__Lecture Notes in
omputer Science 1540

Databases for Tracking Mobile Units in Real
Time

Ouri Wolfson!, Ligin Jiang!, A. Prasad Sistla!, Sam Chamberlain?,
Naphtali Rishe®, and Minglin Deng!

! University of Illinois,Chicago, IL 60607, USA
? Army Research Laboratory, Aberdeen Proving Ground, MD, USA
% Florida International University, University Park, Miami, FL 33199, USA

Abstract. In this paper we consider databases representing informa-
tion about moving objects (e.g. vehicles), particularly their location. We
address the problems of updating and querying such databases. Specifi-
cally, the update problem is to determine when the location of a moving
object in the database (namely its database location) should be updated.
We answer this question by proposing an information cost model that
captures uncertainty, deviation, and communication. Then we analyze
dead-reckoning policies, namely policies that update the database loca-
tion whenever the distance between the actual location and the database
location exceeds a given threshold, z. Dead-reckoning is the prevalent
approach in military applications, and our cost model enables us to de-
termine the threshold z. Then we consider the problem of processing
range queries in the database, and we propose a probabilistic algorithm
to solve the problem.

1 Introduction

1.1 Background

Consider a database that represents information about moving objects and their
location. For example, for a database representing the location of taxi-cabs a
typical query may be: retrieve the free cabs that are currently within 1 mile of
33 N. Michigan Ave., Chicago (to pick-up a customer); or for a trucking company
database a typical query may be: retrieve the trucks that are currently within 1
mile of truck ABT312 (which needs assistance); or for a database representing
the current location of objects in. a battlefield a typical query may be: retrieve the
friendly helicopters that are in a given region, or, retrieve the friendly helicopters
that are expected to enter the region within the next 10 minutes. The queries
may originate from the moving objects, or from stationary users. We will refer
to the above applications as MOtion-Database (MOD) applications or moving-
objects-database applications. In the military, MOD applications arise in the

context of the digital battlefield (see [13,12]), and in the civilian industry they
arise in transportation systems.

Catriel Beeri, Peter Buneman (Eds.): ICDT’99, LNCS 1540, pp. 169-186, 1998.
© Springer-Verlag Berlin Heidelberg 1998

170 Ouri Wolfson et al.

Currently, MOD applications are being developed in an ad hoc fashion.

Database management system (DBMS) technology provides a potential foun-

e dation for MOD applications, however, DBMS’s are currently not used for this
purpose. The reason is that there is a critical set of capabilities that have to be

integrated, adapted, and built on top of existing DBMS'’s in order to support

< moving objects databases. The added capabilities include, among other things,
support for spatial and temporal information, support for rapidly changing real

time data, new indexing methods, and imprecision management. The objective

of our Databases fOr MovINg Objects (DOMINO) project is to build an envelope

containing these capabilities on top of existing DBMS’s.

In this paper we address the imprecision problem. The location of a moving
object is inherently imprecise because, regardless of the policy used to update
the database location of a moving object (i.e. the object-location stored in the
database), the database location cannot always be identical to the actual location
of the object. There may be several location update policies, for example, the
location is updated every z time units. In this paper we address dead-reckoning
policies, namely policies that update the database whenever the distance between
the actual location of a moving object m and its database location exceeds a
given threshold A, say 1 mile. This means that the DBMS will answer a query
”"what is the current location of m?” by an answer A: ”the current location }
is (z,y) with a deviation of at most 1 mile”. Dead-reckoning is the prevalent |
approach in military applications.

One of the main issues addressed in this paper is how to determine the update §
threshold h in dead-reckoning policies. This threshold determines the location |
imprecision, which encompasses two related but different concepts, namely devi- |
ation and uncertainty. The deviation of a moving object m at a particular point
in time ¢ is the distance between m’s actual location at time ¢, and its database
location at time t. For the answer A above, the deviation is the distance be-
tween the actual location of m and (z,y). On the other hand, the uncertainty
of a moving object m at a particular point in time t is the size of the area in
which the object can possibly be. For the answer A above, the uncertainty is |
the area of a circle with radius 1 mile. The deviation has a cost (or penalty) in
terms of incorrect decision making, and so does the uncertainty. The deviation |
(resp. uncertainty) cost is proportional to the size of the deviation (resp. uncer-
tainty). The ratio between the costs of an uncertainty unit and a deviation unit
depends on the interpretation of an answer such as A above, as will be explained |
in section 3. '

In MOD applications the database updates are usually generated by the |
moving objects themselves. Each moving object is equipped with a Geographic
Positioning System (GPS), and it updates its database location using a wireless
network (e.g ARDIS, RAM Mobile Data Co., IRIDIUM, etc.). This introduces a
third information cost component, namely communication. For example, RAM |
Mobile Data Co. charges a minimum of 4 cents per message, with the exact cost
depending on the size of the message. Furthermore, there is a tradeoff betwgen ‘
communication and imprecision in the sense that the higher the communication

o4
3l
”
:n
a8

£
e :
%
fe
Y

e PPN
**ﬁ 3
N
%
%
%%

Y

[]
%QQ
f ’2

2e

.- i © LR RR RN

Databases for Tracking Mobile Units in Real Time 171

cost the lower the imprecision and vice versa. In this paper we propose a model
of the information cost in moving objects databases, which captures imprecision
and communication. The tradeoff is captured in the model by the relative costs
of an uncertainty unit, a deviation unit, and a communication unit.

