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Abstract 

•- This paper proposes a novel strategy for estimating 
· the size of the resulting relation after an equi-join and 
selection using a regression model. An approximating 

-:-series representing the underlying data distribution and 
. dependency is derived from the actual data . The pro­
-. posed method provides an instant and accurate size es-

- timation by performing an evaluation of the series, with 
- no rv.n-time overheads in page faults and space, and with 
: negligible CPU overhead. In contrast, the popular sam­
~ piing methods incur run-time overheads in page faults 

(for sampling), CPU time and space. These overheads of 
~· sampling methods increase the response time of process­

ing a query . The results of a comprehensive experimen­
tal study are also reported, which demonstrate that the 

- estimation accuracy by the proposed method is compara­
ble with that of the sampling methods which are believed 
to provide the most accurate estimation. The proposed 
method seems ideal for retrieval-intensive database and 
information systems. Since the overheads involved in de­
riving the approximating series are fairly m oderate , we 
believe that this method is also an extremely competent 
method _when moderate or periodical updates are present. 

1 Introduction 

Query processing and optimization has been a classical 
topic in database researches. The central task of a query 
-optimizer is to identify a query evaluation/ execution plan 
among many possible plans, that is least costly to be exe-

. cuted. A query evaluation plan will determine the execu­
tion sequence order of relational operators such as joins., 
selections, and projections. The basis on which costs of 
different query evaluation plans can be compared with 
each other is the estimation of sizes of (temporary or 
intermediate) relations after an operation and/ or opera­
tions, because the sizes of participat ing operands ( rela­
tions) of an operator play a central role in determining 
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the cost of an operation in almost all the cost models in 
the literature [11, 28] . As a result, an efficient and accu­
rate size estimation method is essential. Size estimation 
has been well studied since the ·r970's. Selectivity theory 
developed for System R [24] was among the earliest and 
most representative methods. Current estimation meth­
ods can be categorized below (17, 21]: 

Sampling methods: Methods of this type collect de­
sired information for size estimation by examining 
a --.nall fraction of the database/relation instances. 
Sampling methods have received intensive study in 
recent years, and have been shown to be rather ac­
curate in estimation [6, 7, 8, 9, 16, 17]. There exist 
many variations of sampling methods. 

Parametric methods: Methods of this type provide 
size estimation using certain analytical/ statistical 
data distribution functions (2, 3, 19, 24]. In most 
cases, certain . assumptions are placed on the distri­
bution of data (for example, the widely used uniform 
data distribution assumption as in System R (24]) . 
In addition , data under different attributes /relations 
are normally assu·med to be independent. 

Table-based methods: Methods. of this type (also 
called histogram method (3, 13, 22]) estimate sizes 
based on the detailed stored information about the 
underlying relation/database instance. Storing and 
maintaining detailed statistics about the data in a 
relation/database could be prohibitively costly in 
both space and computational overhead, particu­
larly in the presence of updates. Therefore, methods 
of this type have essentially not been used in prac­
tical database systems. 

Studies in the 70s and early 80s were focused on 
parametric methods, and they normally took the two 
assumptions that (1) data under an attribute are uni­
formly distributed , and (2) data under different at­
tributes/relations are independent (4, 18, 24 , 27, 28]. 
Many recent studies show that data are very likely to 
be skewed and data are somewhat dependent in realis­
tic situations [17, 25, 26]. Size estimations based on the 
above two traditional assumptions have been shown to 
differ from the reality (for example, the two assumptions 
often lead to a size overestimation (4]), therefore, may 
mislead a query optimizer. There are other parametric 
methods that use some predefined and more complicated 
distributions of data [2, 3, 19]. Nevertheless , realistic 
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data distribution could be rather arbitrary and complex, 
and therefore can hardly be characterized by a few prede­
fined pure mathematical models such as Poisson, Normal , 
Uniform and so on. As a result, the application scope for 
these parametric methods are rather limited. However, 
a clear advantage of parametric methods is its efficiency: 
size estimation can be done almost instantly with no disk 
I/Os, and little computational and space overheads. 

