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Abstract. We present our initial findings regarding the problem of the
impact that time series compression may have on similarity-queries, in
the settings in which the elements of the dataset are accompanied with
additional contexts. Broadly, the main objective of any data compression
approach is to provide a more compact (i.e., smaller size) representation
of a given original dataset. However, as has been observed in the large
body of works on compression of spatial data, applying a particular algo-
rithm “blindly” may yield outcomes that defy the intuitive expectations
— e.g., distorting certain topological relationships that exist in the “raw”
data [7]. In this study, we quantify this distortion by defining a measure
of similarity distortion based on Kendall’'s 7. We evaluate this measure,
and the correspondingly achieved compression ratio for the five most
commonly used time series compression algorithms and the three most
common time series similarity measures. We report some of our obser-
vations here, along with the discussion of the possible broader impacts
and the challenges that we plan to address in the future.

1 Introduction and Motivation

Modern advances in sensing technologies — e.g., weather stations, satellite
imagery, ground and aerial LIDAR, weather radar, and citizen-supplied obser-
vation — have enabled representing the physical world with high resolution and
fidelity. The trend of Nexzt Generation Sensor Networks and Environmental Sci-
ence [9] aims at integrating various data sources (e.g., offered by the state-of-
the-art GEOS-5 data assimilation system [26]) and make them publicly avail-
able. An example of such large scale dataset is the MERRA-2 data, provided
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by NASA [19] — covering the whole time period of the modern era of remotely
sensed data, from 1979 until today, and recording a large variety of environ-
mental parameters, e.g., temperature, humidity and precipitation; on a spatial
resolution of 0.5° latitude times 0.67° longitude produced at one-hour intervals.
This, in turn, enables access to many Terabytes of historic evolution in time of
environmental data.
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Fig. 1. Simplification and topological distortions (based on [7])

Although the focus of this work is on the peculiarities of compressing time
series and the interplay with other contexts, to better understand the motivation
we briefly turn the attention to compression in spatial data. In the mid 1990s,
concurrently with the advances in cartography and maps management [30], the
multitude of application domains depending on geographic properties (e.g., dis-
tributions) of various phenomena in agriculture, health, demographics, etc. [11],
brought about the field of Spatial databases [24]. Most of the compression tech-
niques applied in spatial datasets rely on some kind of a line simplification app-
roach, and many variants have also been extensively studied by the Computa-
tional Geometry (CG) community [3,28]. Among of the most popular line sim-
plification approaches is Douglas-Peuker! (DP) [6]. However, as demonstrated
in [20], applying the DP algorithm to reduce the polylines bounding the polygons
in a given subdivision, may often cause topological inconsistencies, as illustrated
in Fig. 1, in the following sense:

e Boundaries of regions which were not intersecting in the original represen-
tation may end up intersecting after the simplification is applied. Similarly,
the simplified polylines corresponding to different regions may intersect each
other.

e Relative position of point-locations with respect to a boundary or a polyline
may change after the simplification is applied — e.g., a city which was on
the north bank of the river may end up in its south bank after the polyline
representing the river has been simplified.

! Around the same time, there were other algorithms developed for polyline simplifica-
tion, some of which had almost-identical methodologies with the DP algorithm. Most
notably [16] which is the reason that sometimes the name Ramer-Douglas-Peuker is
used in the literature.
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One of the canonical problems in time series is the similarity search — i.e.,
given a collection/database of time series and a particular query-sequence, detect
which particular time series is most similar to the querying one, with respect to
a given distance function [5]. Since time series databases are large in size, much
research has been devoted to speeding up the search process. Among the bet-
ter known and used paradigms are the ones based on techniques that perform
dimensionality reduction on the data, which enables the use of spatial access
methods to index the data in the transformed space [14]. Many similarity mea-
surements and distance functions for time series have been introduced in the
literature [5] — however, what motivates our work is rooted at the observation
that large datasets that are time series by nature, are often tied with other con-
text attributes. Sources of such time series exist in many different domains —
such as location-aware social networks [8,31] and atmospheric and precipitation

data [21,23] (but two examples).
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Fig. 2. Precipitation time series

Our key observations are:

O;: Given the size of such datasets, one would naturally prefer to store the data
in a compressed/simplified representation.

