
gne_man ,(Eds.) .,,
1..;

'.1 i.: .ii:,ji I

r**tt
rlr
)lf**rl*Irli*
il*
) lrl *tl*,lll*

il
'f{

**
{}

*tr:*l
*1,

Ldb#

Databases for Tbacking Mobile Units in Real
Time

Ouri Wolfsonl, Liqin Jiangr, A. Prasad Sistlal, Sam Chamberlain2,
Naphtali Rishe3, and Minglin Dengr

I University of Illinois,Chieago, IL 60607, USA

' Ar.y Research Laboratory, Aberdeen Proving Ground, MD, USA
3 Florida International University, University Park, Miani, FL 33199, USA

Abstrast. In this paper we consider databa,ses representing informa-
tion about moving objects (e.g. vehicles), particularly their location. We
address the problems of updating and querying such databases. Specifi-
cally, the update problem is to determine when the location of a moving
object in the database (namely its database location) should be updated.
We answer this question by propoeing an information cost model that
captures uncertainty, deviation, and communication. Then we ".n*lyz.e
dead-reckoning policiea, namely policies that update the detabase loca.
tion whenever the distance betweeu the actual location and the database
location exceeds a given threshold, o. Dead-reckoning is the prevaleut
approach in military applications, and our cost model enables us to de'
termine the threshold o. Then we consider the problem of processing
rgnge queries in the database, and we propose e probabilistic algorithm
to solve the problem,

1 Introduction

1.1 Background

Consider a database that represents inlormation about moving objects and their
location. For example, for a database representing the location of tori-cabs a
typical query may be: retrieve the free cabs that are currently within 1 mile of
33 N. Michigan Ave., Chicago (to pick-up a customer); or for a trucking company
database a typical query may be: retrieve the trucks that are currently within 1

mile of truck ABT312 (which needs assistance); or for a database representing
the current location ofobjects in a battlefield a typical query may be: retrieve the
friendly helicopters that are in a given region, or, retrieve the hiendiy helicopters
that are expected to enter the region within the next 10 minutes. The queries
may originate from the moving objects, or from stationary users. We will refer
to the above applications as MOtion-Database (MOD) applications or moving-
objects-databa.se applications. In the military, MOD applications arise in the
context of the digital battlefield (see [13,i2]), and in the civilian industry they
arise in traruportation systerns.

Catriel Beeri, Peter Buneman (Eda.): ICDT'99, LNCS 1540, pp. t69-186, 199E,
@ Springer-Verlag Berlin Heidelberg 1996

1"d

170 Ouri Wolfson et al.

Currently MOD epplications a.re being developed in an ad hoc fashion.
Database management system (DBMS) technology provides a potential foun-
dation for MOD applications, however, DBMS's are currently not used for this
purpose. The reason is that there is a critical set of capabilities that have to be
integrated, adapted, and built on top of existing DBMS's in order to support
moving objects databases. The added capabilities include, among other things,
support for spatial and temporal information, support for rapidly changing real
time data, new indexing methods, and imprecision management. The objective j
of our Databases fOr MovINg Objects (DOMINO) project is to build an envelope
containing these capabilities on top of existing DBMS's.

In this paper we address the imprecision problem. The location of a moving
object is inherently imprecise because, regardless of the policy used to update
the database location of a moving object (i.e. the object-location stored in the
database), the database location cannot always be identical to the actual location
of the object. There may be several location update policies, for example, the
location is updated every o time units. In this paper we address dead-reckoning
policies, namely policies that update the database whenever the distance between
the actual location of a moving object rn and its database location exceeds a
given threshold h, say 1 mile. This means that the DBMS will answer a query
"what is the current location of m?" by an answer A: "the current location
is (c,y) with a deviation of at most 1 mile". Dead-reckoning is the prevalent
approach in military applications.

One of the main issues addressed in this paper is how to determine the update
threshold h in dead-reckoning policies. This threshold determines the location
imprecision, which encompasses two related but difrerent concepts, namely devi-
ation and uncertainty. The deviation of a moving object rn at a particular point
in time t is the distance between rn's actual location at time t, and its database
location at time t. For the aruwer A above, the deviation is the distanct be
tween the actual location of rn and (c,g). On the other hand, the uncertainty
of a moving object m, at a particular point in time t is the size of the area in
which the object can possibly be. For the answer A above, the uncertainty ir
the a"rea of a circle with radius 1 mile. The deviation has a cost (or penalty) in
terms of incorrect decision making, and so does the uncertainty. The deviation
(resp. uncertainty) cost is proportional to the size of the deviation (resp. unoer'

tainty). The ratio between the costs of an uncertainty unit and a deviation unit
depends on the interpretation of an answer such as .4 above, as will be explained

in section 3.