1.2 Location Update Policies

Consider an object m moving along a prespecified route. We model the database
location of m by storing in the database m’s starting time, starting location, and
a prediction of future locations of the object. In this paper the prediction is given
as the speed v of the object. Thus the database location of m can be computed
by the DBMS at any subsequent point in time. ! This method of modeling the
database location was originally introduced in [5,6] via the concept of a dynamic
attribute; the method is modified here in order to handle uncertainty. The actual
location of a moving object m deviates from its database location due to the fact
that m does not travel at the constant speed v.

A dead-reckoning update policy for m dictates that there is a database-update
threshold th, i.e. a deviation for which m should send a location/speed update to
the database. (Note that at any point in time, since m knows its actual location
and its database location, it can compute its current deviation.) Speed dead-
reckoning 2 (sdr) is a dead-reckoning policy in which the threshold th is fixed for
the duration of the trip.

In this paper we introduce another dead-reckoning update policy, called adap-
tive dead reckoning(adr). Adr provides with each update a new threshold th that
is computed using a cost based approach. th minimizes the total information cost
per time unit until the next update. The total information cost consists of the
update cost, the deviation cost, and the uncertainty cost. In order to minimize
the total information cost per time unit between now and the next update, the
moving object m has to estimate when the next update will occur, i.e. when the
deviation will reach the threshold. Thus, at location update time, in order to
compute the new threshold, adr predicts the future behavior of the deviation.
The thresholds differ from update to update because the predicted behavior of
the deviation is different.

A problem common to both sdr and adr is that the moving object may be
disconnected from the network. In other words, although the DBMS ”thinks”
that updates are not generated since the deviation does not exceed the up-
date threshold, the actual reason is that the moving object is disconnected. To
cope with this problem we introduce a third policy, “disconnection detecting

! Our simulation experiments show that, even when the speed fluctuates sharply, this
temporal technique reduces the number of updates to 15% of the number used by
the traditional, nontemporal method in which the database simply stores the latest
known location for each object; this saves 85% of the location-updates overhead.

% We use the term speed dead-reckoning to contrast it with the plain dead-reckoning
(pdr) policy in which the database location is fixed until it is explicitly updated by
the moving object; namely, pdr does not use dynamic attributes.

-

172 Ouri Wolfson et al.

dead-reckoning (dtdr)”. The policy avoids the regular process of checking for
disconnection by trying to communicate with the moving object, thus increas-
ing the load on the low bandwidth wireless channel. Instead, it uses a novel
technique that decreases the uncertainty threshold for disconnection detection.
Thus, in dtdr the threshold continuously decreases as the time interval since the
last location update increases. It has a value K during the first time unit after
the update, it has value K /2 during the second time unit after the update, it
has value K/3 during the third time unit, etc. Thus, if the object is connected,
it is increasingly likely that it will generate an update. Conversely, if the moving
object does not generate an update, as the time interval since the last update
increases it is increasingly likely that the moving object is disconnected. The
dtdr policy computes the K that minimizes the total information cost, i.e. the
sum of the update cost, the deviation cost, and the uncertainty cost.

To contrast the three policies, observe that for sdr the threshold is fixed for all
location updates. For adr the threshold is fixed between each pair of consecutive
updates, but it may change from pair to pair. For dtdr the threshold decreases
as the period of time between a pair of consecutive updates increases.

We compared by simulation the three policies introduced in this paper. Our
simulations indicate that adr is superior to sdr in the sense that it has a lower or
equal information cost for every value of the update-unit cost, uncertainty-unit
cost, and deviation-unit cost. Adr is superior to dtdr in the same sense; the dif-
ference between the costs of the two policies quantifies the cost of disconnection
detection. For some parameters combinations the information cost of sdr is six
times as high as that of adr.

Finally, an additional contribution of this paper is a probabilistic model and
an algorithm for query processing in motion databases. In our model the location
of the moving object is a random variable, and at any point in time the database
location and the uncertainty are used to determine a density function for this
variable. Based on this model we developed an algorithm that processes range
queries such as Q="‘retrieve the moving objects that are currently inside a given
region R’. The answer to Q is a set of objects, each of which is associated with
the probability that currently the object is inside R.

The rest of this paper is organized as follows. In section 2 we introduce the
data model and discuss location attributes of moving objects. In section 3 we
discuss the information cost of a trip, and in section 4 we introduce our approach
to cost optimization. In section 5 we describe the three location update policies.
In section 6 we present our approach to probabilistic query processing. In section
7 we discuss relevant work, and in the last section we summarize our results.