O5: Many queries of interest over such datasets may involve values from >1
context /domain.
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For example, Fig.2(a) (cf. [17,21]) illustrates the spatial distribution of the
measurements of precipitation in discrete locations. However, in each individual
location, the collection of the measurements from different time-instants actually
form a time series — as illustrated in Fig.2(b) which shows the detailed corre-
sponding precipitation time series. In the spirit of O; and O above, consider
the following query:

Q1 : Which location in the continental US has the most similar distribution of
monthly precipitation with Ames?

The main motivation for this work is to investigate the impact of different com-
pression approaches on variability of the answer(s) to 1 above. While in the
case of Q1 the additional context is the location, we postulate that other queries
pertaining to time series with additional contexts may suffer from distortion
of their answers. Such distortions, in turn, may affect the choice of a particu-
lar compression algorithm to be used — e.g., as part of materializing the data
in dimensions-hierarchy of warehouses [27]. In this work, we report our initial
findings in this realm.

In the rest of the paper, Sect.2 defines the problem settings and Sect. 3
reviews the compression approaches and respective measures. In Sect. 4 we dis-
cuss in detail our observations to date, and in Sect. 5 we summarize and outline
directions for future work.

2 Problem Definition

In broadest terms, data compression can be perceived as a science or an art — or
a mix of both — aiming at development of efficient methodologies for a compact
representation of information [10,22]. Information needs a representation — be
it a plain text file, numeric descriptors of images/video, social networks, etc. —
and one can rely on properties of structure, semantics, or other statistically-valid
features of that representation when developing the methodologies for making
the underlying representation more compact. Speaking a tad more formally, data
compression can be defined as any methodology that can take a dataset D with
a size (3 bits as an input, and produce a dataset D’ as a representation of D and
having a size ' bits, where 3’ < § (hopefully, 5’ << ().

To measure the capability of a data compression algorithm to reduce the size
of a dataset, in this work we simply rely on the typical measure — the compression
ratio [10].

Definition 1 (Compression Ratio). Let D be a dataset represented by Op
bits. Let C be a compression function, which maps D to a compressed dataset
C(D) represented by Be(py bits. We define the compression ratio of C on D as:

Bp
Bepy

Re(D) =
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We note that the representation size 8p is not necessarily equal to the entropy
E(D) of D [18]: The entropy of D is the smallest possible number of bits required
to represent D. Thus, it must hold that E(D) < Bp. The aim of this study is
not to evaluate the information aspects of time series theoretically, but rather,
to see the impact of the loss of a particular type of information incurred by
compression algorithm on practical queries related to similarity search on time
series.

Clearly, one can easily find a compression algorithm that maximizes the com-
pression ratio of Definition 1, by a “brute force” discarding any and all informa-
tion. However, such an approach would inhibit any meaningful similarity search
among the compressed time series, as all of them would be equally-valid candi-
dates for an answer. Thus, the challenge approached in this work is to maximize
the compression ratio while maintaining similarity search results as accurate as
possible.

To measure how a compression algorithm C can maintain similarity search
results among a set D of time series tied with other context attributes, we com-
pute similarity rankings between all the time series. A similarity ranking, using
a query time series T € D, ranks all other time series in D\ T by their similarity
to T. To quantify the similarity ranking before vs. after the compression, we
employ Kendall’s rank correlation coefficient 7 [12], which measures how many
pairs of relative ranking positions are preserved and discordant between the two
rankings. Formally,

Definition 2 (Ranking Similarity). Let D be a set of time series. For a query
time series T € D, let Rank(T, D) be the similarity ranking of T to all other
time series T' € D\ T. Further, let C be a compression algorithm, let C(D)
denote the compressed representation of D, and let Rank(T,C(D)) denote the
similarity ranking of T after the compression. Then, we describe the similarity
of these two rankings as:

I(conc(T;,Ty)) — I(disc(T;, T}
T (conc(T;,Ty)) — I(disc(T3, Tj))

7(Rank(T, D), Rank(T,C(D))) = (D2 —1D))/2 ’

T, TyeD,i<j

where either (I(conc(T;,T;))) or (I(disc(T;,T;))) is an indicator function that
returns 1 if time series T; and T; are concordant or discordant in both rankings
(that is, if the relative ranking order between T; and T; is maintained or not in
both rankings) and 0 otherwise.