In MOD applications the database updates are usually generated by the

moving objects thernselves. Each moving object is equipped with a Geographic

Positioning System (GPS), and it updates its database location using a wireleas

network (e.g ARDIS, RAM Mobile Data Co., IRIDIUM, etc'). This introducc e
third information cost component, namely communication. Fbr example, RAM

Mobile Data Co. charges a minimum of 4 cents per message, with the exact cct
depending on the size of the message. F\rrthermore, there is a tradeoff betws
communication and imprecision in the sense that the higher the communicetion

oa'f GCC{F.lr*{ * ll|}{I{r t'{ {3COIFraf f {3 *atlrtl *t {*{ta*r rl r,l * aftlrl f * *"11;lr { * #*t{
-^'gsd#*#5ffi

ff

r*f*.-}ll*c
*- *atpers*l
l*-

"8.#*

*

ir'* *)l{l
*** *)tt.,tlt* *
l**,
*t)*l * *A:4, -r Q4g6'

ta*\eO*
]l-r *
Irrlf * talt
ll*t I
,*,1; t

*l{l

Databases for Tbacking Mobile Units in Real Time L7r

cost the lower the imprecision and vice versa. In this paper we proPose a model
of the information cost in moving objects databases, which captures imprecision
and communication. The tradeoff is captured in the model by the relative costs

of an uncertainty unit, a deviation unit, and a communication unit.

1.2 Location Update Policies

Consider an object rn moving along a prespecified route. We model the database
location of rn by storing in the database rn's starting time, starting location, and
a prediction of future locations of the object. In this paper the prediction is given
as the speed o of the object. Thus the database location of m can be computed
by the DBMS at any subsequent point in time. 1 This method of modeling the
database location was originally introduced in [5,6] via the concept of a dynamic
attribute; the method is modified here in order to handle uncertainty. The actual
location of a moving object rn deviates from its database location due to the fact
that rn does not travel at the constant speed u.

A dead-rcckoning upd,ate policy for rn dictates that there is a database'update
threshold th, i.e. a deviation for which rn should send a location/speed update to
the database. (Note that at any point in tirne, since rn knows its actual location
and its database location, it can compute its current deviation.) Speed dead-
rcckoning 2 (sdr) is a dead-reckoning policy in which the threshold th is fixed for
the duration of the trip.

In this paper we introduce another dead-reckoning update policy called adap-
tiae dead rcckoning(ad,r). Adr provides with each update a new threshold th that
is computed using a cost based approach. th minimizes the total information cost
per time unit until the next update. The total information cost consists of the
update cost, the deviation cost, and the uncertainty cost. In order to minimize
the total information cost per time unit between now and the next update, the
moving object rn has to estimate when the next update will occur, i.e. when the
deviation will reach the threshold. Thus, at location update time, in order to
compute the new threshold, adr predicts the future behavior of the deviation.
The thresholds differ from update to update because the predicted behavior of
the deviation is different.

A problem common to both sdr and adr is that the moving object may be
disconnected from the network. In other words, although the DBMS "thinks"
that updates are not generated since the deviation does not exceed the up
date tbreshold, the actual rearnn is that the moving object is disconnected. To
cope with this problem we introduce a third policy, "disconnection detecting

TO* tt."l"tion experiments show that, even when the speed fluctuates sharply, this
temporal technique reduces the number of updates to lSVo of the number used by
the traditional, nontemporal method in which the database simply stores the latest
known location for each object; this saves 8570 of the location-updates overhead.

2 We use the term specd dead-reckoning to contrast it with the piain dead-reckoning
(pdr) policy in which the database location is fixed until it is explicitly updated by
the moving object; namely, pdr doee not use dynamic attributes.

Fqiq:!?'|""" ' a'.l*

}c*tle* r
DOe :',ao {) }to* r,|la.l l

tlt+rf:tt'-

G.

172 Ouri Wolfton et al.

dead-reckoning (dtdr)'. The policy avoids the regular process of checking for
disconnection by trying to commrrnicate with the moving object, thus increas'
ing the load on the low bandwidth wireless channel. Instead, it us€s a novel
technique that decreases the uncertainty threshold for disconnection detection.
Thus, in dtdr the threshold continuously decreases as the time interval since the
last location update increases. It has a value K during the first time unit after
the update, it has value Kl2dwing the second time unit after the update, it
has value K/3 during the tbird {!rns rni[, etc. Thus, if the object is connected,
it is increasingly likely that it will generate an update. Conversely, if the moving
object does not generate an update, as the time interval since the last update
increases it is increasingly likely that the moving object is disconnected. The
dtdr policy computes the K 1[31 rninimizes the total iaformation cost, i.e. the
sum of the update cost, the deviation cost, and the uncertainty cost.

To enntrast the three policies, observe that for sdr the threshold is fixed for all
location updates. For adr the threshold is fixed between each pair ofconsecutive
updates, but it may change from pair to pair. Fbr dtdr the threshold decreases
as the period of time between a pair of consecutive updates increases.

We compared by simulation the three policies introduced in this paper. Our
simulations indicate that adr is superior to sdr in the sense that it has a lower or
equal information cost for every value of the updateunit cost, uncertain$r-rrni1
cost, and deviation-unit cost. Adr is superior to dtdr in the sarne sense; the dif-
ference between the costs of the two policies quantifies the eost of disconnection
detection. For some parameters combinations the information cost of sdr is six
times as high as that of adr.

Finally, an additiond contribution of this paper is a probabilistic model and
an algorithm for query processing in motion databases. In our model the location
of the moving object is a random variable, and at any point in tirne the database
location and the uncertainty are used to determine a density function for this
variable. Based on this model we developed an algorithm that processes range
queries such as Q:'retrieve the moving objects that are currently lnside a given
region R'. The answer to Q is a set of objects, each of which is associated with
the probability that currently the object is inside R.

