) is that
when the length of a dissemination history DHj (v) is smaller
than β, since each dissemination history is limited to β, other
dissemination histories cannot make use of the free storage of
DHj (v). A better solution, which we adopt in this paper, is
to limit the sum of the lengths of each dissemination history
in each version sequence. In particular, we use ABD-s to de-
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note the ABD policy in which
∑

1�j�n

∑
v∈VSj |DHj (v)| is

limited to s.7 s must be at least n.

4.1.2. The benefit estimation method
When an update on Di occurs, node i estimates the benefit
of including its latest version of Dj in the broadcast mes-
sage, for each Dj in the local database. Intuitively, i does
so using the following procedure. For each node k com-
pute the set of versions of Dj that k can have, i.e. the set
of versions that were received at i after Dk

j was received. As-
sume that there are m such versions. Then, compute the set
of broadcasts from which k could have learned each one of
these versions. Based on this set compute the probabilities
q1, q2, . . . , qm that k has each one of the possible versions
v1, v2, . . . , vm. Finally, compute the expected benefit to k as
the sum q1 · DIST(v(Dj ), v1)+ q2 · DIST(v(Dj ), v2)+ · · ·+
qm · DIST(v(Dj ), vm).

Formally, node i performs the benefit estimation in five
steps:

(1) Construct an effective version sequence (EVS) of Dk
j

which is a subsequence of VSj :

EVSkj = {
v | v ∈ VSj and v � v

(
Dk
j

)
and there exists

t ∈ DHj (v) such that t � t
(
Dk
j

)}
. (6)

Intuitively, EVSkj is the set of versions of Dj that k can

have, as far as i knows. In other words, EVSkj contains
each version v that satisfies the following two properties:
(i) v is higher than or equal to the latest version of Dj

that i has received from k (i.e. v(Dk
j )), and (ii) i has re-

ceived at least one broadcast which includes Dj(v), and
that broadcast arrived later than Dk

j . For example, fig-

ure 2(b) illustrates EVSkj for the example in figure 2(a).

We assume t (Dk
j ) = 15 and v(Dk

j ) = 1, i.e. the ver-

sion of Dk
j is 1, and it was received at time 15. Notice

that EVSkj is not necessarily a consecutive subsequence

of VSkj . For example, version 4 is not in EVSkj because it

was broadcast at time 12, i.e. before Dk
j . This means that

k has not received this broadcast, and thus, as far as i is
concerned, 4 is not a possible current version number of
Dj in k’s local database.

(2) For each v in EVSkj that is higher than v(Dk
j ), count the

effective dissemination number which is the size of the
set {t | t ∈ DHj (v) and t > t (Dk

j )}, and denote this

number EDNk
j (v). Intuitively, EDNk

j (v) is the number of
broadcasts from which k could have learnedDj (v), based
on i’s knowledge. Figure 2(b) illustrates each EDNk

j (v)

which is derived from the example in figure 2(a). No-
tice that EDNk

j (3) = 2 because 10 was broadcast before

Dk
j (which was broadcast at time 15), and thus k could

not have received that broadcast (otherwise it would have
broadcast a higher version number at time 15).

7 |A| denotes the size of the set A.

(3) For each v in EVSkj , compute ηv which, as we will prove,
is the probability that the version number of Dj in k’s
local database is v. If v = v(Dk

j ),

ηv =
∏

v′∈EVSkj , v
′>v

(1 − pk)
EDNk

j (v
′)
. (7)

Otherwise,

ηv = (
1 − (1 − pk)

EDNk
j (v)

)
×

∏
v′∈EVSkj , v

′>v

(1 − pk)
EDNk

j (v
′)
. (8)

(4) If the version number of Dj in k’s local database is v,
then the estimated benefit to k of including Di

j in the
broadcast message is taken to be the distance between
Dj (v) and Di

j (i.e. DIST(Dj (v),D
i
j )). Denote this ben-

efit B(Di
j , k, v).

(5) The estimated benefit to k of including Dk
j in the broad-

cast message is taken to be pk
∑

v∈EVSkj
(ηvB(D

i
j , k, v)).

Denote this benefit by B(Di
j , k). Then the estimated ben-

efit B(Di
j ) of including Di

j in the broadcast message is

B
(
Di
j

) =
∑

1�k�n, k 	=i,j
B
(
Di
j , k

)
. (9)

4.2. Message construction step

The objective of this step is for node i to select a subset S of
data items from the local database for inclusion in the broad-
cast message. The set S is chosen such that the expected net
benefit of the message (i.e. the total expected inconsistency-
reduction benefit minus the cost of the message) is maxi-
mized.

First, node i sorts the estimated benefits of the data items
in descending order. Thus we have the benefit sequence
B(Di

k1
) � B(Di

k2
) � · · · � B(Di

kn
). Then i constructs the

message as follows. If there is no number t between 1 and
n such that the sum of the first t members in the sequence is
bigger than (C1 + t ·C2), then i will not broadcast a message.8

Else, i finds the shortest prefix of the benefit sequence such
that the sum of all the members in the prefix is greater than
(C1 + m · C2), where m is the length of the prefix. i places
the data items corresponding to the prefix in the broadcast
message. Then i considers each member j that succeeds the
prefix. If B(Di

j ) is greater than or equal to C2, then i puts Di
j

in the message.9

8 Remember that the cost of a message containing m data items is
(C1 +m · C2).

9 For the general case where the cost of a message is a non-decreasing func-
tion of the length of the message, i computes the net benefit of the first t
members in the benefit sequence for each 1 � t � n. If for all the values
of t the net benefit is not greater than zero, then i will not broadcast a mes-
sage. Else, i finds the t such that the net benefit is maximized and includes
the first t data items the message.
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In section 5 we show that the procedure in this step broad-
casts the subset S of data items whose net benefit is higher
than that of any other subset.