On the other hand, sampling methods have been 
shown to be very accurate in estimation, regardless of the 
underlying data distributions and dependencies . They 
have gained popularity since the mid-80s. However, they 
also have a few severe drawbacks and limitations: 

1. Sampling is still rather costly. Clearly, that sampling 
requires run-time disk I/O's, since tuples/relations 
are to be accessed. In addition , in order to obtain 
fair overall characteristic properties of the popula­
tion, random sampling (ehat is, every tuple is equally 
likely to be sampled ) shall be deployed . This implies 
that the number of pages to be fetched for sampling 
is normally bigger than the sampling percentage of 
the total number of pages of the relat ion . Further­
more, the run time overhead of a sampling method 
is incurred every time a size estimation is needed . 

2. Achieving good estimation accuracy and high effi­
ciency is inherently conflicting: for lowering sam­
pling cost, a smaller sampling percentage is sought, 
thus a less accurate estimation is made ; for achiev­
ing a good estimation accuracy, the representative­
ness of the whole population by the samples must 
be ensured, which in turn requires a larger sampli f!~ 

percentage , impiy~a la~f'f num~ge rauli-5. 

3. Size estimation for different operations by sampling 
methods is not uniformly handled. For example , for 
estimating a join, two independent samplings are 
used; while only one-pass sampling is used for es­
timating a selection. 

In this paper, we propose a novel approach to estimate 
the resulting relation size after a join and a selection by 
using a regression model. The prOJl'*d method derives 
the actual distribution of values. The actual distribution 
is described (more precisely, approximated) by a series 
function. The series function is derived by scanning en­
tire relations and computing the optimal coefficients of 
the series function using regression such that the series 
best approximates the actual data distribution. These 
off-line tasks are conducted during periods of low activity. 
The proposed approach can be classified as an (adaptive) 
parametric method, but it differs from the traditional 
parametric methods in that the data distribution is de­
rived from the actual database/ relation instance, rather 
than depending. Qn some pr~ and untested data 
distributions and dependencies. The proposed method 
has the following advantages: 

Efficiency: The proposed method is extremely efficient 
that a size estimation is reduced to an evaluation of 
the approximating/distribution series by supplying 
the parameters/variables with the actual values used 
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in a query qualification (say the range of a selection) . 
The estimation is made instantly, without run-tirne 
disk I/Os and space overhead, and only at negligible 
computational cost (more precisely, only dozens of 
multiplications and additions of real numbers). 

Accuracy: Unlike the traditional parametric methods 
our method pr'ovides accurate estimations, since th~ 
approximating series derived from the actual data 
captures the actual data distributions and depen­
dencies . Our comprehensive experimental study in 
Section 5 shows that the estimation accuracy of our 
method is comparable to that of sampling. 

Adaptivity: No assumption on the distribution and de­
pendency of the underlying data is needed for the 
proposed method, which takes these .two factors into 
consideration. 

Uniformity: Both equi-joins and (simple and/or com­
plex) selections are uniformly handed. 

It should be pointed out that the proposed method 
does incur a moderate off-line cost to derive the distri­
bution series / function of the actual data. Precisely, the 
off-line overhead involves a sequential scan of the entire 
relation and the computation for identifying the opti­
mal coefficients of a series using regression and the least 
square criterion . This off-line overhead is incurred only 
once when the underlying data have been substantially 
changed/ updated . It is important to distinguish the run­
time overhead and off-line overhead: (1) the run-time 
overhead of sampling increases the response time of a 
query, while the estimation. by the proposed method can 
be made instantly. (2) the run-time overhead of a sam­
pling method is incurred at least once for a query, while 
our method incurs the off-line overhead only when the un­
derlying data have been substantially changed/updated, 
and these off-line tasks can be conducted during periods 
of low activity. Our experimental study shows that the 
cost of deriving the data distribution function from the 
actual data is moderate (for a 50,000-tuple relation, it 
takes about 5 minutes to derive the approximating dis­
tribution function on VAX 8800/VMS using SAS with a 
moderate system load of about 40 concurrent users). 

The remainder of the paper is organized as follows: 
Section 2 proposes the basic regression model for esti­
mating simple selections. Sections 3 fj 4 extend the basic 
model to complex selections involving multiple attributes 
and equi-joins, respectively. In Section 5, a comprehen· 
sive experimental study is reported, where comparisons 
between our method and sampling are also provided. Fi­
nally, Section 6 concludes this paper. 