The rest of this paper is organized as follows. In section 2 we introduce the
data model and discuss location attributes of moving objects. In section 3 we
discuss the information cost of a trip, and in section 4 we introduce our approach
to cost optimization. In section 5 we describe the three location update policies.
In section 6 we present our approach to probabilistic query procesing. In section
7 we discuss relevant work, and in the last section we summarize our results.

2 The Data Model

In this section we define the main concepts used in this paper. A database is a set
of object-classes. An object-closs is a set of attributes. Some object-classes are
designated as spatioL Each spatial object class is either a point-class, a lineclass,

Databases for Tbacking Mobile Units in Real Time 173

or a polygon-class in two-dimensional space (all our concepts and results can be
extended to three-dimensional space).

Point object classes are either mobile or stationary. A point object class O
hu a loeation attri,bute.L. If the object class is stationary, its location attribute
has two subattribut* L.a, and L,y, representing the c and gr coordinates of the
object. If the object class is mobile, its location attribute has six subattributes,
L,route, L.startlou,tion, L. starttime, L.dired,ion, L. speed,, and L.uncertainty.

The semantics of the subattribute€ are as follows. L.rou,te is (the pointer
to) a line spatial object indicating the route on which an object in the class O
is moving. Although we assume that the objects move along predefined routes,
our results can be extended to free movement in space (e.S. by aircraft). We will
conrment on that option in the last paragraph of this section. L.startloution'rs
a point on. L.rau,tel it is the location of the moving object at time L.starttirne.
In other words, L.starttime is the time when the moving object was at loca-
tion L.startlou,ti,on. We assu-me that whenever a moving object updates its .L
attribute it updates lhe L.startlou,tion subattribute; thus at any point in time
L.starttime is also the time of the last location-update. We asslune in this paper
that the database updates are instantaneous, i.e. valid- and transaction- times
(see [11]) are equal. Therefore, L.startti,me is the time at which the update
occurred in the real world system being modeled, and also the time when the
database installs the update. L.dirediort is a binary indicator having a value 0 or
I (these values may correspond to north-south, or east-west, or the two endpoints
of the route) . L.speed is a function that represents the predicted future locations
of the object. It gives the distance of the moving object from L.startlocation as
a function of the number t of time units elapsed since the last location-update,
namely since L.startti,me.The function has the value 0 when t:0. In its sim-
plest form (which is the only form we consider in this extended abstract) L.speed
represents a constant speed u, i.e. the distance is u.t. 3 L.unerta'i.nty is either a
constant, or a function of the number t of time units elapsed since L.starttime.
It represents the threshold on the location deviation (the deviation is formally
defined at the end ofthis section); when the deviation reaches the threshold, the
moving object sends a location update message. Observe that the uncertainty
may change automatically as the time elapsed since L.starttime increases; this
is indeed the case for the dtdr policy.

We define tbe route-d,i"stane, betwen two points on a given route to be the
distaoce along the route between the two poiuts. We assume that it is straightfor-
ward to compute the routedistance between two points, and the point at a given
routedistance from another point. The database location of a moving object at
a given point in time is defined as follows. At time L.startt,i,rne the database
location 'ts L.startloention; the database location at time A.starttime* t is the

G"th* p*ribility for repreeenting future locations is a sequence of speeds, i.e., the
object will rnove at speed ur until time tr, at speed ur until time t2, etc. Such a future
plan is typical of, for example, a vehicle that expects various traffc conditions; or a
palc,kage that first travels by truck, then by plane, then waits (speed 0) for another
truck loading, etc.

?:}t'roel
lat"r I
l{n }
Dldl r
'al t
laf} l
btt J

tat.a{lDar:o.
lol

:.G
Itt.toa

t

llEffis

ilcSf'rlaa(f;.ooo {}
,oo(lr
o oo {^}

tOa(} t'
ooof\
t3O(J;

1aa
Jla(. :t a o
: tali'.!aa
S aal''f (la
-.oa(

a74 Ouri Wolfron et al.

point (c,y) which is at route'distance L.speed,'t from the point L.startlmtian'
Intuitively, the database location of a moving object rn at a given time point t is
the location of ni, as far as the DBMS knows; it is the location that is returned by
the DBMS in response to a query entered at time t that retrieves tn'8 location.
Such a query also returns the uncertainty at time t, i.e. it returns an answer of
the form: rn is on L.rou,te at most L.unurtainty ahead of or behind (o,y).

Since between two consecutive location updates the moving object does not
trarrel at exactly the speed L.speed, the actual location of the moving object
deviates from its database location. Fbrmally, for a moving object, tbe deviati,on

d at a point in time t, denoted d(t), is the routedistance between the moving
object's actual location at time t and its database location at ti:ne t. The devi-
ation is always nonnegative. At any point in time the moving object knows its
current location, and it also knows all the subattributes of its location attribute.
Therefore at any point in time the (computer onboard the) moving object can

compute the current deviation. Observe that at time L.starttime the deviation
is zero.