This concludes the description of the ABD-s policy, which
consists of the benefit estimation and message construction
steps. It is easy to see that the time complexity of the policy
is O(n · s).

5. Analysis of the ABD algorithm

In this section we prove cost optimality of ABD based on the
level of knowledge that node i has about the other nodes in the
system. The following definitions are used in the analysis.

Definition 1. If at time t there is a broadcast from i which in-
cludesDj , we say that a dissemination of Dj occurs at time t ,
and denote it rj (i, v, t) where v is the version number of Dj

included in that broadcast.

Definition 2. A dissemination sequence of Dj at time t is the
sequence of all the disseminations of Dj that occurred from
the beginning until time t:

RSj (t) = 〈
rj (n1, v1, t1), rj (n2, v2, t2), . . . , rj (nm, vm, tm)

〉
,

where t1 < t2 < · · · < tm � t .

Definition 3. Suppose k receives a message from i which in-

cludes Di
j . Denote Dk

j the version of Dj in k’s local data-

base immediately before the broadcast. If the version of Di
j

is higher than the version of Dk
j , then the actual benefit to k

of receiving Di
j , denoted B(Di

j ), is

B
(
Di
j , k

) = DIST
(
Dk
j ,Dj

)− DIST
(
Di
j ,Dj

)
. (10)

Otherwise the actual benefit is 0.

In other words, the actual benefit to k of receiving Di
j is

the reduction in the distance of Dk
j from Dj . Observe that

the actual benefit can be negative. For example, consider the
case where Dj is a numeric value and DIST(D(k),D(k′)) =
|D(k)−D(k′)|. If Dj = 300, Di

j = 100 and Dk
j = 200, then

B(Di
j , k) = −100.

Definition 4. The actual benefit of dissemination rj (i, v, t),
denoted B(Di

j ), is the sum of the actual benefits to each
node k that receives the message from i at t which inclu-
ded Di

j . The actual benefit of a broadcast message is the
sum of the actual benefits of each data item included in the
message.

Now we discuss two levels of knowledge of i about the
other nodes in the system.

Definition 5. Node i is absolutely reliable on Dj for node k
by time t if i has received all the broadcast messages which

included Dj and were sent between t (Dk
j ) and t . i is ab-

solutely reliable on Dj by time t if i is absolutely reliable on
Dj for each node k by t . i is absolutely reliable by time t if
i is absolutely reliable on each Dj by t .

Definition 6. Node i is strictly synchronized with Dj at
time t if at t Dj in i’s local database is the latest version
of Dj at t . i is strictly synchronized at time t if i is strictly
synchronized with each Dj at t .

Obviously, if i is strictly synchronized at time t , then i’s
local database is identical to the system state at t .

Observe that if each node j broadcasts Dj whenever an
update on Dj occurs, then a node i which is absolutely re-
liable on Dj by time t is strictly synchronized with Dj at
time t . However, in the ABD policy a node j may decide
not to broadcast the new version of Dj , and thus i is not nec-
essarily strictly synchronized with Dj even if i is absolutely
reliable on Dj . On the other hand, i can be strictly synchro-
nized even if it is not absolutely reliable. In other words, “ab-
solutely reliable” and “strictly synchronized” are two inde-
pendent properties.

Theorem 5. Let RSj (t) be a dissemination sequence of Dj

in which the last dissemination is rj (i, v, t). The actual ben-
efit of rj (i, v, t) (i.e. B(Di

j )) is a random variable. If i is ab-
solutely reliable onDj by t and strictly synchronized with Dj

at t , then B(Di
j ) given by the ABD policy (see equation (9))

is the expected value of B(Di
j ).

Proof idea. The proof of theorem 5 is based on the following
two lemmas. �

Lemma 3. Let RSj (t) be a dissemination sequence of Dj in
which the last dissemination is rj (i, v, t). If i is absolutely
reliable on Dj by t , then for a node k 	= i, j , the version of

Dj in k’s local database at time t (i.e. v(Dk
j )) is a random

variable. EVSkj gives the sample space of v(Dk
j ).

Lemma 4. For a node k 	= i, j , equations (7) and (8) give the

probability that v(Dk
j ) = v.

Now we devise a function which allows us to measure the
cost efficiency of a broadcast.

Definition 7. The actual net benefit of a broadcast message is
the difference between the actual benefit of the message and
the cost of the message. Denote NB(M) the actual net benefit
of broadcasting a set of data items M .

Definition 8. A broadcast sequence at time t is the sequence
of all the broadcasts in the system from the beginning (time 0)
until time t :

BS(t) = 〈
M(n1, t1),M(n2, t2), . . . ,M(nm, tm)

〉
, (11)
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where M(nl, tl) is a message that is broadcast from nl at
time tl , and t1 < t2 < · · · < tm � t .

For a node which is both absolutely reliable by t and
strictly synchronized at t , we have the following theorem
concerning the optimality of the ABD policy.