2 Basic Model for Simple Selections 

In this section, the basic regression model is described 
to estimate simple selections. A selection is simple if it 
only involves one attribute. 

Definition 1 Let R.X be attribute X of relation R. f(x) 
is a (data distribution) function for data u.nder X if 
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ain value, ~ay d, of X for a databa~e in~tance, 
-~·-n·•"" the number of tuple~ having d under R.X 

iD.lJlGlrlL" of relation R. • 

let IRI represent the n~m­
and di~t(X) represents the 

rrtllst;in•:t values under R.X. In this study, we as­
(1) dist(X ) only contains numerical values; 

(the "gap") between two adjacent do­
:!';.. ... ,. ... are approximately equal. In other words, let 

consist of ( :~:1, z~, ... , z ldi•t(XJI) and all values of 
ascending order. All .t.z, = Zi+1 - :z:,, 1 ~ 
1 - 1 will be approximately equal. These as­

have also been adopted by other researchers 
shown to be true in many large databases (14, 23] . 

defined distribution function is a discrete map­
It is reasonable that the discrete function can 

•110,0r•oXJ:m•a.~ed by a continuous function for size es-
in a database system [2, 14, 23]. For exam­

distribution (system R (24]) for data un­
can be described by the continuous function 

IRI/idut(X)I, z E di~t(X) 
ID.C:""'"'"''" data distribution can be very complex and 

OJ.ii1~~"Tv which is hardly categorized by some predefined 
10a.uu~•Y models. Our idea is to use a series, a poly­

in this case, to approximate the distribution. Let 
z E di~t(X) , be the distribution function of the 

data. The realistic f( :z:) is normally not known. 
'Jr'..,. ... ._,.,,.T, from the relation instance itself, the pairs of a 
~':!•.u .. ,, .. value and the number of tuples having the do­

value under R.X in the relation precisely character­
the data distribution function. With all the pairs de­

from the relation instance, we want to identify a se­
wiU best approximate the data distribution. Let 

= E~~-n.o <lt:l: ' be the approximating series , where 
~i~n, are coefficient~ , and ( n = n 1 + n1 ) is called 

of g( :z: ). Our experimental study based on a big 
ef data shows that g( x) is accurately approach­

when n ~ 10 (n1 is between 0 and 6, and n 1 .is 
1 to 4). The accuracy is in the sense that the 

regression model as well as its coefficients is .1tati.1tically 
lignificant[12], namely, g( :z:) well fits the discrete set of 
(.[{z1), f(z~), · · ·, f(xm)) over the domain of R.X. 
• L.et (:z:1, x~, · · ·, xm), m = Jdist(X) l represent elements 
lll dut(X) in ascending order. From the relation instance 
R, pairs of (:z:,, f(:z:,)), zt E di,t (X), can be easily estab­
liShed, where f( xi) is the number of occurrences of tu­
ples in R having Xi under X. Given n 1 and n2, the de­
~~e of the series, we want to identify all the coefficients 
( 4 -n, .. a-1, ao, a 1 , .. . , an,) such that the resulting series 

. approximates the above set of data as closely as possible. 
~he lea.st .square criterion is used to identify the optimal 
'coefficl'e t c- (~ ~ ~ ~ ~ )' 
I n s :z: = c .. · c 1 c0 c1 · · · c among <ill -n:JJ I - I J I I n 1 

• possible choices of coefficients c; 's such that 
1 

- "' n 1 m n 1 

?=U(z,)- I: s:z:1)~ < I:U(:z:;)- L Cjx{? 
? 1 i=-n 1 i=l j=-n> 

The optimal coefficients can be obtained as follows: 
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where 

C" 
-1 1 ;z:2 •"') ;z:1 ;z:1 2:} 1 1 -n, -1 1 x2 zn' 