At the beginning of the trip the moving object updates all the subattributes
of its location attribute. Subsequently, the moving object periodically updates
its current location and speed stored in the database. Specifically' a locati,on

update is a message sent by the moving object to the database to update some

or all the subattributes of its location attribute. The moving object sends the
location update when the deviation erceeds the L.uncertainty threshold, or
when the moving object cha^nges route or direction. The location update message

contains at least the values for L.speed' and L.startlocnti,on. Obviously, other
subattributes can also be updated. The subattribute L.startti,me is written by
the DBMS whenever it installs a location update; it denotes the time when the
installation is done.

Before concluding this section we would like to point out that the results
of this paper hold for free-movement modeling, i.e. for objects that move freely
in space (e.g. aircr#t) rather than on routes. In this ease L.rqute is an inffnils
straight line (e.g. 60 degrees from the starting point) rather than a lineobject
stored in the database. Then there a.re two poesibilities of modeling the uncer-

tainty. The first is identical to the one described above, i.e. the uncertainty is

a segment on the infinite line representing the route. Iu this case every change

of direction constitutes a change of route, thus necessitating a location update.

The second possibility is to redefine the deviation to be the Euclidean distance

between the database location and the actual location, and to remove the re''

quirement that the object updates the database whenever it changes routes.

In this ca,se L.unenrtainty defines a circle around the database location, and

a query that retrieves the location of a moving object rn returns an answer of
the form: rn is within a circle having a radius of at most L.uncerta'inty ftom
(c,g). Observe that the second possibility of modeling uncertainty necessitates

less location updates, but the &Iuiwer to a query is less informative since the
uncertainty is given in two dimensional space rather than onedimensional'

Databases for Tlacking Mobile Units in Real Time l7b

3 The Information Cost of a Tlip

In this section we define the information cost model for a trip takeu by a moving
object rn, and we discuss information cost optimality.

At each point in time during the trip the moving object has a deviation and
an uncertaingr, each of which carries a penalty. Additionally the moving object
sends location update messages. Thus the information cost of a trip consists of
the cost of deviation, cost of cornmunication, and cost of uncertainty.

Now we define the deviation cost. Observe first that the cost of the deviation
depends both on the size of the deviation and on the length of time for which it
persists. It depends on the size of the deviation since decision-makiug is clearly
a,ffected by it. To see that it depends on the length of time for which the deviation
persists, suppose that there is one query per time unit that retrieves the location
of a moving object m. Then, if the deviation persists for two time units its
cost will be twice the cost of the deviation that persists for a single time unit;
the reason is that two queries (instead of one) will pay the deviation penalty.
Fbrmally, for a moving object rn the cost of the deviation between two time
points t1 and t2 is given by the deviation cost function denoted cosr4(t1,t2);
it is a function of two variables that maps the deviation between the time points
t1 and f2 into a nonnegative number. tn tnis paper we take the penalty for each
rnif ef deviation during a unit of time to be one (1). Then, the cost of the
deviation between two time points t1 and t2 is:

ftz
COSTa(tu,t2):

Jr,
d(t)dt (1)

The upd'ate cosf, denoted cr, is a nonnegative nunber representing the cost
of a location-update message sent from the moving object to the database. This
is the cost of the resources (i.e. bandwidth and computation) consumed by the
update. The update cost may differ from one moving object to another, and
it may vary even for a single moving object during a trip, due for example, to
changing availability of bandwidth. The update cost must be given in the same
units as the deviation cost. In particular, if the update cost is C1 it means the
ratio between the update cost and the cost of a unit of deviation per unit of
time (which is one) is cl. It also means that the moving object (or the system)
is willing to use tf C1 masages in order to reduce the deviation by one during
one unit of time.

Now we define the uncertainty cost. observe that, as for the deviation, the
cost of the uncertainty depends both, on the size of the uncertainty and on the
length of time for which it persists. Formally for a moving object rn the cost of
the uncertainty between two time points f1 and t2 is given by the uncertainty
cost function, denoted cosrs(t1,t2); it is a function of two variables that maps
the uncertainty between the time points t1 and tz into a nonnegative number.
Define the uncertainty unit ust to be the penalty for each unit of uncertainty
during 3 rrnil ef time, and denote it by c2. Then, the cost of the uncertainty of
rn between two time points tr and tz is:

t76 Ouri Wolfron et al.

C o STu(t1,t) :
t:,"

Czu(t)itt

where u(t) is the value of the L.uneriainty subattribute as a function of time.
The uncertainty unit crlst C2 is the ratio between the cost of a unit of uncer-

tainty and the cost of a unit of deviation. Consider an answer returned by the
DBMS: "the current location of the moving object rn is (c,y), with a deviation
of at most u units". C2 shouid be set higher than 1 if the uncertainty in such

an ansv/er is more important than the deviation, and lower than 1 otherwise.
Observe that in a dead-reckoning update policy each update message establishes
a new uncertainty which is not necessarily lower than the previons one. Thus
communication reduces the deviation but not necessarily the uncertainty.