Theorem 6. Let BS(t) be a broadcast sequence in which the
last broadcast is M(i, t). The actual net benefit of broadcast
M(i, t) (i.e. NB(M(i, t))) is a random variable. In particular,
let M = {Di

k1
,Di

k2
, . . . ,Di

km
} be the set of data items broad-

cast by the ABD policy at time t . If i is absolutely reliable by
t and strictly synchronized at t , then

(1) E[NB(M)] � 0.

(2) For any M ′ which is a subset of k’s local database,
E[NB(M ′)] � E[NB(M)].

Proof idea. The proof of theorem 6 is based on theorem 5
and the following lemma. �

Lemma 5. Let {Di
k1
,Di

k2
, . . . ,Di

km
} be the message con-

structed by the message construction method, then

(1) The estimated benefit of broadcastingM is not lower than
the cost of M .

(2) For any subset M ′ of i’s local database, the estimated
net benefit of broadcasting M ′ is not higher than that of
broadcasting M .

Theorem 6 shows that the message broadcast by the ABD
policy is optimized because the expected net benefit of broad-
casting any subset of i’s local database is not higher than that
of broadcasting this message. Granted, this theorem holds
under the assumption of strict synchronization and absolute
reliability, but i can base its decision only on the information
it knows.

In some cases, theorems 5 and 6 hold for a node which is
not strictly synchronized.

Consider a data item Di which is a single numeric value
that monotonously increases as the version number of Di in-
creases. We call this a monotonous data item. Assume that
the distance function is

DIST
(
Di(k),Di

(
k′)) = ∣∣Di(k)−Di

(
k′)∣∣. (12)

We call this the absolute distance function.
For monotonous data items and absolute distance func-

tions, theorems 5 and 6 are true when i is absolutely reliable
but not necessarily strictly synchronized at t . Thus, we have
the following two theorems.

Theorem 7. Let RSj (t) be a dissemination sequence where
the last dissemination is rj (i, v, t). The actual benefit of
rj (i, v, t) (i.e. B(Di

j )) is a random variable. For monotonous
data items and absolute distance functions, if i is absolutely
reliable on Dj by t , thenB(Di

j ) given by the ABD policy (see

equation (9)) is the expected value of B(Di
j ).

Theorem 8. Let BS(t) be a broadcast sequence, where the
last broadcast is M(i, t). The actual net benefit of broadcast
M(i, t) (i.e. NB(M(i, t))) is a random variable. In particular,
let M = {Di

k1
,Di

k2
, . . . ,Di

km
} be the message broadcast by

the ABD policy at time t . For monotonous data items and
absolute distance functions, if i is absolutely reliable by t ,
then

(1) E[NB(M)] > 0.

(2) For any M ′ which is a subset of k’s local database,
E[NB(M ′)] � E[NB(M)].

6. Comparison of the policies by simulation

In this section we describe the experiments that we conducted
in order to evaluate the three broadcast policies discussed
in the previous sections, namely ABD, FBD, and SBD. To
briefly recap, the policies behave as follows. In SBD a node i
broadcasts the new value of Di whenever it is updated. In
FBD i broadcasts its whole local database whenever Di is
updated. In ABD i broadcasts a subset of the local data-
base (as described in the previous section) whenever Di is
updated. We compared the above policies with traditional
flooding (FLD), a conventional protocol for data dissemina-
tion [32]. In FLD, a node that receives or generates a new
version of a data item, rebroadcasts a copy of the data item to
all the other nodes. In contrast to ABD, FBD, and SBD, in the
FLD policy a node i broadcasts the new version even if it is
for a data item Dj other than Di . In this case the new version
must have been received from a message that provided a new
value for Dj in i’s local database. FLD is similar to SBD in
the sense that each node broadcasts a single data item in each
message. FLD is similar to FBD and ABD in the sense that a
node i may broadcast a data item which is different than Di .

In this section we first discuss the simulation method and
then describe the simulation results.

6.1. Simulation method

In this subsection we first describe the inconsistency cost
functions used in our experiments. Then we discuss the ex-
tra storage and computation cost incurred by ABD compared
to the other policies, and how this is taken into consideration
in our experiments. Then we discuss the method we used in
order to carry out each simulation run. Finally we describe,
plot, and discuss the results of our simulations.

6.1.1. Inconsistency cost functions
First we discuss the two distance functions used for mea-
suring inconsistency. One is version-based, namely the in-
consistency between two versions Di(k) and Di(k

′) is the
difference between the version numbers, i.e. DIST(Di(k),

Di(k
′)) = |k − k′|. We call this the version-based distance

function. The other distance function is value-based, namely
the distance between two versionsDi(k) andDi(k

′) is the dif-
ference between the values (we assume Di contains a single
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numeric value), i.e. DIST(Di(k),Di(k
′)) = |Di(k)−Di(k

′)|.
We call this the value-based distance function. Each time a
data item is updated, we randomly select a real number be-
tween 0 and 100 as the value for the new version of that data
item. This way the two distance functions represent two ex-
treme patterns in which data changes over time: the version-
based distance function represents a very regular pattern in
which data is increased by one unit on each update, whereas
the value-based distance function represents a very chaotic
pattern in which data changes randomly. For space consider-
ations the plots in our figures refer only to the version based
distance function. However, the results for the value based
function are qualitatively similar.

6.1.2. Extra resource cost incurred by the ABD policy
Observe that ABD performs additional computation for each
message that it broadcasts (to determine the set of data items
that will be broadcast) compared with the other policies. It
also uses additional storage for the data structures that it main-
tains.