As an example, consider a case where we have four time series 17, ..., Ty, and
assume that the similarity ranking of Ty is (T3, T35, Ty), implying that T5 is most
similar to T4, while T} is the least similar one. Further, assume that after com-
pression, the ranking becomes (75, Ty, T5). In this case, the relative order between
T and T3 is preserved, as is the relative order between T5 and Ty. The only “dis-
cordant” order is between T3 and Ty, yielding 7((T3, T5,T4), (T2, Ty, T3)) = %

To quantify the overall information maintained between all of the time series,
we compute the average 7 score of all time series in D.
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Definition 3 (Average Ranking Similarity). Let D be a set of time series
and let C(D) denote the compressed representation of D. We define the average
ranking similarity between D and C(D) as

_ ZTeD 7(Rank(T, D), Rank(T,C(D))) '

7(D,C(D)) B

We reiterate that our goal is to evaluate how different compression algorithms C
affect the balance between compression ratio (Definition 1) and average ranking
similarity (Definition 3).

3 Compressions and Distances

For self-containment, we now briefly survey the compression techniques and dis-
tance measures used in this study.

3.1 Compression Approaches

We have used two broad categories of compression techniques, as described in
detail in the sequel.

Dimensionality Reduction. Instead of being viewed as a collection of n time-
instant phenomenouns, a time series, {t1, %2, ...,t,}, can be considered as a point
in n-dimensional space. Dimensionality reduction approaches focus on reduc-
ing the dimensionality — from n in the “native”, to m (m < n) in the lower
dimensional space — while minimizing the loss of explained variance. We use two
representative techniques:

e Discrete Fourier Transform:
The key idea of Discrete Fourier Transform (DFT) [2] is based on the observa-
tion that any n-length time series can be represented in the frequency domain
with n sine and cosine waves, that can be used to reconstruct the original time
series. The compression stems from the observation that the waves with low
amplitudes can be neglected without losing too much valuable information.

e Piecewise Aggregate Approximation:
The basic concept behind the Piecewise Aggregate Approximation (PAA) [14]
is dividing the original time series into N equally sized windows, where (N is
the desired dimensionality of transformed space. Then, each window /frame
is represented by the mean value of all the data within that particular frame.
The formula used for performing PAA on an n-dimensional time series and
transforming it into the N-dimensional space is shown in Eq. 1:

N -
Tl

>ty i=1,2..,N (1)

=2 (-1)+1

S
I
s|=
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One may observe that a small window-size can achieve a better performance
on preserving information, but yields a poor compression ratio — e.g., when
the window size is equal to n, the transformed representation is identical to
the original time series.

Native-Space Compression. Another kind of compression approaches reduces
the size of the initial time series in its “native space”:

(Adapted) Douglas-Peucker Algorithm:

Given a sequence of time series and a user-defined tolerance threshold e,
the Douglas-Peucker (DP) [6] algorithm recursively sub-divides the input
sequence based on an “anchor”. An “anchor” is a point that has a largest
distance exceeding e from the line segment connecting the initiator (first
point initially) and the terminus (last point initially). The DP algorithm is
traditionally used to compress polylines. To adapt it to time series, we use
vertical (instead of perpendicular) distance in this study. Vertical distance

between point ¢, and line segment(t;, ¢;), i < k < j, is defined as ‘t;c — tr

)

where t;ﬁ, is the intersection of line segment(t;, ¢;) and the line passing ¢; and
perpendicular to the time-axis.

Visvalingam- Whyatt Algorithm:

The key aspect of Visvalingam-Whyatt (VW) [29] algorithm is the “effective
area”, which indicates the surface area of the triangle formed by a point with
its two neighbors. For a time series of length n, a total (n-2) triangles can
be formed. The main idea behind the VW algorithm is to iteratively drop
the middle point of the triangle with the least “effective area” and keep on
updating the triangles related to that displaced point until the “effective area”
is larger than the user-given parameter €.

(Adapted) Optimal Algorithm:

The main idea of optimal algorithm (OPT) [4] is to consider two directions
(forward and backward), for each point of a time series. For instance, (t;11,
tita, -, tn) 18 forward for t;, and (t;_1, ti—a, ..., t1) is backward. The i-
th (1 <4 < n) pass of the algorithm draws circles with radius e, centered at
each the forwards and backward points of t; — denoted Circle; 1, Circle; o, ...,
Clircle, and Circle;_1, Circle;_o, ..., Circle;. Take forward chain as instance.
While touching a new point, t;, ¢+ < k < n, let Uy and Lj indicate the upper
and the lower ray emanating from ¢;, passing through the top and bottom
point of Clircler - in a sense, defining a wedge pertaining to ¢; and with
the apex at t;. For as long as the intersection of successive wedges is not
empty, nothing needs to be updated except of recording the lowest-upper
and highest-lower boundary of the intersection maintained so far. Otherwise,
denote tj, as the event point which generates an empty intersection. We keep
t; and ty_1 into the result and repeat the procedure from the event point t;_1
forwards. Similarly for the backward chain of ¢;.
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3.2 Distance Measures

Existing literature has identified many scenarios where similarity cannot be sim-
ply evaluated by any single distance function [5]. Thus, for validity, we used
three measurements in this work, as described next.