Now we are ready to define the information cost of a trip taken by a moving
object m. I'et t1 a^nd tz be the time'stamps of two consecutive location update
messages. Then the information ust in the interval [t1, t2) lst

COSTr[tt,tz) : Cr * COSTaItr,tz) + COST"[h,tz) (3)

Observe that COSTr[tr,tz) includes the message cost at time t1 but not
the cost of the one at time tz. Observe also that each location update message
writes the actual current location of rn in the database, thus it reduces the
deviation to zero. The total information cost of a trip is computed by summing
up COST1lt1, t2) for every pair of consecutive update points t1 and t2. Formally,
let the time points of the update messages sent by mbet1,t2,..., tr. F\rrthermore,
let 0 be the time point when the trip started and t3a1 the time point when the
trip ended. Then the total information cost of a trip is

k

CosT : cosral\,t) * CoSTu[0, 11) + Dcosrilt;,ti+r) (4)
i=1

4 Cost Based Optimization for Dead Reckoning Policies

As'inentioned in the introduction, a dead-reckoning update policy for a moving
object rn dictates that at any point in time there is a database.update threshold
th, of which both the DBMS and rn are aware. When the deviation of rn reaches
th, rn sends to the database an update consisting of the current location, the
predicted speed, and the new deviation threshold K. The objective of the dead
reckoning policies that we introduce in this paper is to set K (which the DBMS
installs inthe L.uncertainty subattribute), such that the total information cost
is minimized. Intuitively, this is done as follows. First, rn predicts the future
behavior of the deviation. Based on this prediction, the average cost per time
time unit between now and the next update is obtained as a a function / of the
new threshold K. Then K is set to minimize f 4.lt is important to observe that
{ Let us observe that the proposed method of optimizing the new threshold K is

not unique. We have devised other methods which are omitted from this extended
abstract. A perfonnance comparison arnong these methods is the subject of future
work.

(2)

Databases for Thacking Mobile Units in Real Time t77

we optimize the average cost per time unit rather than simply the total cost
between the two time points; clearly, the total cost increase as the time interval
until the next update increases.

The next theorem establishes the optimal value K for L.unu,rtaintg rnder
the assumption that the deviation between two consecutive updates is a linear
function of time.

Theorem 1: Denote the update cost by Cr, md the uncertainty unit cost by
C2. Assume that for a moving object two consecutive location updates occur at
time points t1 and fz. Assume further that between tr and t2,the deviation d(r) is
given by the function a(t - t) where t1 1 | 1 t2 and a is some positive constantl
and L.uncertainty is fixed at K throughout the intenral (h,tz).Then the total

information cost per time unit between f1 and tz is minimized if K : ,ffir.
tr

The implication of theorem 1 is the following. Suppose that a moving ob
jer:t m is currently at time point f1, i.e. its deviation has reached the un-
certainty threshold L.unertainty. Now m needs to compute a new value for
L.uncertai,nty and send it in the location update message. Suppose further that
rn predicts that following the update the deviation will behave as the linear
function a(t - t1), and in the update message it has to set the uncertainty
threshold L.uncertainty to a value that will remain fixed until the next update.
Then, in order to optimize the information cost, rn should set the threshold to

Next assume that, in order to detect disconnection, one is interested in a
dead-reckoning policy in which the uncertainty threshold L.uncertainty contin'
uously decreases between updates. Particularly, we consider a particular type of
decrease, that we call fractional decrease; other types exist, but we found this
one convenient. Let K be a constant. If the uncertainty threshold L.uncertainty
d,ecreases tructionolly starting with K, then during the first time unit after a
location update u its value is K, during the second time unit altet u its value
'ts Kl2, during the third time unit after z its'ralue is Kls, etc., until the next
update (which establishes a new K).

Theorem 2: Assu:ne that for a moving object two consecutive location
updates occur at time points t1 and t2. Assume further that between t1 and
t2, the deviation d(t) is grven by the function a(t - ty) where t1 I t < t2
and a is some positive constant; and in the time intenral (tr,tz) L.unertainty
decreases fractioually starting with a constant K. Then the total information
cost per time unit between t1 and t2 is given by the following function of K.

c t+ It K +cz x (r+ l + + +...+ -#')
clt?\- V? n

\/*
Similarly to theorem 1, the implication of theorem 2 is the following. Suppose

that a moving object is currently at time point t1, i.e. it is about to send a loca-
tion update message, and it can predict that following the update the deviation
will behave as the linear function a(t-t1), and in the update message it sets the
uncertainty threshold L.uncertainty to a fractionally decreasing value starting

178 Ouri Wolfton et al.

with I(. Then in order to optimize the information cost it should set K to the
value that lainimizes the function of theorem 2.

5 The Location Update Policies and Their Performance

In this section we describe and motivate three location update policies. Then we
report on their comparison by simulation.