The additional computation incurred by ABD is modeled
by the CPU factor denoted C3. The CPU factor is a fraction
added to the message initiation cost C1 of ABD. For exam-
ple, if in a simulation run C1 = 10 and C3 = 0.2, then ABD’s
message initiation cost is 12, rather than 10 for the other poli-
cies.

A node using the ABD policy also pays additional storage
cost compared to the other policies. This depends on both, the
size of the data structure it maintains and the length of time
for which the data structure is kept. We use C4 to denote the
cost of a unit of storage occupied for one time unit and call
it the storage unit cost. C4 can be determined by the number
of storage units that one is willing to maintain for one time
unit, in order to reduce the inconsistency cost on a version by
one unit. Formally, for ABD-s (recall that s is the size of data
structures) the extra storage cost of i up to time t is C4 · s · t .

Note that C3 and C4 are introduced for the sole purpose
of comparing the system cost of ABD with that of the other
policies. In contrast to the communication cost and the incon-
sistency cost, they have no impact on the execution of ABD.
The reason for this is that the storage and extra computation
expended by ABD is fixed, independently of the set of items
that are actually included in the broadcast message.

6.1.3. Execution of a simulation run
Now we describe how we conduct each simulation run. We
take the number of nodes in the system to be 20. Each simu-
lation run uses one of the following five policies as the broad-
cast policy: SBD, FBD, FLD, ABD-400 and ABD-800. In
ABD-400, for each data item Dj and each node k, node i

keeps only the latest time point at which i received Dj from k

(for k 	= i) or at which i broadcast Dj (for k = i). This way,
the sum of the lengths of each dissemination history at node i
is limited to 20×20×1 = 400. Similarly, ABD-800 limits the
sum of the lengths of each dissemination history to 20×20 ×
2 = 800 by keeping only the latest two time points at which i
received Dj from a node k. We set up a connection probabil-
ity lower bound called cplb (0 � cplb � 1). For each node i,
the connection probability pi is randomly chosen from the
interval [cplb, 1]. Intuitively, the pi’s increase as the cplb pa-
rameter increases, and therefore, the connection reliability in-
creases. cplb is a parameter of each simulation run. For each
node i, the updates at i are generated by a Poisson process
with intensity λi . This means that on average i generates λi
updates per time unit. Each λi is randomly selected from the
interval [0.00001, 0.1]. We select λi only once and keep it
fixed for all the simulations. For each set of parameters we
execute a simulation run for 10000 logical time units, which
on average introduces 500 updates to each node. All the pa-
rameters and their value ranges are summarized in table 1.

Each simulation run is executed as follows. In each time
unit, updates are generated and all the nodes are processed in
sequence. When a new update occurs on Di , the total incon-
sistency on Di is increased for each node that did not receive
the previous update. Node i uses the policy of the simula-
tion run to construct a message. i “broadcasts” the message
and each other node j “receives” it with probability pj and
updates its local database accordingly. A message sent by
a node in time slot i of a round is accounted for in the same
round by all the nodes with higher slots. The nodes with lower
slots will account for this message in the next round. The total
resource cost is increased by the cost of this message.

6.2. Simulation results

In this subsection we present the results of the comparison
among the four policies SBD, FBD, FLD and ABD-800. We

Table 1
Parameter settings.

Parameter Symbol Value

Number of nodes n 20
Maximum data item value 100
Update intensity of node i λi Randomly selected from [0.00001, 0.1]

and fixed for all the simulations
Policy SBD, FBD, ABD, FLD
Connection probability lower bound cplb 0.1–1
CPU factor C3 0.1
Storage unit cost C4 0.0001
Information cost model Version-based Value-based
Message initiation cost C1 1–20 1–1000
Message unit cost C2 0.01–10 0.01–500
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Figure 3. System cost as a function of cplb (C1 = 1, C2 = 0.1).

compare the policies in terms of their system cost, inconsis-
tency cost, and resource cost. The resource cost of ABD-s is
the sum of the communication cost (which includes the extra
CPU cost) and the storage cost. The resource cost of SBD,
FBD, FLD is simply the communication cost. The system
cost is the sum of the inconsistency cost and the resource cost.
In appendix B we discuss the comparison between ABD-800
and ABD-400; it quantifies the system cost reduction that re-
sults from storing an extra version for each data item.

The basic conclusion from these experiments is that for
most parameter combinations of table 1 ABD is superior to
the other policies. Clearly, as the CPU and storage (of which
ABD uses more than the other policies) unit costs increase,
a crossover will occur. Thus, in appendix B we also de-
scribe experiments that quantify how the system cost of ABD
changes as a result of storage and CPU unit costs, and for
which such unit costs ABD becomes inferior to other poli-
cies.

Some of the simulation results are given below. We con-
ducted many more simulation runs, but the results are omitted
for space considerations. However, the omitted results con-
firm our basic conclusions.

First we discuss the system cost as a function of the con-
nection probability lower bound cplb (figure 3), and then we
discuss the system cost as a function of the message initiation
cost C1 (figure 4).

System cost as a function of cplb. Figure 3 plots the system
costs of the four policies as a function of cplb (ranging from
0.1 to 1), with the message initiation cost C1 = 10, and the
message unit cost C2 = 0.1. We conducted similar experi-
ments with C1 ranging from 1 to 20 and C2 from 0.01 to 10
(see table 1).