X= x.2 .. x2 X2 2 . ~ . 1 
:~:;;,."' -1 1 x2 Xn' Xm Xm m m 

C_nl 

c(·,)) 2_1 

N = f~~~) I C:= 2o (1) 

f(xm) 21 

m = Jdist(X)I, and X' denotes the transpose of X. 
Let ( ) - "n' ~ . i d - ~ -9 X - .i..Jj= -n,C;X ,an Cn, r O,c-n, ::f 0 be 

the optimal approximating series, whose coefficients are 
obtained by the least square criterion. Given g( x) ana 
a sin:ple. selection on R.X, xr, ~ R.X ~ x1, x 1, ~ :z: 1, 1, 

the hkehhood that a tuple in R is going to satisfy the 
selection predicate can be computed as follows: 

(2) 

where Xmin and Xma:z: are. the minimal and maximal val­
ues in dist(X ), respectively. The rationale of Equation 2 
is as follows: since all 6x; = x;+ 1 - x; ~ :z:m .. -:z: m;n 

1 ~ i ~ m - 1, ·are approximately equal, and wtkno~ 
that f( xi) ~ g( :z:; ), 1 ~ i ~ m, for g( x) is the approxi­
mating function off( x ), we have 

2:::_1, g( xi).t.x, 

E::l g(x, ).t.x, 

Therefore, the num.~er of tuples bet~een x1, ~ R.X· 
xr, can be approximated as 

The above approximation formula is said to have the 
first-degree e:z:actnes.1 (20] . Consequently, the estimated 
size of R after the selection is: IRI x P:z:, <R.A<:c, . That 

1- - ~ 

is, the estimation is reduced to an evaluation of the defi-
nite integral. Since g(:z:) is a series, the indefinite integral 
of g( x), denoted as integralg( x ), can also be precom­
puted as follows: 

1 In the case that xt 1 /x!, is not specified, Xm.in/Xm.<>z is used , 
where x,.,..;,../x ...... ,.,. i• the minimal/maximal value in di•t(X). 



In Equation 2, we can see that the denominator, de­
noted by DENOMINATOR, is a constant with respect 
to a given domain, and thus can be precomputed as 

DENOMINATOR= integralg(xrna:z:)-integralg(xrnin) 

The numerator in Eq. 2 is a definite integral, whose lower 
and upper limits are the selection range (i.e., x,, and 
x 1,). An evaluation of the definite integral of the nu­
merator can be easily done when the selection range (x1, 

and x,,) is given, which only involves O(n) multiplica­
tions/divisions and additions/subtractions in addition to 
a logarithm computation. 

_ integralg(x,,)- integralg(x1,) 

P:::,,SR.AS:::,,- DENOMINATOR (4 ) 

For each of the attributes that will possibly be in­
volved in a selection, such an approximating series de­
scribing the data distribution shall be obtained . The 
identification of the optimal coefficients of the series is an 
off-line task, and can be precomputed at the time when 
ehe system is least loaded . Its cost is incurred only ~ 
unless the data under the attribute have been substan­
tially changed/updated. A comprehensive experimental 
study is reported in Section 5.1, demonstrating that the 
proposed method is very accurate even under different 
skewed data distributions , where comparisons with sam­
pling methods can a lso be found. 

3 Estimating Complex Selections 

A complez .selection involves multiple attributes. We 
start with a conjunctive selection involvi~g two at­
*butes: (:z:,, :S R.X :S x,,) 1\ (y~:, :S R.Y :S y~;,) . We 
then discuss how to handle a disjunctive selection. 

Definition 2 Let dist(X, Y) be the .set of the all diJtinct 
pair.s qf valu.e.s u.nder R.X and R.Y for the inJtance of 
the re1ation R . f(x,y) iJ a (data distribution) func­
tion for data u.nder R .X and R. Y if given a domain 
valu.e, .say (d1, d2) E dist(X, Y), of R.X and R.Y for a 
relation in.stance, f(d 1 , d2) denoteJ the nu.mber of tu.ples 
having d1 u.nder R.X and having d2 u.nder R. Y in the 
inJtance of relation R. • 

In a similar manner 1 Xmin, :Z:ma:e, Yrnin and Ymeu: are 
used for :z:,,, :z:1,, Yle 1 and Yl:,, respectively, when they are 
not specified. Let g(:z:, y) =I:~:. I:"~·- c;;:z:iyi be 

. . . ,_ n., 1- nl'2 

an approx1matmg senes. We want to identify the optimal 
set of <is, -n:::, :S i :S n::: 11 -n11 , :S j :S n,. 11 such that 
for any other choice of <;s , the following inequality holds 
using the least square criterion: 