The speed dead-reckoning (sdr) policy. At the beginning of the trip the
moving object rn sends to the DBMS an uncertainty threshold that is selected
in an ad hoc fashion, it is stored in L.unmrtainty, and it remains fixed for the
duration of the trip. The object rn updates the database whenever the devia-
tion exceeds L.uner-taintg;tbe update simply includes the current location and
current speed. 5 tr

The adaptive dead reeJ<oning (adr) poticy. At the beginning of the
trip the moving object rn sends to the DBMS an initial deviation threshold th1
selected arbitrarily. Then rn starts tracking the deviation. When the deviation
reaches th1, the moving object sends an update message to the database. The
update consists ofthe cunent speed, current location, and a new tbreshold th2
that the DBMS should instatl intbe L.unertainty subattribute . thz is computed
as follows. Denote by t1 the number of time units from the beginning of the trip
until the deviation reaches thy for the first time, by .I1 the cost of the deviation
(which is computed using equation 1) during the eame time interval, and let

or: T. Then thz i" \f W" (remember, Cl is the update cost, C2 is the

unit-uncertainty cost). When the deviation reaches th2, a sinilar update is sent,

except that the new threshold thg is l@n "r,where
or: T (r2 is the cost of

the deviation from the first update to second update, tz is the number of time
units elapsed since the fust location update). Since az may be different than o1,
th2 mal be different than ths. When th3 is reached the object will send another
update containi'g tha (which is computed ia s similar fashion), and so on. tr

The mathematical motivation for adr is based on theorem 1 in a straight-
forward way. Namely, at each update time point pi adr simply sets the next
threshold in a way that optimizes the information cost per time unit (according
to theorem 1), assuming that the deviation following time p; will behave as the
foltowing linear function: d(t) : Tr, where t is the number of time units after
pi, and ti is the nu.mber of time units between the irnmediately preceding update
a.nd the current one (at time pi), and .Ii the cost of the deviation during the same
time interval. The reason for this prediction of the future deviation is as follows.
Adr approximates the current deviation, i.e. the deviation from the time of the

6 Sdr can also use another speed, for slrmFl€, the average speed since the last update,
or the average speed eince the beginning ofthe trip, or a speed that is predicted based
on knowledge of the terrain. Thie comment holds for the other policies discussed in
this section.

180 Ouri Wolfson et al.

We compared by simulation the three policies introduced in this paper narnely
adr, dtdr, and sdr. The parameters of the simulation are the following. The
updaterrnit cost, namely the cost of a location-update message; the uncertainty-
unit cost, namely the cost of a unit of uncertainty; deviation-unit cost, namely
the cost of a rrnit of deviation; a speed curve, nalnely a function that for a

period of time gives the speed of the moving object at any point in time. The
comparison is done by quantifying the total information cost of each policy for
a large nurnber of combinations of the parameters. For space considerations we
omit the detailed results of the simulations. The main conclusions are: 1. adr is
superior to sdr in the sense that it has a lower or equal information cost for every
value of the update-unit cost, uncertainty-unit cost, and deviation-unit cost; for
some paxaneter combinations the information cost of sdr is six times as high as

that of adr. 2. adr is superior to dtdr in the same sense; the difference between
the costs of the two policies quantifies the cost of dissonnection detection.

6 Querying with Uncertainty

In this section we present a probabilistic method for specifying and processing
range queries about motion databases. For exarnple, a typical query might be
"Retrieve all objects o which are within the region R". Since there is an uncer-
tainty about the location of the various objects at any time, we may not be able
to answer the above query with absolute certainty. Instead, oru query processing
algorithm outputs a set of pairs of the form (o,p) where o is an object and p is
the probability that the object is in region.B at time t; actually, the algorithm
retrieves only those pairs for which p is greater than some minimum value. Note
that here we are using probability as a mea.sure of certainty.

As indicated, we asisume that all the objects are traveling on routes. Since the
actual location is not exactly knowu, we asisume that the location of an object
o on its route at time t is a random variable [3]. We let fo(n) denote the density
function of this random variable. More specifically, for small values of da, f o(x)d,c
denotes the probability that o is at some point in the interval [a,x*dr) at time t
(actually, .f, is a function of r and t; however we omit this as t is understood from
the context). The mean rn, of the above random variable is given by the database
location of o (this equals o.L.startloution * o.L.speed(t - o.L.starttime); w
section 2).

Now we.liscuss some possible candidates for the density functions /r. Many
natural processes tend to behave according to the normal density function. Let
N^,o(r) denote a normal density function with mean m and standard deviation
a. We can adopt the normal density functions follows. We take the mean in
to be equal to mo given in the previous paragraph. Next we relate the stan-
dard deviation to the uncertainty of the object location. We do this by setting
o : !(o.L.unenrtainty) where c > 0 is constant. In this case, the probability
that the object is within a distance of o.L.uncertainty (i.e. withill a distance
of. co) from the location rno will be higher for higher values of c; for sD(nmple,
this probability will be equal to .68,.95 and .997 for values of c equal to 1,2 and

182 Ouri Wolfson et al.

any of the intervals belonging tn InsideJnt(r1,R). Using the eet of intenaals

Insid,eJnt(rt, R), we c8n easily compute another set of intervals on route 11 ,

denoted by WithinJnt(rt, R,d), such that every point belonging to any of these

intervals is within distance d of region R.
Now consider a condition g formed using the above atomic predicates and

using the boolean connectives. We assume that g has only one free object variable

o. Now we describe a procedure for evaluation of this condition against a set of
objects. The satisfaction of this condition by an object o1 traveling on route 11

at time t only depends on the location of the object at time t. We first compute

the set of all such points. We say that a point c on the route rt satisfies the
query g, if an object o1 at location c satisfies g. By a simple induction on the
length of g, it is easily seen that the set of points on route 11 that satisfy g

is given by a collection of disjoint intervals (if q is an atomic predicate then
this is trivially the case as indicated earlier; if g is a conjunction 9r and gz the
resulting set of intervals for q is obtaiued by taking pairwise intersection of an

interval belonging to that of 91 and another belonging to that oI q2 etc.). We let
Int(r1,q) denote this set of intervals. A simple algorithm for computing this set

is given below. The probability that o1 satisfies g at time t equals the probability
that the current location of o1 lies within any of the intervals in Int(ryq). Let