Observe that SBD has the highest cost for a low cplb, but
the difference between the system cost of SBD and ABD de-
creases as cplb increases (figure 3). The reason for this is that,
clearly, since SBD broadcasts each update only once it pays a
higher inconsistency cost as cplb decreases.

Figure 4. System cost as a function of message cost (C1/C2 = 10,
cplb = 0.1).

System cost as a function of the message cost. Figure 4 plots
the system costs of the four policies as a function of the mes-
sage initiation cost C1 (ranging from 2 to 20). We did similar
experiments with cplb ranging from 0.1 to 1. The conclusion
is that ABD has the lowest system cost and FLD has the high-
est one, with the gap increasing as the message cost increases.

7. Relevant work

The problem of data dissemination in peer-to-peer broadcast
networks has not been analyzed previously as far as we know.
The data broadcasting problem studied in [1,17,18] is how to
organize the broadcast and the cache in order to reduce the
response time. The above works assume a centralized system
with a single server and multiple clients communicating over
a reliable network with large bandwidth. In contrast, in our
environment these assumptions about the network do not al-
ways hold, and the environment is totally distributed and each
node is both a client and a server.

Pagani et al. [28] proposed a reliable broadcast protocol
which provides an exactly once message delivery semantics
and tolerates host mobility and communication failures. Bir-
man et al. [5] proposed three multicast protocols for trans-
mitting a message reliably from a sender process to some set
of destination processes. Unlike these works, we consider a
“best effort” reliability model and allow copies to diverge.

Lazy replication by gossiping has been extensively inves-
tigated in the past (see, for example, [23,24]). Epidemic
algorithms [10,12] such as the one used in Grapevine [30]
also propagate updates by gossiping. However, there are two
major differences between our work and the existing works.
First, none of these works considered the cost of communi-
cation; this cost is important in the types of novel applica-
tions considered in this paper. Second, we consider the trade-
off between communication and inconsistency, whereas the
existing works do not. Alonso et al. [4] studied the trade-
off between the gains in query response time obtained from
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quasi-caching, and the cost of checking coherency conditions.
However, they assumed point to point communication and a
centralized (rather than a distributed) environment.

Achieving global consistency by gossip messages is also
used in distributed systems research (see [6,11,26,29]). A typ-
ical mechanism is vector clocks, used, for example, by Bir-
man [6] in order to implement causal delivery. As explained
in the introduction, the main difference between these works
and the present paper is the consistency model. This leads
to other differences. First, the communication cost is not
considered in vector clock works. Second, in such works a
node is not selective about what clocks are piggybacked in
a message (similarly to the FBR policy, all clocks are pig-
gybacked). Third, the piggybacked information is meta data
(timestamps), whereas in our present work the piggybacked
information are data items.

A recent work similar to ours is TRAPP (see [27]). The
similarity is in the objective of quantifying the tradeoff be-
tween consistency and performance. However, the main dif-
ferences are in the basic assumptions. First, the TRAPP sys-
tem deals with numeric data in traditional relational data-
bases. Second, it quantifies the tradeoff for aggregation
queries. Actually, probably the most fundamental difference
is that it deals with the problem of answering a particular
instantaneous query, whereas we deal with database consis-
tency. Specifically, we want the consistency of the whole
database to be maximized for as long as possible. In other
words, we maximize consistency in response to continuous
queries that retrieve the whole database.

Another research area to which this paper is related is dis-
connection management in mobile environments (see, for ex-
ample, [15,16,19,22]). However, these works assume planned
disconnection, i.e. a node always informs the system of its in-
tention to disconnect or reconnect. In other words, at any
point in time the system is aware of which nodes are con-
nected and which ones are not. Planned disconnection re-
quires that a node has complete control of when to connect
and when to disconnect. But in practice this is not always pos-
sible. A node may run out of battery or drive under a bridge
and lose connection unexpectedly. Furthermore, planned dis-
connection is not realistic in peer-to-peer networks, since a
node i may miss the disconnection notice from another node j
if i itself is disconnected.

Finally, let us discuss a large body of important work deal-
ing with replication, consistency, and broadcasting (see, for
example, [7,8]). These works are concerned with transac-
tional properties and attaining serializability, i.e. perfect con-
sistency, at minimum cost. In contrast, in this paper we con-
sider applications where inconsistency can be tolerated and
transactional properties are not strictly required. However, a
framework in which each update is a transaction can be easily
incorporated in our model.

8. Conclusion

In this paper we studied data dissemination in peer-to-peer
broadcast networks. The problem is introduced by novel ap-

plications and networks such as mobile ad hoc networks, sen-
sor and “smart dust” networks, and satellite networks. Each
node i “owns” the master copy of a data item Di , i.e. it
generates all the updates to Di (see [13]). Each update is
broadcast to the other nodes. The database of interest is
D = {D1, . . . ,Dn}, where n is the number of nodes. A ver-
sion of this database is stored at each node.

We introduced a cost model for quantifying the tradeoff be-
tween inconsistency and communication. The inconsistency
cost is captured via the notion of the distance between two
versions of a data item Di . The communication cost is cap-
tured via the notion of a message cost which is proportional
to the length of the message. Then we used the model to first
compare two data broadcast policies: (1) eager dissemination
by Reliable Broadcast (RBD) which keeps the databases at
each node consistent, and (2) lazy dissemination by Single-
item Broadcast Dissemination (SBD) which allows inconsis-
tency, but incurs a lower communication cost due to unreli-
able broadcast. We completely characterized the parameters
for which SBD is superior to RBD, and vice versa. Intuitively,
lazy dissemination incurs a lower total cost in low connectiv-
ity environments, and in environments in which the communi-
cation cost is high. This is not surprising, but the contribution
of the analysis is in the quantifiable characterization.

