
Computing with Words in Maritime Piracy
and Attack Detection Systems
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Abstract. In this paper, we propose to apply recent advances in deep learning to
design and train algorithms to localize, identify, and track small maritime objects
under varying conditions (e.g., a snowstorm, high glare, night), and in computing-
with-words to identify threatening activities where lack of training data precludes
the use of deep learning. The recent rise of maritime piracy and attacks on trans-
portation ships has cost the global economy several billion dollars. To counter the
threat, researchers have proposed agent-driven modeling to capture the dynamics
of the maritime transportation system, and to score the potential of a range of
piracy countermeasures. Combining information from onboard sensors and cam-
eras with intelligence from external sources for early piracy threat detection has
shown promising results but lacks real-time updates for situational context. Such
systems can benefit from early warnings, such as “a boat is approaching the ship
and accelerating,” “a boat is circling the ship,” or “two boats are diverging close to
the ship.” Existing onboard cameras capture these activities, but there are no auto-
mated processing procedures of this type of patterns to inform the early warning
system. Visual data feed is used by crew only after they have been alerted of a pos-
sible attack. Camera sensors are inexpensive but transforming the incoming video
data streams into actionable items still requires expensive human processing.

Keywords: Deep learning · Artificial neural networks · Convolutional neural
networks · Fuzzy logic · Computing with Words · Autonomous vehicle ·
Usability · Human computer interaction

1 Introduction

The rise of maritime piracy and attacks on transportation ships has posed a significant
burden on the global economy [1]. Researchers have proposed agent-driven modeling to
counter the threats, facilitating the potential of piracy countermeasures but lacking real-
time update capability for situational context [2]. Onboard sensor information combined
with intelligence from external sources proved valuable for early piracy threat detection
[3]. In all scenarios, visual data feed is used by crew only after they have been alerted to
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a possible attack: camera sensors are inexpensive but transforming the incoming video
data streams into actionable items still requires expensive human processing.

In this paper, we propose to apply recent advances in deep learning to design and
train algorithms to localize, identify, and track small maritime objects under varying
conditions (e.g., a snowstorm, high glare, night). The crew can benefit from an early
automated warning, e.g., “a boat is approaching the ship and accelerating” and decide on
the countermeasures based on the developing scenario. Existing onboard cameras capture
surrounding activities, but there is no automated processing of threatening patterns to
inform earlywarning systems.Automatedwarning such as “a boat is circling the ship,” or
“two boats are diverging close to the ship” can help direct piracy countermeasures more
effectively. The state-of-art deep learning activity detection and recognition systems
depend on large corpora of training data, which is infeasible to use in this scenario. We
propose a computation-with-words approach, where any activity, e.g., “a boat is circling
the ship,” is analyzed using natural language-based human reasoning.

Humans have a remarkable capability to reason, compute, and make rational deci-
sions in the environment of imprecise, uncertain, and incomplete information. In so
doing, humans employ modes of reasoning that are approximate rather than exact.

For example, consider a scenario where two friends are each renting a personal
wave-runner (small ski-jet boat) and exploring the local lake together while maintaining
a “safe distance1” from each other and other boats on the lake. To this end, a computer-
based system might deploy numerous high-resolution sensors for accurately measuring
location, speed, velocity, and distance from other marine vehicles. The sensor data and
information are generally represented via numerical data. Even this task of maintaining
“safe distance” from lake traffic, which is relatively simple for most humans, requires
the autonomous system to obtain large amounts of data, maintain a relatively large
database/knowledgebase of general knowledge, and perform complex real-time infer-
ence. The approach of employing Computing with Numbers (CWN) is well established
and is highly effective in many applications. Yet, due to the efficiency and effectiveness
of the human mind, there are applications where the human approach, which involves
computation using natural language reasoning and “calculations,” that is, Computing
with Words (CWW), is more simple, efficient, and effective. This raises an intrigu-
ing research question concerning the computational and human-computer interaction
benefits of using CWW for tasks involving Artificial Intelligence (AI).

The goal of the research reported here is to explore the utility of CWW as a tool for
identifying threatening activities where lack of training data precludes the use of deep
learning. The main contribution of this paper is that it should serve as an initiator of
theoretical and applied research in the field of CWW and its applications in areas such
as autonomous vehicles and vehicle activity detection. To the best of our knowledge,
there is no published research concentrating on the disruptive concepts of usingCWWfor
efficient computation andHumanComputer Interaction (HCI) andArtificial Intelligence
(AI) applications.