2 The Data Model

In this section we define the main concepts used in this paper. A database is a set
of object-classes. An object-class is a set of attributes. Some object-classes are
designated as spatial. Each spatial object class is either a point-class, a line-class,

Databases for Tracking Mobile Units in Real Time 173

or a polygon-class in two-dimensional space (all our concepts and results can be
extended to three-dimensional space).

Point object classes are either mobile or stationary. A point object class O
has a location attribute L. If the object class is stationary, its location attribute
has two sub-attributes L.z, and L.y, representing the z and y coordinates of the
object. If the object class is mobile, its location attribute has six sub-attributes,
L.route, L.startlocation, L.starttime, L.direction, L.speed, and L.uncertainty.

The semantics of the sub-attributes are as follows. L.route is (the pointer
to) a line spatial object indicating the route on which an object in the class O
is moving. Although we assume that the objects move along predefined routes,
our results can be extended to free movement in space (e.g. by aircraft). We will
comment on that option in the last paragraph of this section. L.startlocation is
a point on L.route; it is the location of the moving object at time L.starttime.
In other words, L.starttime is the time when the moving object was at loca-
tion L.startlocation. We assume that whenever a moving object updates its L
attribute it updates the L.startlocation subattribute; thus at any point in time
L.starttime is also the time of the last location-update. We assume in this paper
that the database updates are instantaneous, i.e. valid- and transaction- times
(see [11]) are equal. Therefore, L.starttime is the time at which the update
occurred in the real world system being modeled, and also the time when the
database installs the update. L.direction is a binary indicator having a value 0 or
1 (these values may correspond to north-south, or east-west, or the two endpoints
of the route). L.speed is a function that represents the predicted future locations
of the object. It gives the distance of the moving object from L.startlocation as
a function of the number ¢ of time units elapsed since the last location-update,
namely since L.starttime. The function has the value 0 when t = 0. In its sim-
plest form (which is the only form we consider in this extended abstract) L.speed
represents a constant speed v, i.e. the distance is v-t. 3 L.uncertainty is either a
constant, or a function of the number ¢ of time units elapsed since L.starttime.
It represents the threshold on the location deviation (the deviation is formally
defined at the end of this section); when the deviation reaches the threshold, the
moving object sends a location update message. Observe that the uncertainty
may change automatically as the time elapsed since L.starttime increases; this
is indeed the case for the dtdr policy.

We define the route-distance between two points on a given route to be the
distance along the route between the two points. We assume that it is straightfor-
ward to compute the route-distance between two points, and the point at a given
route-distance from another point. The database location of a moving object at
a given point in time is defined as follows. At time L.starttime the database
location is L.startlocation; the database location at time A.starttime +t is the

3 Another possibility for representing future locations is a sequence of speeds, i.e., the
object will move at speed v1 until time t1, at speed v2 until time t;, etc. Such a future
plan is typical of, for example, a vehicle that expects various traffic conditions; or a
package that first travels by truck, then by plane, then waits (speed 0) for another
truck loading, etc.

174 Ouri Wolfson et al.

point (z,y) which is at route-distance L.speed - t from the point L.startlocation.
Intuitively, the database location of a moving object m at a given time point ¢ is
the location of m as far as the DBMS knows; it is the location that is returned by
the DBMS in response to a query entered at time ¢ that retrieves m’s location.
Such a query also returns the uncertainty at time t, i.e. it returns an answer of
the form: m is on L.route at most L.uncertainty ahead of or behind (z,y).

Since between two consecutive location updates the moving object does not
travel at exactly the speed L.speed, the actual location of the moving object
deviates from its database location. Formally, for a moving object, the deviation
d at a point in time ¢, denoted d(t), is the route-distance between the moving
object’s actual location at time ¢ and its database location at time t. The devi-
ation is always nonnegative. At any point in time the moving object knows its
current location, and it also knows all the subattributes of its location attribute.
Therefore at any point in time the (computer onboard the) moving object can
compute the current deviation. Observe that at time L.starttime the deviation
is zero.

At the beginning of the trip the moving object updates all the sub-attributes
of its location attribute. Subsequently, the moving object periodically updates
its current location and speed stored in the database. Specifically, a location
update is a message sent by the moving object to the database to update some
or all the sub-attributes of its location attribute. The moving object sends the
location update when the deviation exceeds the L.uncertainty threshold, or
when the moving object changes route or direction. The location update message
contains at least the values for L.speed and L.startlocation. Obviously, other
subattributes can also be updated. The subattribute L.starttime is written by
the DBMS whenever it installs a location update; it denotes the time when the
installation is done.