Then we used our cost model for exploring lazy dissem-
ination alternatives to SBD. In particular, we introduced the
Adaptive Broadcast Dissemination (ABD) policy. In this pol-
icy, when a node i receives an update to Di , it first esti-
mates the expected benefit to the system of including in the
broadcast message each data item Dj in i’s local database.
Then i constructs and broadcasts a message which consists
of a subset of i’s local database. The subset is chosen such
that the “net” benefit of the message is maximized, i.e. the
inconsistency-cost-reduction minus the message-cost is max-
imized. We showed that ABD is optimal for the level of
knowledge that each node has about the distributed system.
Optimality is in the sense that if ABD were to broadcast a dif-
ferent subset of data items, then the expected cost would be
higher.

We compared the ABD policy with three other naive lazy
dissemination policies, SBD, Full Broadcast Dissemination
(FBD), and flooding (FLD). The first two policies broadcast
a message only when the master copy of a data item i is up-
dated. In SBD node i broadcasts only the updated data item,
whereas in FBD i broadcasts the entire local database. The
FLD policy on the other hand, broadcasts a message when-
ever some node i receives a new version of a data item; the
new version may be of Di , or of another data-item (in this
latter case the update must have been received by a broadcast
message from another node). We compared by simulation
the four policies for a large number of parameters combina-
tions. If the cost of the extra computation and storage used
by ABD is reasonably small (see table 1), then ABD consis-
tently outperforms the other two policies, often having a total
cost that is several times lower than that of the other policies.
Otherwise, appendix B characterizes the cases where ABD
becomes inferior.
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Appendix A. Proofs of the lemmas and theorems

Proof of theorem 1. Before we derive the system cost of
SBD, let us introduce a lemma which gives the inconsistency
cost of SBD up to a given point in time.

Lemma 2. The inconsistency cost of SBD on Di up to time t
(denoted COST_INCOi (t)) is a random variable whose ex-
pected value is

E
[
COST_INCOi (t)

]
=

∞∑
m=1

e−λi ·t · (λi · t)m
m!

×
m−1∑
q=1

∑
1�j�n, j 	=i

(
(1 − pj )

q · DIST
(
Di(0),Di(q)

)

+
q−1∑
k=1

pj · (1 − pj )
q−k · DIST

(
Di(k),Di(q)

))
. (A.1)

Proof of lemma 2. In the above equation, e−λi t (λi t)m/m! is
the probability that exactly m updates have occurred on Di up
to t by a Poisson process with intensity λi [14]. Now compute
the expected inconsistency cost of the system up to the mth
update of Di . Consider the expected inconsistency cost of
each node j (j 	= i) on each version Di(q), for q < m. There
are three cases in terms of the highest version of Di in j ’s
local database before the (q + 1)st update of Di .

(1) j did not receive any one of the first q updates from i

before the (q+1)st update of Di . The probability of this case
is (1 − pj )

q , and the inconsistency cost of j on Di(q) in this
case is DIST(Di(0),Di(q)).

(2) j received Di(k) (k < q) but did not receive any ver-
sion higher than Di(k) before the (q + 1)st update. The prob-
ability of this case is pj · (1 − pj )

q−k , and the inconsistency
cost of j on Di(q) in this case is DIST(Di(k),Di(q)).

(3) j receivedDi(q). The probability of this case is pj and
the inconsistency cost of j on Di(q) in this case is 0.

Thus,

(1 − pj )
q · DIST

(
Di(0),Di(q)

)

+
q−1∑
k=1

pj · (1 − pj )
q−k · DIST

(
Di(k),Di(q)

)
is the expected inconsistency cost of j on Di(q). Summing
up for j and q , we get the expected inconsistency cost of the
system up to the mth update of Di . �

Now we prove theorem 1. The expected message cost up
to time t is λ · t · (C1 + C2). The expected inconsistency cost
up to t is the sum of the expected inconsistency cost on each
Di up to t , which was derived in lemma 2. �

Proof sketch of lemma 1. By definition of the expected
value, each term in the sum is k multiplied by the probabil-
ity that the number of transmissions of this message is ex-

actly k. This probability is the difference between two mul-
tiplications. The first one is the probability that all the nodes
acknowledged at least one of the first k transmissions of the
message, and the second multiplication is the probability that
all the nodes acknowledged at least one of the first k−1 trans-
missions of the message. The difference between these two
probabilities is the probability that exactly k transmissions of
the message are necessary in order for all the other nodes to
receive i’s message. �

Proof of theorem 2. The system cost of RBD is the sum of
two costs. The first one is the cost of message transmissions,
which is C1 + C2 times the expected number of messages
transmitted by each node i up to time t . The second one is
the cost of acknowledgements. Observe that for each update
there are exactly n − 1 acknowledgements which are n − 1
messages of cost C1 each. �

Proof of theorem 3. Denote

A= t ·
n∑
i=1

(
λi · E[Ri]

)
,

B = λ · t,

D =
n∑
i=1

E
[
COST_INCOi (t)

]
.