Pearson Correlation Coefficient. The Pearson product-moment correlation
coefficient [15] (denoted r) is a widely used lock-step measure for relationship.
By Cauchy-Schwartz inequality, the range of r is established to the interval [—1,
+1], where +1 denotes total positive linear correlation, 0 is no linear correlation,
and —1 indicates negative linear correlation.

Dynamic Time Warping. Dynamic Time Warping (DTW) [13] is an elastic
similarity measure between two temporal sequences. In general, it focuses on
calculating an optimal match between two given time series that may vary in
speed/frequency. Unlike lock-step methods, DTW alignment may match a point
from one sequence to one or more points of another sequence.

Cosine Similarity. Cosine similarity [25] aims at evaluating the orientation
difference between two time series, and is independent of the magnitude of the
samples. If two sequences are with a same orientation, their cosine similarity will
be 1; and if their orientation difference is 90°, then their similarity will be zero.

4 Experimental Observations

In this section, we present the experimental evaluations of the approaches dis-
cussed in Sect.3 in terms of compression rate and average ranking similarity.
Our data sets are obtained from the University Corporation for Atmospheric
Research (UCAR) and the National Center for Atmospheric Research (NCAR)
at the Global Precipitation Climatology Centre [1].

10000
0.8
8000
0.6
6000

04 4000

0.2 2000

0.0 0

WH MA HA BO GR WH BO MA GR HA : WH MA HA GR BO
(a) Pearson Correlation (b) Dynamic Time Warping (c) Cosine Similarity
Coefficient

Fig. 3. Location-based similarity scores
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Table 1. Locations used in the reported experiments

Location Abbreviation | Location Abbreviation
Wheeler, TA WH Massena, TA MA
Hartford, TA HA Boyer, TA BO

Grant, TA GR Garfield, TA GA

South Kidder, ND |SK Union County, NM ucC

Otter Creek, IA oC Courtland Township, MN | CT

Anoka County, MN | AC Grant Township, SD GT
Grantsburg, WI GB Scott, WI SC
Hazelhurst, WI HH

Recall the motivational question stated in Sect. 1: Which location in the con-
tinental US has most similar distribution of monthly precipitation with Ames? In
this spirit, we extract 50 years worth of monthly precipitation data for Ames and
other 500 land areas in the United States. Figure 3 shows the top five locations
having highest similarity with Ames measured by Pearson Correlation Coeffi-
cient, DTW and Cosine Similarity, respectively. The horizontal axis shows the
abbreviation of each locations, and the corresponding full name can be found
at Table1. The vertical axis shows the similarity score of each locations. As
discussed in Sect. 3, higher score means better performance for Pearson Corre-
lation Coeflicient and Cosine Similarity, and DTW pursues lower distance. We
can figure out that the five locations listed in Fig.3(a), (b) and (c) are same
though the ranking has some differences.

Figure 4 states the effect of two Dimensionality Reduction methods on rank-
ing. 0.7 in terms of multiples of the maximum value of each time series is defined

0.8

0.6

DFT ..

(a) Pearson Correlation (b) Dynamic Time Warping (c) Cosine Similarity
Coefficient

Fig. 4. Dimensionality reduction compression
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Fig. 5. Native-space compression

as error tolerances. We can discover the only half of the locations have no dif-
ference with Fig. 3.

Figure5 illustrates the influence of three different Native-Space compres-
sion approaches mentioned in Sect.3 on ranking of similarity. For DP and VW
approaches, the error tolerances are set to be 5. For the OPT algorithm, the
values of tolerance are set to be the half of those of DP and VM algorithms.
As can be seen from results, though the compression do influence the ranking
of top five locations, all the locations in the result are the same as the ranking
of ground truth except of Grant, IA. And performance is similar to Fig.3 and
better than Fig. 4 while checking the similarity score.