Before concluding this section we would like to point out that the results
of this paper hold for free-movement modeling, i.e. for objects that move freely
in space (e.g. aircraft) rather than on routes. In this case L.route is an infinite
straight line (e.g. 60 degrees from the starting point) rather than a line-object
stored in the database. Then there are two possibilities of modeling the uncer-
tainty. The first is identical to the one described above, i.e. the uncertainty is
a segment on the infinite line representing the route. In this case every change
of direction constitutes a change of route, thus necessitating a location update.
The second possibility is to redefine the deviation to be the Euclidean distance
between the database location and the actual location, and to remove the re-
quirement that the object updates the database whenever it changes routes.
In this case L.uncertainty defines a circle around the database location, and
a query that retrieves the location of a moving object m returns an answer of
the form: m is within a circle having a radius of at most L.uncertainty from
(z,y). Observe that the second possibility of modeling uncertainty necessitates
less location updates, but the answer to a query is less informative since the
uncertainty is given in two dimensional space rather than one-dimensional.

Databases for Tracking Mobile Units in Real Time 175
3 The Information Cost of a Trip

In this section we define the information cost model for a trip taken by a moving
object m, and we discuss information cost optimality.

At each point in time during the trip the moving object has a deviation and
an uncertainty, each of which carries a penalty. Additionally the moving object
sends location update messages. Thus the information cost of a trip consists of
the cost of deviation, cost of communication, and cost of uncertainty.

Now we define the deviation cost. Observe first that the cost of the deviation
depends both on the size of the deviation and on the length of time for which it
persists. It depends on the size of the deviation since decision-making is clearly
affected by it. To see that it depends on the length of time for which the deviation
persists, suppose that there is one query per time unit that retrieves the location
of a moving object m. Then, if the deviation persists for two time units its
cost will be twice the cost of the deviation that persists for a single time unit;
the reason is that two queries (instead of one) will pay the deviation penalty.
Formally, for a moving object m the cost of the deviation between two time
points ¢; and ¢; is given by the deviation cost function, denoted COSTy(t1,t2);
it is a function of two variables that maps the deviation between the time points
t1 and ¢ into a nonnegative number. In this paper we take the penalty for each
unit of deviation during a unit of time to be one (1). Then, the cost of the
deviation between two time points t; and ¢, is:

COSTats) = [dt)dt (1)

t1

The update cost, denoted C, is a nonnegative number representing the cost
of a location-update message sent from the moving object to the database. This
is the cost of the resources (i.e. bandwidth and computation) consumed by the
update. The update cost may differ from one moving object to another, and
it may vary even for a single moving object during a trip, due for example, to
changing availability of bandwidth. The update cost must be given in the same
units as the deviation cost. In particular, if the update cost is C; it means the
ratio between the update cost and the cost of a unit of deviation per unit of
time (which is one) is C;. It also means that the moving object (or the system)
+ is willing to use 1/C; messages in order to reduce the deviation by one during
one unit of time.

Now we define the uncertainty cost. Observe that, as for the deviation, the
cost of the uncertainty depends both, on the size of the uncertainty and on the
length of time for which it persists. Formally, for a moving object m the cost of
the uncertainty between two time points t; and ¢, is given by the uncertainty
cost function, denoted COSTy(t1,12); it is a function of two variables that maps
the uncertainty between the time points ¢; and t; into a nonnegative number.
Define the uncertainty unit cost to be the penalty for each unit of uncertainty

during a unit of time, and denote it by Ca. Then, the cost of the uncertainty of
m between two time points ¢, and ¢, is:

176 Ouri Wolfson et al.

t2
COSTy(t1,t2) = Cau(t)dt (2)
ty
where u(t) is the value of the L.uncertainty subattribute as a function of time.
The uncertainty unit cost C; is the ratio between the cost of a unit of uncer-
tainty and the cost of a unit of deviation. Consider an answer returned by the
DBMS: "the current location of the moving object m is (z,y), with a deviation
of at most u units”. Cy should be set higher than 1 if the uncertainty in such
an answer is more important than the deviation, and lower than 1 otherwise.
Observe that in a dead-reckoning update policy each update message establishes
a new uncertainty which is not necessarily lower than the previous one. Thus
communication reduces the deviation but not necessarily the uncertainty.
Now we are ready to define the information cost of a trip taken by a moving
object m. Let t; and t5 be the time-stamps of two consecutive location update
messages. Then the information cost in the interval [t1, t2) is:

COSTylt1,t2) = Cy + COSTylt1,t2) + COSTylt1, t2) @3)