Then the difference between the expected costs of the two
policies is

E
[
COST_SYSRBD(t)

]− E
[
COST_SYSSBD(t)

]
= A · (C1 + C2)+ B · (n− 1) · C2

− (
B · (C1 + C2)+D

)
= (

A+ B · (n− 1)− B
) · C1

+ (A− B) · C2 −D.

Note that if the connectivity is perfect, i.e. each pj
is 1, then RBD is identical to SBD because in this case
both RBD and SBD broadcast each message exactly once.
Therefore, we will assume that at least one pj is smaller
than 1. Observe that in this case, for each node i (i 	= j )
Ri > 1. Therefore, A > B. By a straightforward mathemat-
ical manipulation it can be seen that E[COST_SYSRBD(t)]−
E[COST_SYSSBD(t)] > 0 if and only if inequality (4)
holds. �

Proof sketch of theorem 4. The proof is straightforward
from the following three observations:

(1) (1 − pj )
q +

∑
1�k�q

(
pj · (1 − pj )

q−k) = 1,

(2)
∞∑
m=1

(
e−λi ·t · (λi · t)m

m! ·m
)

= λi · t,

(3)
∞∑
m=1

(
e−λi ·t · (λi · t)m

m!
)

= 1 − e−λi ·t . �
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Proof of lemma 3. Observe first that because i has re-
ceived every broadcast which included Dj since i received
Dk
j from k, any version number which is not in VSj is not a

possible version number of Dk
j . Now we explain that each

version number v in VSj − EVSkj is not a possible version
number of Dk

j and therefore is not a point in the sample space
of v(Dk

j ).
Since v ∈ VSj − EVSkj , v satisfies at least one of the fol-

lowing two properties:
(i) v is lower than v(Dk

j );

(ii) all the broadcasts of Dj (v) arrived before Dk
j .

If v satisfies property (i), then v is not a possible version

number of Dk
j because i received Dk

j from k, and therefore,

v(Dk
j ) is the lowest possible version number of Dk

j . Now
consider a version v which satisfies property (ii). Notice that
the transmission time interval of any broadcast of Dj(v) can
not overlap with that of the broadcast which included Dk

j .
If k had received any broadcast of Dj (v), then k should have
received it before k broadcast Dk

j . In that case, k would not

broadcast Dk
j which is older than Dj (v). But k broadcast Dk

j .
This indicates that k did not receive any broadcast which in-
cluded Dj(v). Therefore, v is not a possible version number

of Dk
j .

Now we explain that each version number v in EVSkj is a
possible version number of Dk

j and therefore is a point of the
sample space of v(Dk

j ).
Consider a version number v which satisfies the following

two properties:
(i) v is higher than the latest version of Dj that i has re-

ceived from k (i.e. v(Dk
j ));

(ii) i has received at least one broadcast which included
Dj (v) and that broadcast arrived after Dk

j .
For any broadcast which included Dj(v) and arrived after

Dk
j , that broadcast was broadcast after k broadcast Dk

j . If k

received that broadcast, since v is higher than v(Dk
j ), k would

update Dk
j with Dj (v). Therefore, v is a possible version

number of Dk
j .

Dk
j is also a possible version number of Dk

j . In sum-
mary, each version number v in EVSkj is a possible version

number of Dk
j and, therefore, is a point in the sample space

of v(Dk
j ). �

Proof of lemma 4. Prove in two cases:
(1) v = v(Dk

j ).

Consider each element v′ in EVSkj that is higher than

v(Dk
j ). Observe that EDNk

j (v
′) is the number of broadcasts

from which k had chance to know Dj (v
′). The probability

that v(Dk
j ) = v(Dk

j ) is the probability that k did not receive
any broadcast which included any Dj (v

′), i.e.

P
{
v
(
Dk
j

) = v
}=

∏
v′∈EVSkj , v

′>v

(1 − pk)
EDNk

j (v
′)

= ηv. (A.2)

(2) v 	= v(Dk
j ).

The probability that k received at least one of the broad-

casts that included Dj(v) is 1 − (1 − pk)
EDNk

j (v). The proba-
bility that k did not receive any broadcast which included any
Dj (v

′) (v′ ∈ EVSkj and v′ > v) is

∏
v′∈EVSkj , v

′>v

(1 − pk)
EDNk

j (v
′)
.

Thus, the probability that the version of Dk
j is v is

P
{
v
(
Dk
j

) = v
}

= (
1 − (1 − pk)

EDNk
j (v)
) ∏
v′∈EVSkj , v

′>v

(1 − pk)
EDNk

j (v
′)

= ηv. (A.3)

�

Proof of theorem 5. Assume v(Dk
j ) = v (v ∈ EVSkj ). If

k receives the broadcast, B(Di
j , k) = DIST(Dj (v),Dj ) −

DIST(Di
j ,Dj ); otherwise B(Di

j , k) = 0. The expected value

of B(Di
j , k) on the condition that v(Dk

j ) = v is

E
[
B
(
Di
j , k

) ∣∣ v(Dk
j

) = v
]

= pk · (DIST
(
Dj (v),Dj

)− DIST
(
Di
j ,Dj

))
(A.4)

= pk · DIST
(
Dj (v),D

i
j

)
= pk · B(Di

j , k, v
)
, (A.5)

where we have used the assumption that Di
j = Dj , and there-

fore, DIST(Di
j ,Dj ) = 0.

Hence,

E
[
B
(
Di
j , k

)]
=

∑
v∈EVSkj

E
[
B
(
Di
j , k

) ∣∣ v(Dk
j

) = v
] · P{v(Dk

j

) = v
}

= pk ·
∑

v∈EVSkj

(
ηv · B(Di

j , k, v
))

= B
(
Di
j , k

)
.