The rest of the paper is organized as follows. Background concepts are defined in
Sect. 2. Section 3 reviews state of the art. Section 4 introduces the CWW-basedMaritime

1 The term “safe distance” has a fuzzy connotation. Nevertheless, a CWN engineer might attempt
to provide a crisp and accurate definition for this term.
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Activity Detection System (CWWMAD). Section 5 provides a qualitative analysis of
the CWWMAD effectiveness and efficiency, as well as its usability. Finally, Sect. 6
concludes and proposes further research.

2 Background

In this section, we provide background concerning Maritime Activity Detection. The
CWW theoretical and applied concepts are detailed in a previously published paper [4].

2.1 Maritime Object Localization, Identification, and Tracking Using Deep
Learning

Maritime sensor imagery quality varies greatly with the weather conditions, sea sur-
face movements, size, and distance of maritime vessels. This degrades the performance
of state-of-art Deep Convolutional Neural Networks (DCNN) for identifying maritime
vessels. On the other hand, compared to the consumer domain, the maritime domain
lacks the abundance of alternative targets that could be incorrectly identified as mar-
itime objects: this allows relaxing the parameter constraints learned on urban natural
scenes in consumer photos, adjusting parameters of the model inference, and achiev-
ing robust performance and high average precision (AP) measure for transfer learning
scenarios [5].

DCNNs trained on large corpora of labeled consumer images provide robust gen-
eralized modeling for starting and initializing a network with transferred features from
almost any number of layers and boosts generalization. In our previous work [4], we
have relied on this finding and expanded the consumer dataset to the maritime domain
for adapting the DCNNs to reflect the target domain. We have utilized domain charac-
teristics to refine the deep learning framework and have shown that our transfer learning
strategy produces models that reliably and accurately identify sea-surface objects in
overhead imagery data. Furthermore, we have demonstrated successful single-source
domain adaptation from consumer and maritime data sources to maritime object recog-
nition [5]. In this paper, we use CenterNet as a baseline [6], as it has emerged as a fast
and lean deep network that produces the same quality of recognition results with reduced
model size and inference time. CenterNet object detector builds on successful key-point
estimation networks, finds object centers, and regresses to their size. The algorithm is
simple, fast, accurate, and end-to-end differentiable without expensive non-maximum
suppression (NMS) post-processing step. Every object is modeled as a single point, cen-
tered at its bounding box, and the approach skips the expensive step of an exhaustive
search of the possible object locations.

Frame-to-frame target tracking can greatly improve the accuracy of the system and
reduce the number of false positives in the dynamic learning schema. Towards this
end, we have adapted the DeepSort algorithm for real-time object tracking. The sys-
tem optimizes cosine similarity through a simple re-parametrization of the conventional
Softmax classification regime [7]. At inference time, the final classification layer facil-
itates nearest neighbor queries on unseen individuals using the cosine similarity metric
[7]. Figure 1 depicts the CenterNet domain adaptation to maritime data. The adaptation
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produces high, real time, recall localization inference at a fraction of the model size.
As illustrated in the figure, the system, trained on maritime data, can identify and track
small objects through longer periods of occlusions.

Fig. 1. CenterNet domain adaptation to maritime data

2.2 The IPATCH Dataset

The IPATCH project data collection focuses on non-military protection measures for
merchant shipping against piracy [3]. The goal of the project is to develop an on-board
automated surveillance and decision support system providing early detection and clas-
sification of piracy threats and supporting the captain and crew in selecting appropriate
countermeasures against piracy threats. The data collection was carried out employing
the vessel ‘VN Partisan,’ where the ship was traveling at a constant speed, while fishing
boats and “pirate” boats re-enacted scenarios. A subset of the IPATCH dataset collected
in 2015was released for public use as the PETS dataset [3]. The recordings, which repre-
sents a series of realistic maritime piracy scenarios, presents several challenges of object
detection and tracking including the fusion of data from sensors with different modalities
and sensor handover, tracking objects passing from one field of view (FoV) to another
with minimal overlapping FoVs, event detection, and threat recognition. Piracy attacks
on a vessel typically fall into one of five scenarios [3]. The PETS database contains only
a small sample of each of the listed scenarios.