Observe that COSTy[t1,t2) includes the message cost at time ¢; but not
the cost of the one at time ¢5. Observe also that each location update message
writes the actual current location of m in the database, thus it reduces the
deviation to zero. The total information cost of a trip is computed by summing
up COSTlt1,t2) for every pair of consecutive update points ¢; and to. Formally,
let the time points of the update messages sent by m be t1, ts, ..., tx. Furthermore,
let 0 be the time point when the trip started and tx4+; the time point when the
trip ended. Then the total information cost of a trip is

k
COST; = COST4[0,t1) + COST,[0,t1) + Y COSTx[t:, tis1) (4)

i=1

4 Cost Based Optimization for Dead Reckoning Policies

As mentioned in the introduction, a dead-reckoning update policy for a moving
object m dictates that at any point in time there is a database-update threshold
th, of which both the DBMS and m are aware. When the deviation of m reaches
th, m sends to the database an update consisting of the current location, the
predicted speed, and the new deviation threshold K. The objective of the dead
reckoning policies that we introduce in this paper is to set K (which the DBMS
installs in the L.uncertainty subattribute), such that the total information cost
is minimized. Intuitively, this is done as follows. First, m predicts the future
behavior of the deviation. Based on this prediction, the average cost per time
time unit between now and the next update is obtained as a a function f of the
new threshold K. Then K is set to minimize f 4. It is important to observe that

4 Let us observe that the proposed method of optimizing the new threshold K is

not unique. We have devised other methods which are omitted from this extended
abstract. A performance comparison among these methods is the subject of future
work.

Databases for Tracking Mobile Units in Real Time 177

we optimize the average cost per time unit rather than simply the total cost
between the two time points; clearly, the total cost increases as the time interval
until the next update increases.

The next theorem establishes the optimal value K for L.uncertainty under

the assumption that the deviation between two consecutive updates is a linear
function of time.

Theorem 1: Denote the update cost by C;, and the uncertainty unit cost by
C5. Assume that for a moving object two consecutive location updates occur at
time points ¢; and t5. Assume further that between ¢; and ¢, the deviation d(t) is
given by the function a(t—¢;) where ¢t; <t < 3 and a is some positive constant;
and L.uncertainty is fixed at K throughout the interval (¢;,¢2). Then the total

information cost per time unit between t; and ¢2 is minimized if K = igéqu*-‘Ll
=2

The implication of theorem 1 is the following. Suppose that a moving ob-
ject m is currently at time point ¢, i.e. its deviation has reached the un-
certainty threshold L.uncertainty. Now m needs to compute a new value for
L.uncertainty and send it in the location update message. Suppose further that
m predicts that following the update the deviation will behave as the linear
function a(t — ¢1), and in the update message it has to set the uncertainty
threshold L.uncertainty to a value that will remain fixed until the next update.
Then, in order to optimize the information cost, m should set the threshold to

_ 2aCy
K= 2C3+1"

Next assume that, in order to detect disconnection, one is interested in a
dead-reckoning policy in which the uncertainty threshold L.uncertainty contin-
uously decreases between updates. Particularly, we consider a particular type of
decrease, that we call fractional decrease; other types exist, but we found this
one convenient. Let K be a constant. If the uncertainty threshold L.uncertainty
decreases fractionally starting with K, then during the first time unit after a
location update u its value is K, during the second time unit after u its value
is K/2, during the third time unit after u its value is K/3, etc., until the next
update (which establishes a new K).

Theorem 2: Assume that for a moving object two consecutive location
updates occur at time points ¢; and t;. Assume further that between t; and
t2, the deviation d(t) is given by the function a(t — t;) where t; < t < ¢
and a is some positive constant; and in the time interval (¢1,t2) L.uncertainty
decreases fractionally starting with a constant K. Then the total information
cost per time unit between t; and t; is given by the following function of K.

Cl+§K+CaK(1+§+§+...+ﬁ-)
f(K)= 7E =0

Similarly to theorem 1, the implication of theorem 2 is the following. Suppose
that a moving object is currently at time point ¢1, i.e. it is about to send a loca-
tion update message, and it can predict that following the update the deviation
will behave as the linear function a(t —t;), and in the update message it sets the
uncertainty threshold L.uncertainty to a fractionally decreasing value starting

178 Ouri Wolfson et al.

with K. Then in order to optimize the information cost it should set K to the
value that minimizes the function of theorem 2.

5 The Location Update Policies and Their Performance

In this section we describe and motivate three location update policies. Then we
report on their comparison by simulation.

The speed dead-reckoning (sdr) policy. At the beginning of the trip the
moving object m sends to the DBMS an uncertainty threshold that is selected
in an ad hoc fashion, it is stored in L.uncertainty, and it remains fixed for the
duration of the trip. The object m updates the database whenever the devia-
tion exceeds L.uncertainty; the update simply includes the current location and
current speed. 3 O