{h,12,..., /r} be all the intervals ln Int(r1,g). Since all the interrrals 'n Int(r1, q)

are disjoint, it is the case that for any two distinct i:rtervals .[i and .Ir' the events

indicating that o1 is ir:side the intenal -I; (resp., inside /i) are independent.
Hence, the probability that o1 satisfies g is equal to the sum, over all intervals I
in Int(r1,g), of the probability that or is in the interv'al .I.

Theorem 3: For a query g and route q, let {11,-.,I;y--,'[] be all the -
intervals in Int(r1,q) where Ii : Iut,uif.Then, the probability that object o1

traveling on route rr satisfies g at time t is given bv Df:, Ii: f",@)ar. n
For the route 11, the set of intervals Int(r1,q) is computed inductively on

the structure of g as follows.

g is an atomic predicate: If q is insid,e(o,R), Int(r1,q) is the sarne &s

InsideJnt(r1,.R) and this is obtained directly from the database, possi-

bly using a spatial indexing scheme. If S i8 within-d,istane(o,8, d) then
Int(ruq) is same as Withi,nJnt(r1,Rd), and this can be computed di-
rectly from Insi.d,eJnt(rr,rB). The list of intervals Int(r1,R) is output in
sorted order.

q : qr A 92: First we compute the lists Int(4,q1) and /nt(r1, g2). After this' we

take an interval f1 from the first list and an interval 12 from the second list,
and output the interral IL1I2 (if. it is non-empty); the set of all such intervals
will be the output. Since the original two lists are sorted, the above procedure

can be implemented by a modified merge algorithm. The complexity of this
procedure is proportional to the sum of the two input lists.

q - teri First we compute Int(r1,q1). We assume that the length of the route
11 is 11; thus the set of all points on 11 is given by the single interval [0,11].
The set of all points on 11 that satisfy g is the complement of the set of points

that satisfy gr where this complement is taken with respect to all the points

Databasee for Ttaclcing Mobile Units in Real Time 1E3

on the route; clearly, this set of points is a collectioa ef disjoint intervals. Now,
it is fairly straightforward to see how the sorted list of intervalsin Int(r1,q)
can be computed from fd(r1,q1); the complexity of such a procedure is
simply linear in the nurnber of interrals ln Int(r1,q).

If. L1,L2,...,.L3 are the lists of interrrals corresponding to the atomic predi-
cates appearlnC in q and I is the sum of the lengths of these lists, and rn is the
length of q then it can be shown that the complexity of the above procedure is
O(Im).

Now consider the query
RITRIEVE o FROM Moving-objects WHERE Cr ACz
where Ct,Cz, respectively, are the static and the dynamic parts of the condition.

The overall algorithm for processi"g the query is as follows.

1. Using the underlying database process the following query.
RETRIEVE o FROM Moving-objects WHERE Cl.
Let O be the set of objects retrieved.

2. Using the underlying database retrieve the set of routes ft on which the
objects in O are traveling.

3. For each atomic predicate p appearing in Cz and for each route 11 in R,
retrieve the list of intervals Int(4,p). This is achieved by using any spatial
indexing scheme.

4. Using the algorithm presented earlier, for each route 11, compute the list of
intenrals Int(n,q).

5. For each route rr and for each object 01 traveling on rl, compute the prob
ability that it satisfies q using the formula given in theorem 3.

7 Relevant Work

Oue research area to which this paper is related is uncertainty and incomplete
information in databases (see for example [9,1] for surveys). However, as far a.s

we know this area has so far addressed complementary issues to the ones in
this paper. Our current work on location update policies addresses the question:
what uncertainty to initially associate with the location of each moving object.
In contrast, existing works are concerned with management and reasoning with
uncertainty, after such uncertainty is introduced in the database. Our proba-
bilistic query processing approach is also concerned with this problem. However,
our uncertainty processing problem is combined with a temporal-spatial aspect
that has not been studied previously as far as we know.

Our problem is also related to mobile computing, particuia.rly works on loca-
tion management in the cellular architecture. These works address the following
problem. When snlling or sending a message to a mobile user, the network infras-
tructure mtxt locate the cell in which the user is currently located. The network
uses the location database that givee the current cell of each mobile user. The
record is updated when the user moves from one cell to another, aad it is read

184 Ouri Wolfton et al.

when the ueer is called. Existing works on location manegement (see, for o<-

a,rrple, [151,4) address the problem of allocating and distributing the location
database such that the lookup time and update overhead are minimized. Loca-
tion management in the cellula.r a,rchitecture can be viewed as addreesing the
problem of providing uncertainty bounds for each mobile user. The geographic

bounds of the cell constitute the uncertainty bounds for the user. Uncertainty
at the cell-granularity is sufrcient for the purpose of calling a mobile luler or
sending him/her a message. When it is also sufrcient for MOD applications, the
location database can be sold by wireless communication vendors to mobile fleet
operators. However, often uncertainty at the cell granularity is insumcient. For
example, in satellite networks the diameter of a cell rsnges from hundreds to
thousands of miles.