2.3 Activity Recognition

Recent two-streamDCNNs havemade significant progress in recognizing human actions
in videos.Despite their success,methods extending the basic two-streamDCNNhave not
systematically explored possible network architectures to utilize spatiotemporal dynam-
ics within video sequences further. Furthermore, activity recognition in maritime videos
lacks sufficient annotations. The annotated activities are categorized into seven groups:

• Speeding: Sudden acceleration of the mobile object.
• Loitering: The detected object stands still or moves slowly in the same area.
• Group formation: A mobile object comes close to another and holds an interaction.
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• Group Separation: A mobile object departs from a group.
• Moving Around (Circling):A boat is moving and has appeared in two or more sides
of the ship.

• Sudden Direction Change: sudden change of the trajectory.

2.4 Computing with Words, Human-Computer Interaction, and Usability

The theoretical and to some degree the applied background of the present paper is
described in detail in [4] “Computing with Words—a Framework for Human-Computer
Interaction,” authored by a subset of the present authors with a contribution by Lotfi
Zadeh. A further in-depth review of the background can be found reference [4] citations.

3 Related Work

The DCNN framework is designed so that the individual neurons respond to overlapping
regions in the visual field [8]. DCNNs for object recognition in images consist ofmultiple
layers of small neuron collections, inspecting small portions of the input image, called
receptive fields. The results of these collections are then tiled so that they overlap to obtain
a better representation of the original image; this is repeated for every layer. One major
advantage of DCNNs is the use of shared weights in convolutional layers, which means
that the same filter (weights bank) is used for each pixel in the layer; this reduces the
requiredmemory size and improves performance. The performance of the DCNNs in the
ImageNet Large Scale recognition challenge has approached the capabilities of human
recognition [9]. When it comes to noisy imagery, however, the processes humans use
to identify a specific target are largely unknown. Nevertheless, recent advancements in
DCNN research have changed the expectations from an image and video understanding
system, significantly raising the bar. DCNNs, however, continue to exhibit shortcomings,
which has spurred great activity in the research community but with limited its effec-
tiveness in real-life situations. Due to a large number of network parameters that have
to be trained on, every DCNN system requires a significant number of labeled training
samples to perform well. Pascal VOC, COCO, and ImageNet [9], and benchmarks moti-
vated a breakthroughs in the field as training samples were collected via a well-executed
and expensive crowd sourcing endeavor to label millions of object instances in imagery
created by consumers using their hand-held devices. To achieve similar performance in
other domains, one has to consider the replication of these process at comparable scale,
and this is prohibitive when it comes to the periscope imagery domain, where crowd
sourcing effort or labeling uniformity to achieve comparable benchmark at such a large
scale are not available. Recent advances in DCNN development for object recognition
have demonstrated that one can apply high-capacity DCNNs to bottom-up region identi-
fication in order to localize and segment objects, andwhen labeled training data is scarce,
supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning,
yields a significant performance boost [8, 10–12].

Transfer learning focuses on storing knowledge gained while solving one problem
and applying it to a different but related problem and has gained traction in domain
adaption problem in computer vision. In the domain adaption problem, we focus on
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utilizing multiple existing source data to build a model that performs well on different
but related dataset. For taskswhere sufficient number of training samples is not available,
a DCNN trained on a large dataset for a different task is tuned to the current task
by making necessary modifications to the network and retraining it with the available
data [13, 14]. Lately, multiple groups proposed a one-shot learning approach for deep
learning setup, and demonstrated that it is consistent with ‘normal’ methods for training
deep networks on large data [13]. Domain adaptation of DCNN systems has been used
to produce segmentation maps and to improve category identification when applied to
satellite imagery and remote sensing [15]. It should be noted that generating synthetic
data can serve as an intermediate stage for DCNN training.

Numerous publications address the topic of CWW from the theoretical point of view
aswell as relevant applications [16–20]. Several of these papers and patents, e.g., [16, 17]
allude to the possibility of using CWW for Maritime navigation, activities, and Piracy
Alert systems. Nevertheless, a thorough search for literature that is using the approach
presented in this paper did not yield any relevant publications.