..... "v, 

L (C;;:z:;yf- f(:z:t , YL))2 

"v' L (c;i:z:;yf- f(:z:t, Yt))2 (5) 
l=l i=-n.2 j=-nl'2 
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Let n::: = n:, + n:::, and ny = ny, + n11 ,. The optimal 
coefficient vector c%11 based on the least square criterion 

can be obtained by C::: 11 = (X'X)- 1 X'N, where X is an 

( m x ( n::: x ny)) matrix, N is an ( m x 1) matrix, C:::y is an 
((n::: x n.,) x 1) coefficient matrix, and m = jdist(X, Y)l, 
as shown below. 

( ·~·-, .~·., :z:l YI 
..... ... ) :z:l Y1 

X= -n.2 -ny2 n., nv, (6) :z:, Y; :z:; Yi :z: . Y; \ 

-n.2 -ny2 n., ny, 
:Z:m Ym :Z:m Ym :Z:m Yrn 

C-n.2 ,-nl'2 

ClQ cz,.y,) l co1 f(xl, Y:l) 

C:::v = 
c;.,.o 

N= 
f(:z:;, Yi) 

(7) 

C(n-1)1 f(:z:m, Ym) 
., 

The probability that a tuple in R satisfies the selection 
(also see Eq. 2) becomes: 

Where :Z:min, Ymin and :Z:maz, Yma:z: are the minimal do­
main values and the maximal domain values in dist(X) 
and dist(Y), respectively. The estimated size of the 
t:c:.l.ation after the above complex selection becomes 
IRI X P(::: 1 ,S:z:S::: 1 ,"~~~o, SliSll•,)· In Eq. 8, the denomina­
tor, denoted by DENOMINATOR, is a constant when 
dist(X, Y) is given. In a similar manner, the indefinite 
integral of g(:z:, y) can be precomputed as follows: 

n.t n,l 

integralg ( :z:, y) = j j . L . L "C;j:z:
1yi dxdy = 

~o:-n..l J =-nl'2 

c;; :z;{i+l)y(j +1) 

(i+l)(j+l) 

n.y, yi +1 
+c.:l,:.1log(x)log(y) + log(z) I: Ci;";~ 

(j=-n
112

,j;t-l) ] ~ 
n., ;z;i+l 

+ log(y) " c"i-:1-. ~ ' i+l (; =-n~, ,j ;t-1) 

Consequently, the size estimation for a conjunctive 
plex selection is reduced to an evaluation of the d 
integral, whose cost is clearly negligible. 

In order to estimate a disjunctive complex 
"x,, :S R.X :S x,, V Yle, :S R.Y :S Yle,", the 



ting Equijoins 

itiJ:aitiLOD 3 Let R.X = S.Y be an equt-Jom between 
R and S ( alJo denoted aJ R 1><1 S ). The fu.nc­
y) iJ called the join distribution function if 

value :z: E dist(X) of R.X and a do­
y E dist(Y) of S.Y, f f(:z:, y) = f(x) x f(y), 

ff(:z:, y) denoteJ the number of tupleJ having :z: 
R.X timeJ the nu.mber of tupleJ having y 

under S.Y. • 

'""' llloclve definition is in fact applicable to a more gen-
oin with a modification. Similar to the func­
y) defined for a complex selection in Section 3, 

Y) = ~~-, ~n~i__ C::z:'yi be an approx-
Wu:::-n., l.J;- ny2 J - . . . .-

~ ~~I.Ilg function of f f(x, y). The least square crite­
can be applied to identify the optimal coefficients 

2 ~ i ~ n.,,, -ny, ~ j ~ ny, among all possible 
o~ <;J such that the following inequality holds: 

n.,, 
L (Cijx)y{- f f(xr, Y~c)) 2 ~ 

1=1 k=li=-n., i=-nv, 

,__ I:~ I: I: (c;ix;Yi- ff(xr,Y~c)) 2 {11) 
1=1 k.=li=-n.2 i=-nv, 

1 + n.,, = n., and n 11 , + n11 , = n 11 • The optimal 

f!~~~~ients are Cx'J:iny = (X'Xt 1X'N, where X is an 

~)X (n., x n 11 )) matrix, N is an ((m:c X my) X 1) 
1'-'.::. Jrut'bii. Cxj-:iny is an ( ( n:c x ny) x 1) coefficient matrix, 

ldiJt(X)I, and my = ldist(Y)I (all matrices are not 
and they can be similarly derived). 

note that there are four-level L:' s in Equation 11, 
;r u.lll"!a • .d of three-level L:' s as in Equation 5, because :z:r 
~d Yl< will independently go over their own domains. 