To evaluate the influence of different compression approaches on time series in
a more general way, we randomly samples 100 land areas in the United States,
and fetched 50 years of monthly precipitation data for each location in our
work. Similarly to the above experiment, for each selected area, we can get
three different rankings of similarity across the rest of 99 locations measured by
Pearson Correlation Coefficient, DTW and Cosine Similarity. As mentioned in
Sect. 2, the goal is to evaluate the influence of different compression approaches
on compression ratio and impacts on the average ranking similarity. In order
to perform such comparison, we set the single parameter error tolerance for
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different algorithms. For DFT and PAA approaches, the error tolerances are set
to be 0.7, 0.75, 0.8, 0.85, 0.9, 1 in terms of multiples of the maximum value of
each dataset. For DP and VW approaches, the error tolerances are 5, 10, 15, 20,
25, 30. Lastly, for the OPT algorithm, the values of tolerance are set to be the
half of those of DP and VM algorithms.
Figure6 illustrates one
Correlation more of our experimental
observations that we now
discuss. Note that, in a
v sense, we have transformed
T e the coordinates and the
o %oy respective values are: — the
DFT x-axis for each of the three
1/CompressionRatio ~ ® PAA graphs represents 1/Rc(D);
® DP Algorithm ..
DTW VW Algorithm the y-axis in each of the
v OPT Algorithm three graphs represents 1 —
7(D,C(D)). This transfor-
mation was made to ensure
ve that a “good” approach is
vt close to the origin of the
v chart. For instance, a point
1/CompressionRatio - at the (0, 0) origin would cor-
respond to a perfect 7 of
1, and a perfect compression
rate of co.
. Firstly, we observe that
there exists no single app-
. roach that clearly dominates
all the other approaches, in
terms of both 7-score and
compression rate. However,
we also observe that DFT
performs rather poorly in
comparison with the other measures. Thus, we conclude that even when achiev-
ing a fairly low compression rate, DFT looses most of information required to
maintain the original similarity ranking. This loss is not compensated by addi-
tional frequency features, as these low amplitude features mostly incur additional
noise.

Secondly, we observe that PAA achieves a relatively high compression rate,
but the averaging of consecutive time stamps yields a high loss of information
that drops 7 to roughly 60% for all the other applied distance functions.

In contrast, we observe that all three native-space compression algorithms
have comparable performances. We note that the OPT algorithm generally
achieves worse results, and is dominated by DP and VW — which, in part, may
be a consequence of setting a lower error-threshold. We observe minor difference

1 - RankingSimilarity

1 - RankingSimilarity

Cosine Similarity

o<

1 - RankingSimilarity

1/CompressionRatio
Fig. 6. Global similarity distortions
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between DP and VW, expect when DTW is used a distance measure: namely,
VW is able to maintain more ranking for the similarity-based semantics in the
DTW space.

We note that, for reproducibility, the source code for all the implementa-
tions used in our experiments, along with the corresponding dataset, is publicly
available?.

5 Summary and Future Directions

Satellites and other sensory devices have enabled a generation of extremely
large environmental time series datasets. Ultimately, this data has the poten-
tial to transform our understanding of the world for a plethora of applications of
societal relevance, such as meteorology, agriculture, urban development, traffic
management, etc. However, this understanding is hindered by the overwhelming
deluge of O(Petabytes) of such data. To reduce this data, the state-of-the-art
offers many time series compression algorithms.

In this study, we experimentally evaluated the trade-off between the data
reduction and the loss of semantics when an additional context — location in this
work — is associated with each time series. Rather than measuring the theoreti-
cal loss of entropy, we measured how the incurred distortion changes similarity
search results on environmental time series, using precipitation time series as a
case-study.

Our main experimental finding is that dimensionality reducing methods, such
as Discrete Fourier Transform and Piecewise Aggregate Approximation incur a
high loss of similarity between compressed time series, relative to the origi-
nal ones. In contrast, native space compression algorithms obtain similar com-
pression rates, but maintain much more of the similarity information between
time series. In particular, the Visvalingam-Whyatt algorithm and the Douglas-
Peucker algorithm yield the best trade-off. Moreover, when Dynamic Time Warp-
ing is used as a similarity metric, Visvalingam-Whyatt has a significant advan-
tage over Douglas-Peucker.

Our main objectives for the future are: (1) extend this study to include
more compression algorithms, and include different types of environmental time
series other than precipitation; and (2) investigate the impact of compression
on semantics of other context attributes — e.g., in addition to location, exploit
the (joint) impact on other social networks features; (3) evaluate the potential
impacts of running time of the algorithms, especially in the sense of updating
the datasets from newly available observations.

Acknowledgments. We thank Praxxal Patel and Yash Thesia for their help in final-
izing part of the experiments.

2 https://github.com/XuTengNU/ADBIS2018.git.
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