Several papers, cited in [4] address the topic of HCI in CWW-based system and
conclude that the affinity between the way that the CWW-based system operates and
natural language oriented HCI significantly improve these systems’ usability. These
observations are in line with our expectations. Nevertheless, except for reference [4], we
could not identify papers that specifically address the HCI of CWW-based applications
such as Maritime Activity Detection, and Piracy Alert systems.

4 CWW Procedure

4.1 Background

Assume that a boat that is monitoring maritime activity is the “friendly boat,” referred
to as Boat �, and the boats that are monitored are the “adversary boats,” referred to as
the � boats. In the present paper, we study the problem of identifying whether a single
�-boat is “circling” Boat �. A byproduct of our procedure is identifying whether any
� is “too close” to �.

The DCNN is fed by onboard video cameras placed according to the schematics of
Fig. 2. These cameras provide incomplete and overlapping coverage of the area around
�. Hence, at certain times, the location of an adversary boat in the image obtained by a
specific camera is known, and at other times it is unknown.

“Four AXIS P1427-E Network cameras were added to the ship; three of them at the
side and one at stern. The camera technical characteristics are the following: 5-megapixel
resolution; 35°–109° FoV – Autofocus; Frame rate 30 fps; Digital PTZ” [3].

We are fixing a computer graphics frame (affine coordinate system and a point of
reference - origin), referred to as the Cameras View Frame (CVF), where Boat � is
assumed to be in its origin. The CVF is time dependent as is generated by applying
affine transformations on the location of the adversary boat as obtained from onboard
cameras using DCNN. Next, we mark the subregions of the CVF, as depicted in Fig. 3.
The regions {A, B, C, D} denote proximity of the adversary boat to Boat �. The virtual
region ‘INV’ denotes that none of the cameras identifies an adversary boat at the given
CVF. To distinguish between individual frames of each camera and the view frameset
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Fig. 2. Schematic representation of added cameras in the VN Partisan [3]

by the monitoring system, we refer to the camera view frames as the CVFs, while the
video frames of the individual cameras are referred to as Image Frames (IFs).We assume
that the cameras mounted on the boat, along with the DCNN, can provide the following
information, as illustrated in the Fig. 3, at a rate of 30 CVFs per second.

D D D D D D D D 
D C C C C  C C D 
D C B2 B2 B1 B1 C D 
D C B2 A A B1 C D 
D C B3 A A B4 C D 
D C B3 B3 B4 B4 C D 
D C C C C C C D 
D D D D D D D D 

Fig. 3. Cameras view frame subregions

We further assume that at every time unit (of 1/30 of a second or longer) the system
provides the following information: (1) either (x, y, 0) – meaning that an adversary boat
is invisible in the current frame, or (2) (x, y, 1) meaning that an adversary boat is visible
and is located in the affine point (x, y, 1)T . In this system, (x, y, 0) means a vector to
the direction of (x, y), which represents the direction at which the adversary boat was
visible in the last frame. In this case, (0,0,0) is the 0 vector – meaning that there is no
knowledge about an adversary boat. Given the above, we can construct the following
list of directions (Table 1):
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Table 1. List of directions

NW N NE 
W ST E 

SW S SE 

NW N NE 
W INV E 

SW S SE 

For example, the direction NWmeans that the adversary boat is “currently” moving
in the Northwest direction in the CVF, ST means that the boat is loitering, and INV
means that the boat is invisible at the current CVF. Note that the smallest time unit for
‘currently’ is 1/30 of a second (the frame rate of the cameras). The largest ‘currently’
unit is arbitrary and is determined by monitoring considerations.

A “circling” activity in the context of the present paper is defined to be:

Circling: An adversary boat is moving and has appeared at two or more sides of Boat
�. It should be noted that this activity can be detected by the dynamics of the boat
location change. For example: consecutive movement through regions B1, B2, and B3
constitutes a circling event.

The situation assessment unit, referred to as CWWMAD (MAD stands for Maritime
Activity Detection), is capable of providing the crew of Boat � with several indications
of alert levels, which can be considered as flags, where “Alarm” is the “Red Flag.” The
alert levels are denoted as {invisible,watch, inspect, suspect, andAlarm}. The alert levels
are determined by the current location, history of directions, and history of activities of
the adversary boat. Additionally, the direction is utilized to visualize the adversary boat’s
trajectory and to produce synthetic training data.