The adaptive dead reckoning (adr) policy. At the beginning of the
trip the moving object m sends to the DBMS an initial deviation threshold th;
selected arbitrarily. Then m starts tracking the deviation. When the deviation
reaches th;, the moving object sends an update message to the database. The
update consists of the current speed, current location, and a new threshold ths
that the DBMS should install in the L.uncertainty subattribute. ths is computed
as follows. Denote by ¢; the number of time units from the beginning of the trip
until the deviation reaches th; for the first time, by I; the cost of the deviation
(which is computed using equation 1) during the same time interval, and let

a; = %? Then ths is ,/f—ilz%; (remember, C; is the update cost, Cs is the

unit-uncertainty cost). When the deviation reaches thy, a similar update is sent,

except that the new threshold ths is 12—122%, where ap = %’} (I2 is the cost of
2

the deviation from the first update to second update, t; is the number of time
units elapsed since the first location update). Since a; may be different than a;,
tho may be different than ths. When ths is reached the object will send another
update containing ths (which is computed in a similar fashion), and so on. O
The mathematical motivation for adr is based on theorem 1 in a straight-
forward way. Namely, at each update time point p; adr simply sets the next
threshold in a way that optimizes the information cost per time unit (according
to theorem 1), assuming that the deviation following time p; will behave as the
following linear function: d(t) = %I;it, where t is the number of time units after

pi, and ¢; is the number of time units between the immediately preceding update
and the current one (at time p;), and I; the cost of the deviation during the same
time interval. The reason for this prediction of the future deviation is as follows.
Adr approximates the current deviation, i.e. the deviation from the time of the

5 Sdr can also use another speed, for example, the average speed since the last update,

or the average speed since the beginning of the trip, or a speed that is predicted based
on knowledge of the terrain. This comment holds for the other policies discussed in
this section.

180 Ouri Wolfson et al.

We compared by simulation the three policies introduced in this paper namely
adr, dtdr, and sdr. The parameters of the simulation are the following. The
update-unit cost, namely the cost of a location-update message; the uncertainty-
unit cost, namely the cost of a unit of uncertainty; deviation-unit cost, namely
the cost of a unit of deviation; a speed curve, namely a function that for a
period of time gives the speed of the moving object at any point in time. The
comparison is done by quantifying the total information cost of each policy for
a large number of combinations of the parameters. For space considerations we
omit the detailed results of the simulations. The main conclusions are: 1. adr is
superior to sdr in the sense that it has a lower or equal information cost for every
value of the update-unit cost, uncertainty-unit cost, and deviation-unit cost; for
some parameter combinations the information cost of sdr is six times as high as
that of adr. 2. adr is superior to dtdr in the same sense; the difference between
the costs of the two policies quantifies the cost of disconnection detection.

6 Querying with Uncertainty

In this section we present a probabilistic method for specifying and processing
range queries about motion databases. For example, a typical query might be
“Retrieve all objects o which are within the region R”. Since there is an uncer-
tainty about the location of the various objects at any time, we may not be able
to answer the above query with absolute certainty. Instead, our query processing
algorithm outputs a set of pairs of the form (o, p) where o is an object and p is
the probability that the object is in region R at time ¢; actually, the algorithm
retrieves only those pairs for which p is greater than some minimum value. Note
that here we are using probability as a measure of certainty.

As indicated, we assume that all the objects are traveling on routes. Since the
actual location is not exactly known, we assume that the location of an object
o on its route at time ¢ is a random variable [3]. We let f,(z) denote the density
function of this random variable. More specifically, for small values of dz, f,(z)dz
denotes the probability that o is at some point in the interval [z, z+dz] at time ¢
(actually, f, is a function of z and t; however we omit this as ¢ is understood from
the context). The mean m, of the above random variable is given by the database
location of o (this equals o.L.startlocation + o.L.speed(t — o.L.starttime); see
section 2).

Now we discuss some possible candidates for the density functions f,. Many
natural processes tend to behave according to the normal density function. Let
Nm,o(z) denote a normal density function with mean m and standard deviation
o. We can adopt the normal density functions follows. We take the mean m
to be equal to m, given in the previous paragraph. Next we relate the stan-
dard deviation to the uncertainty of the object location. We do this by setting
o = l(o.L.uncertainty) where ¢ > 0 is constant. In this case, the probability
that the object is within a distance of o.L.uncertainty (i.e. within a distance
of co) from the location m, will be higher for higher values of ¢; for example,
this probability will be equal to .68,.95 and .997 for values of ¢ equal to 1,2 and

182 Ouri Wolfson et al.

any of the intervals belonging to Inside_Int(ry, R). Using the set of intervals
Inside_Int(r, R), we can easily compute another set of intervals on route ry ,
denoted by Within_Int(r1, R, d), such that every point belonging to any of these
intervals is within distance d of region R.

Now consider a condition q formed using the above atomic predicates and
using the boolean connectives. We assume that g has only one free object variable
0. Now we describe a procedure for evaluation of this condition against a set of
objects. The satisfaction of this condition by an object o; traveling on route 7
at time ¢ only depends on the location of the object at time ¢t. We first compute
the set of all such points. We say that a point z on the route r; satisfies the
query g, if an object o; at location z satisfies g. By a simple induction on the
length of g, it is easily seen that the set of points on route r; that satisfy g
is given by a collection of disjoint intervals (if ¢ is an atomic predicate then
this is trivially the case as indicated earlier; if ¢ is a conjunction ¢; and g the
resulting set of intervals for q is obtained by taking pairwise intersection of an
interval belonging to that of g; and another belonging to that of g3 etc.). We let
Int(r1,q) denote this set of intervals. A simple algorithm for computing this set
is given below. The probability that o; satisfies g at time ¢ equals the probability
that the current location of o; lies within any of the intervals in Int(ry,q). Let
{I1,1, ..., It} be all the intervals in Int(ry,q). Since all the intervals in Int(r1,q)
are disjoint, it is the case that for any two distinct intervals I; and I; the events
indicating that o; is inside the interval I; (resp., inside I;) are independent.
Hence, the probability that o, satisfies g is equal to the sum, over all intervals I
in Int(r1,q), of the probability that o; is in the interval I.