Another relevant resea,rch area is constraint databases (s* [8] for a survey). In
this sense, our location attributes can be viewed as a eonstraint, or a generalized
tuple, such that the tuples satisfying the constraint a.re considered to be in the
database. Constraint databases have been separately applied to the temporal
(see [2]) domain, and to the spatial domain (see [t0]). Constraint databases can
be used as a fra,srework in which to implement the proposed update policies and
query processing algorithm.

Finally, the present paper extends the work on which we initially reported
in [5,6] in two important ways. First, in this paper we introduce a quantitative
new probabilistic model and method of processing range queries. In contrast,
in previous works we took a qualitative approach in the form of "ma/ and
"must" semantics of queries. Second, in this paper we introduce uncertainty as a
separate concept from deviation. The previous work on update policies (i.e. [6])
is not equipped to distinguish between uncertainty and deviation. Consequently,
The location update policies discussed in this paper axe different in two respects
from the update policies in [6]. First, they take uncertainty into consideration
when determining when to send a location update message. Second they a.re dead
reckoning policies; na,mely they provide the uncertainty, i.e. the bound on the
deviation, with each location update message. In contrast, the [6] policies are not
dead reckoning in the sense that the moving object does not update its location
when the deviation reaches some threshold; the update timepoint depends on
the overall behavior of the deviation since the last update. Our simulation results
indicate that the [6] policies are inferior to adr (and often to dtdr as well) when
the uncertainty cost is taken into consideration, and this inferiority increases as

the cost per trnit of uncertainty increases.

8 Conclusion

In this paper we considered dead-reckoning policies for updating the database
location of moving objects, a,nd the processing of range queries for motion
database. When using a dead-reckoning policy, a moving object equipped with
a Geographic Positioning System periodically sends an update of its database
location and provides an uncertainty threshold th. The threshold indicates that

Ouri Wolfson et al.

that the database arrirral information is given by uThe object is estimated to
arrive at destination X at time t, with an uncertainty of U" .In other words, t
is the database estimeted-a^rrival-time8 (eat) and we assume that at any point
in time before arrival at destination X, the moving object can compute the
actual eate, t'. The difference between t and. tt is the deviation, and the uncer-
tainty U denotes the bound on the deviation ofthe eat; the object will send an
eat update message when the deviation reaches U. In this nariant, the motion
database update problem is to determine when a moving object should update
its database estimated-arrival-time. The results that we developed in this paper
for the location update problem carry over verbatim to the eat update problem.

References

1. S. Abit€boul, R. Hull,'V. Vianu : Foundations of Databases, Addison Wesley,
1995.

2. M. Baudinet, M. Niezette, P. Wolper : On the representation of inffnite data and
queries, ACM Symp. on Principles of Database Systems, May 1991.

3. W. Feller : An Introduction to Probability Theory, John Wiley and Sons, 1966
4. J. S. M. Ho, I. F. Akyildiz : Local Anchor Scheme for Reducing Location Tlacking

Costs in PCN, lst ACM International Conference on Mobile Computing and
Networking, Berkeley, California, Nov. 1995.

5. P. Sistla, O. Wolfson, S. Cha,mberlain, S. Dao : Modeling and Querying Moving
Objects, Proceedings of the Thirteenth International Conferenee on Data Engi-
neering (ICDEl3), Birmingha,m, UK, Apr. 1997.

6. O. Wolfton, S. Cha,mberlain, S. Dao, L. Jirng, G. Mendez: Cost and Impreci-
sion in Modeling the Position of Moving Objects, Proceedings of the Fourteenth
International Conference on Data Engineering (ICDE14), 1998

7. T. Tmielinski a"nd H. Korth : Mobile Computing, Kluwer Academic Publishers,
1996.

8. P. Kanellakis : Constraint progrtmming and databa,se languages, ACM Symp. on
Principles ef Database Systems, May 1995.

9. A. Motro ; Idqnngement of Uncertainty in Database Systems, In Modern Database
Systems, Won Kim ed., Addison Wesley, 1995.

10. J. Paradaens, J. van den Bussche, D. Van Gucht : Tlowards a theory of spatial
database queries, ACM Symp. on Principles of Database Systems, May 1994.

11. R. Snodgrass and I. Ahn: The temporal databases, IEEE Computer, Sept. 1986.

12. S. Cha.rnberlain : Model-Based Battle Command: A Paradigm Whose Time Has
Come, 1995 Symp. on C2 Re€earch & Technology, June 1995

13. S. Cha,mberlain : Automated Information Distribution in Bandwidth-Constrained
Environments MILCOM-94 conference, 1994.

14. S.D. Silvey : Statistical Inference, Chapman a.nd Hall, 1975
15. N. Shivakumar, J. Jannink a,nd J. Widom :Per-User Profile Replication in Me

bile Environments: Algorithms, Analysis, and Simulatiou Results, ACM/Baltzer
Journal on Special Topics in Mobile Networks and Applications, special issue on
Data Ma,nagement, 1997.

8 equivalent to the database location
e equivalent to the actual location