4.2 CWWMAD Inference Procedure

The CWWMAD procedure for identifying whether an adversary boat is too close Boat
�, or is circling �, can be implemented using the DCNN readings denoted in Fig. 3. It
is described using the following notation:

1) No adversary- If the current and the previous n readings of the adversary boats’
locations are ‘INV’, then it is assumed that no adversary boat is in proximity to Boat
�.

2) Watch - If the current reading of an adversary boat’s location is ‘D,’ it is assumed
that the adversary boat is in the ‘D’ region and might become a threat.

3) Inspect - If the current reading of an adversary boat’s location is ‘C,’ it is assumed
that the adversary boat is in the ‘C’ region and requires an elevated level of
monitoring.



442 J. Tešić et al.

4) Suspect - If the current reading of and an adversary boat’s location is ‘B1’, ‘B2’,
‘B3’, or ‘B4’, it is assumed that the adversary boat is in one of the ‘B’ regions and
might become a reportable threat if it crosses into the ‘A’ region completes a circling
operation, as defined above.

5) Alarm - If the current reading of an adversary boat’s location is ‘A’ or if the adversary
boat has completed a circling activity (as defined above) then the crew must receive
an alarm and undertake a response.

5 Analysis

5.1 System Verification

A simplification of the problem of detecting circling and several othermaritime activities
via a CWW enables system implementation using a relatively simple rule-based system.
We have constructed a rule-based system RB-CWWMAD for the detection of “circling”
and of “getting too close to our boat”.

Due to the simplicity of the CWWproblem statement, we have been able tomanually
verify the soundness and completeness of CWWMAD. This is significant since currently
there is not enough realistic video data that can be used for automatic verification.

5.2 Usability

The following is quoted from [4]. Internal citation numbers are removed to fit the present
paper.

“Tamir et al. have developed an effort-based theory and practice of measuring
usability [-]. Under this theory, learnability, operability, and understandability are
assumed to be inversely proportional to the effort required from the user in accom-
plishing an interactive task. A simple and useful measure of effort can be the time
on the task. Said theory can be used to determine usability requirements, evaluate
the usability of systems (including comparative evaluation of “systemAvs. System
B”), verify their compliance with usability requirements and standards, pinpoint
usability issues, and improve usability of system versions. It is quite obvious, and
supported by research literature, that an interface that uses a natural language or a
formal language that are “close” to natural languages reduces the operator effort
and can improve system usability [-].

A natural language interface can accompany a CWN-based as well as a CWW-
based system. A CWW-based system, however, provides the advantage that the
system itself operates and is being controlled in a way that is closer to human
reasoning, decision making, and operation. This increases the coherence between
the system and its user interface and, thus, it simplifies the system design and
human-controlled operation of the system.”
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5.3 Additional Activities

The CWWMAD system for circling detection can be expanded to include additional
activities, such as “divergence of boats” and “acceleration towards our boat.” These
activities would be detected via simple extensions of the current CWW rule-based infer-
ence engine. Another activity of interest, which might be more challenging, is detecting
that an adversary boat is following Boat �. This system would require a more complex
inference engine.

6 Conclusion and Further Research

We have demonstrated that the integration of a CWW-based inference engine with a
DCNN is a viable tool for detecting and providing alerts concerning several maritime
activities, including boat circling. The inference can be implemented with a relatively
simple rule-based system. Additionally, we have discussed the utility of a CWW-based
human-computer interface (HCI) to enable ergonomic interactionwith theCWWsystem.
Analysis of the system’s performance and its usability shows that the approach has a
potential for the facilitation of mitigation of maritime piracy, with an ergonomic and
efficient system.

In the future, we plan to extend the activity detection capability of the system and
include other maritime activities such as “following,” “diverging,” and “accelerating
towards our boat.”We also plan to examine the utility ofmore complex inference engines
that include game-theory considerations and space search-based inferencing.

We plan to obtain and annotate additional realistic video data, which would enable
automatic testing of CWW, as well as training a deep-learning artificial neural network
(ANN) and comparing the performance of the CWW-based inference engines to the
performance ofANN-based approaches.We also plan to construct a simulation system to
generate synthetic data for training deep-learning ANNs. With the addition of computer
graphics capabilities to the simulation, stakeholders will be able to assess the utility and
usability of maritime activity inference engines.
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