Theorem 3: For a query ¢ and route r1, let {Ii,...,Ji;«=,Ix} be-all the -
intervals in Int(r1,q) where I; = [ui,v;]. Then, the probability that object o1
traveling on route r; satisfies g at time ¢ is given by ZLI j: : fo,(z)dz. O

For the route r;, the set of intervals Int(r,q) is computed inductively on
the structure of g as follows.

g is an atomic predicate: If ¢ is inside(o,R), Int(r1,q) is the same as
Inside_Int(r;,R) and this is obtained directly from the database, possi-
bly using a spatial indexing scheme. If g is within_distance(o, R,d) then
Int(r1,q) is same as Within_Int(r1, R,d), and this can be computed di-
rectly from Inside_Int(ry, R). The list of intervals Int(r1, R) is output in
sorted order.

g = q1 Agq: First we compute the lists Int(ry, ¢1) and Int(r1,g2). After this, we
take an interval I; from the first list and an interval I from the second list,
and output the interval I; NI, (if it is non-empty); the set of all such intervals
will be the output. Since the original two lists are sorted, the above procedure
can be implemented by a modified merge algorithm. The complexity of this
procedure is proportional to the sum of the two input lists.

g = —qi: First we compute Int(r1,q1). We assume that the length of the route

7y is l1; thus the set of all points on r; is given by the single interval [0, l1].

The set of all points on r; that satisfy q is the complement of the set of points

that satisfy g; where this complement is taken with respect to all the points

Databases for Tracking Mobile Units in Real Time 183

on the route; clearly, this set of points is a collection of disjoint intervals. Now,
it is fairly straightforward to see how the sorted list of intervals in Int(ry, q)
can be computed from Int(ry,q:); the complexity of such a procedure is
simply linear in the number of intervals in Int(ry,q).

If Ly, Lg, ..., L are the lists of intervals corresponding to the atomic predi-
cates appearing in g and [is the sum of the lengths of these lists, and m is the
length of g then it can be shown that the complexity of the above procedure is
O(lm).

Now consider the query
RETRIEVE o FROM Moving-objects WHERE C; A Cs
where C1, Cs, respectively, are the static and the dynamic parts of the condition.

The overall algorithm for processing the query is as follows.

1. Using the underlying database process the following query.

RETRIEVE o FROM Moving-objects WHERE C;.
Let O be the set of objects retrieved.

2. Using the underlying database retrieve the set of routes R on which the
objects in O are traveling.

3. For each atomic predicate p appearing in C and for each route r; in R,
retrieve the list of intervals Int(ry, p). This is achieved by using any spatial
indexing scheme.

4. Using the algorithm presented earlier, for each route r;, compute the list of
intervals Int(ry, q).

5. For each route r; and for each object 0; traveling on r;, compute the prob-
ability that it satisfies ¢ using the formula given in theorem 3.

7 Relevant Work

One research area to which this paper is related is uncertainty and incomplete
information in databases (see for example [9,1] for surveys). However, as far as
we know this area has so far addressed complementary issues to the ones in
this paper. Our current work on location update policies addresses the question:
what uncertainty to initially associate with the location of each moving object.
In contrast, existing works are concerned with management and reasoning with
uncertainty, after such uncertainty is introduced in the database. Qur proba-
bilistic query processing approach is also concerned with this problem. However,
our uncertainty processing problem is combined with a temporal-spatial aspect
that has not been studied previously as far as we know.

Our problem is also related to mobile computing, particularly works on loca-
tion management in the cellular architecture. These works address the following
problem. When calling or sending a message to a mobile user, the network infras-
tructure must locate the cell in which the user is currently located. The network
uses the location database that gives the current cell of each mobile user. The
record is updated when the user moves from one cell to another, and it is read

184 QOuri Wolfson et al.

when the user is called. Existing works on location management (see, for ex-
ample, [15,4,7]) address the problem of allocating and distributing the location
database such that the lookup time and update overhead are minimized. Loca-
tion management in the cellular architecture can be viewed as addressing the
problem of providing uncertainty bounds for each mobile user. The geographic
bounds of the cell constitute the uncertainty bounds for the user. Uncertainty
at the cell-granularity is sufficient for the purpose of calling a mobile user or
sending him/her a message. When it is also sufficient for MOD applications, the
location database can be sold by wireless communication vendors to mobile fleet
operators. However, often uncertainty at the cell granularity is insufficient. For
example, in satellite networks the diameter of a cell ranges from hundreds to
thousands of miles.