Since B(Di
j ) = ∑

k 	=i,j B(Di
j , k),

E
[
B
(
Di
j

)]=
∑
k 	=i,j

E
[
B
(
Di
j , k

)]

=
∑
k 	=i,j

B
(
Di
j , k

)

=B
(
Di
j

)
. �
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Proof of lemma 5. The first property is straightforward from
the method.

Now consider the second property. Without loss of gener-
ality, assume that B(Di

k1
) � B(Di

k2
) � · · · � B(Di

km
) and

B(Di
k′

1
) � B(Di

k′
2
) � · · · � B(Di

k′
m′
). We prove in two cases:

(1) m � m′.
Observe that for 1 � h � m, B(Di

kh
) � C2, and for

1 � h � m′, B(Di
k′
h

) � B(Di
kh
). Hence,

∑
1�h�m′

B
(
Di
k′
h

)− (
C1 +m′ · C2

)

�
∑

1�h�m′
B
(
Di
kh

)− (
C1 +m′ · C2

)

�
∑

1�h�m

B
(
Di
kh

)− (C1 +m · C2).

(2) m < m′.
According to the method, for 1 � h � m, B(Di

k′
h

) �
B(Di

kh
). For m < h � m′, B(Di

k′
h

) < C2, and therefore,∑
m<h�m′ B(Di

k′
h

) − (m′ − m) · C2 < 0. Thus, we have

(
m′∑
h=1

B
(
Di
k′
h

)− (
C1 +m′ · C2

))

−
(

m∑
h=1

B
(
Di
kh

)− (C1 +m · C2)

)

=
(

m′∑
h=1

B
(
Di
k′
h

)−
m∑
h=1

B
(
Di
kh

))− (
m′ −m

) · C2

�
(

m∑
h=1

B
(
Di
kh

)+
m′∑

h=m+1

B
(
Di
k′
h

)−
m∑
h=1

B
(
Di
kh

))

− (
m′ −m

) · C2

=
∑

m<h�m′
B
(
Di
k′
h

)− (
m′ −m

) · C2

< 0.

Proof of theorem 6. According to theorem 5 and lemma 5,
we have

E
[

NB(M)
]=E

[ ∑
1�h�m

B
(
Di
kh

)− (C1 +m · C2)

]

=
∑

1�h�m

E
[
B
(
Di
kh

)]− (C1 +m · C2)

=
∑

1�h�m

B
(
Di
kh

)− (C1 +m · C2)

� 0

and

E
[

NB
(
M ′)]

= E

[ ∑
1�h�m′

B
(
Di
k′
h

)− (
C1 +m′ · C2

)]

=
∑

1�h�m′
E
[
B
(
Di
k′
h

)]− (
C1 + m′ · C2

)

=
∑

1�h�m′
B
(
Di
k′
h

)− (
C1 +m′ · C2

)

�
∑

1�h�m

B
(
Di
kh

)− (C1 +m · C2)

=
∑

1�h�m

E
[
B
(
Di
kh

)]− (C1 + m · C2)

= E

[ ∑
1�h�m

B
(
Di
kh

)− (C1 +m · C2)

]

= E
[

NB(M)
]
. �

Proof of theorem 7. Observe first that for monotonous data
items and absolute distance functions, the actual benefit to
k of receiving Di

j is the difference between the version

of Dk
j and Di

j . To see this, notice that in equation (10),

v(Dk
j ) < v(Di

j ) � v(Dj ). Hence,

B
(
Di
j , k

)= DIST
(
Dk
j ,Dj

)− DIST
(
Di
j ,Dj

)
= ∣∣Dk

j −Dj

∣∣− ∣∣Di
j −Dj

∣∣
=Dj −Dk

j − Dj +Di
j

= DIST
(
Dk
j ,D

i
j

)
.

Now consider equation (A.4). We have equation (A.5)
without the assumption that Di

j = Dj . The rest of the proof
is the same as that of theorem 5. �

Appendix B. Further experimental analysis of ABD

B.1. Impact of the extra resource cost

Clearly, the system cost of ABD increases as the CPU factor
C3 and the storage unit costC4 increase. Specifically, suppose
one is given the values for all the parameters, except C3 and
C4. Then, for any one of the other protocols there exist values
of C3 and C4, such that above these values ABD has higher
system cost than that protocol. This is visually illustrated by
figures 5 and 6.
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Figure 5. System cost as a function of the CPU factor (c1 = 2, c2 = 0.2,
c4 = 0.0001, cplb = 0.3).

Figure 6. System cost as a function of the storage unit cost (c1 = 2, c2 = 0.2,
c3 = 0.1, cplb = 0.3).

Figure 7. System cost as a function of message cost (c1/c2 = 2, cplb = 0.5).

Figure 8. System cost as a function of cplb (c1 = 10, c2 = 1).

B.2. Comparison between ABD-800 and ABD-400

Figure 7 plots the system cost as a function of the message
initiation cost C1 with cplb = 0.5 in the military scenario.
Figure 8 plots the system cost as a function of cplb with C1 =
10 and C2 = 1. These experiments indicate that ABD-800
is always superior to ABD-400, with the cost of ABD-400
being up to 30% higher. This quantifies the benefit of using
the extra storage to keep an additional version of each data
item.
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