Another relevant research area is constraint databases (see [8] for a survey). In
this sense, our location attributes can be viewed as a constraint, or a generalized
tuple, such that the tuples satisfying the constraint are considered to be in the
database. Constraint databases have been separately applied to the temporal
(see [2]) domain, and to the spatial domain (see [10]). Constraint databases can
be used as a framework in which to implement the proposed update policies and
query processing algorithm.

Finally, the present paper extends the work on which we initially reported
in [5,6] in two important ways. First, in this paper we introduce a quantitative
new probabilistic model and method of processing range queries. In contrast,
in previous works we took a qualitative approach in the form of "may” and
”must” semantics of queries. Second, in this paper we introduce uncertainty as a
separate concept from deviation. The previous work on update policies (i.e. [6])
is not equipped to distinguish between uncertainty and deviation. Consequently,
The location update policies discussed in this paper are different in two respects
from the update policies in [6]. First, they take uncertainty into consideration
when determining when to send a location update message. Second they are dead
reckoning policies; namely they provide the uncertainty, i.e. the bound on the
deviation, with each location update message. In contrast, the [6] policies are not
dead reckoning in the sense that the moving object does not update its location
when the deviation reaches some threshold; the update time-point depends on
the overall behavior of the deviation since the last update. Our simulation results
indicate that the [6] policies are inferior to adr (and often to dtdr as well) when
the uncertainty cost is taken into consideration, and this inferiority increases as
the cost per unit of uncertainty increases.

8 Conclusion

In this paper we considered dead-reckoning policies for updating the database
location of moving objects, and the processing of range queries for motion
database. When using a dead-reckoning policy, a moving object equipped with
a Geographic Positioning System periodically sends an update of its database
location and provides an uncertainty threshold th. The threshold indicates that

186

Ouri Wolfson et al.

that the database arrival information is given by “The object is estimated to
arrive at destination X at time t, with an uncertainty of U”. In other words, ¢
is the database estimated-arrival-time® (eat) and we assume that at any point
in time before arrival at destination X, the moving object can compute the
actual eat®, t’. The difference between t and t’ is the deviation, and the uncer-
tainty U denotes the bound on the deviation of the eat; the object will send an
eat update message when the deviation reaches U. In this variant, the motion
database update problem is to determine when a moving object should update
its database estimated-arrival-time. The results that we developed in this paper
for the location update problem carry over verbatim to the eat update problem.

References

1.

2.

3.
4.

10.

11.

12.

13.

14.
15.

S. Abiteboul, R. Hull, V. Vianu : Foundations of Databases, Addison Wesley,
1995.

M. Baudinet, M. Niezette, P. Wolper : On the representation of infinite data and
queries, ACM Symp. on Principles of Database Systems, May 1991.

W. Feller : An Introduction to Probability Theory, John Wiley and Sons, 1966
J.S. M. Ho, I. F. Akyildiz : Local Anchor Scheme for Reducing Location Tracking
Costs in PCN, 1st ACM International Conference on Mobile Computing and
Networking, Berkeley, California, Nov. 1995.

. P. Sistla, O. Wolfson, S. Chamberlain, S. Dao : Modeling and Querying Moving

Objects, Proceedings of the Thirteenth International Conference on Data Engi-
neering (ICDE13), Birmingham, UK, Apr. 1997.

O. Wolfson, S. Chamberlain, S. Dao, L. Jiang, G. Mendez: Cost and Impreci-
sion in Modeling the Position of Moving Objects, Proceedings of the Fourteenth
International Conference on Data Engineering (ICDE14), 1998

T. Imielinski and H. Korth : Mobile Computing, Kluwer Academic Publishers,
1996.

. P. Kanellakis : Constraint programming and database languages, ACM Symp. on

Principles of Database Systems, May 1995.

. A. Motro : Management of Uncertainty in Database Systems, In Modern Database

Systems, Won Kim ed., Addison Wesley, 1995.

J. Paradaens, J. van den Bussche, D. Van Gucht : Towards a theory of spatial
database queries, ACM Symp. on Principles of Database Systems, May 1994.

R. Snodgrass and I. Ahn : The temporal databases, IEEE Computer, Sept. 1986.

S. Chamberlain : Model-Based Battle Command: A Paradigm Whose Time Has
Come, 1995 Symp. on C2 Research & Technology, June 1995

S. Chamberlain : Automated Information Distribution in Bandwidth-Constrained
Environments MILCOM-94 conference, 1994.

S.D. Silvey : Statistical Inference, Chapman and Hall, 1975

N. Shivakumar, J. Jannink and J. Widom :Per-User Profile Replication in Mo-
bile Environments: Algorithms, Analysis, and Simulation Results, ACM/Baltzer
Journal on Special Topics in Mobile Networks and Applications, special issue on
Data Management, 1997.

8 equivalent to the database location

9 equivalent to the actual location