-~e •• to the inherent difficulty in handling data correla-
uon · • • • prevtous studies normally assumed that data under 
~tn attributes in the two relations are independent (17]. h argue that data under joinable attributes are some­
lV :t correlated, because the joinable re/ationJhip of data 
~ er the join attributes, and the domains of the two join 
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attributes are compatible exactly indicate that they are 
correlated in some way. The proposed method takes both 
data distribution and dependencies into consideration. 

The above g(:z:, y) is a rather general data distribution 
function, which can handle size estimation for 8-joins 
(we will not discuss this here due to space limit). In 
order to estimate an equi-join, we need to refine g(x , y): 

n., 
g•quijoin(:z:) = g(x, :z:) = L 

The above refined function g(x, :z:) indicates that only 
tuples under the equi-join attribute with the same value 
will generate tuples in the resulting relation. Let d1 = 
ma:z:( :Z:min t Ymin ), d2 = min( :Z:ma:z: I Yma:c ), dt ~ d2 ( oth­
erwise, it is not difficult to observe that the size of the 
resulting relation is zero). Then the probability that a 
pair of tuples (tR, ts), where tR E R.X and ts E S.Y 
will be in the resulting relation is 

We have observed in our experiments that in order 
to sufficiently approximate the real j oin distribution, the 
degree for the g series is rather large, which in turn, in­
curs much bigger rounding error and higher, although off­
line, computational complexity for the regression. Also 
note that a join distribution may be different from the 
previous distribution functio ns, because the magnitude 
of data distribution under the join distribution function 
varies~~JIIt'~tte cfitference between tbe ~mallest 
to larges t can easily be of the order of 10, 00"0 or higher). 
Due to this high non-liner feature, the previous regression 
method may not be directly applicable in the sense that a 
much bigger rounding error may be produced. Therefore, 
we elect to take logaritnm of join function f f( x , y), and 
use the series gr09 (x, y) to agproximate the transformed 
join distribution using the least square criterion. Conse­
quently, the approximating join distribution becomes: 

n.,, na 1 

g(x,y) = exp(gr09 (x,y)) = exp( L L E;jx'yi) 
i=-nv<J i=-n., ... ;!:f •. ·f: t 

;,- . 

Correspondingly, the equi-join distribution becomes: 

na, 

9•quijoin(:z:) = exp(gro9 (:z:, :z:)') = exp( ~ 

The indefinite integral of a series for both denominator 
and nominator of g(x , y) and g•quijoin(x) may not be 
able to be precomputed as we did in previous sections. 
Therefore, the Quadrature Formu.laJ (5, 20] is used to 
evaluate the approximation to the integral of g(:z:, y) and 
g•quijoin(:z:). The Quadrature FormulaJ of approximately 
evaluating the integral ofF( :z:) becomes 



where h, uthe mean gap", is the increment that divides 
the integration interval (d11 d2). The Quadrature Formu­
las can easily be expanded for a double integral. Thus, 
the probability that a pair of tuples (tR, ts ), one from 
each relation, will be in the resulting relation is, 

(12) 

where 

g(x,y) 

z._. .. . -A 1 

+ L (g(x,Ymin)+g(x,ymax)) / 2+ 

y'"" •• -hJ 

L (g(Xmin 1 Y) + g(Xma::, Y))/2 + (g(Xmin 1 Ymin) + 
Y=Y-•~+h, 

g(Xmin 1 Ymax) + g( Xmax 1 Ymin) + g( Xmax, Ymax ))/4) ( 13 ) 

h1 and h2 are the increments that divide x-axis interval 
and y-axis interval , respectively. Consequently, the esti­
mated size of R l><l S is P(R.A=S.A) x lSI x IRI. Clearly, 
a little computation is needed to evaluate the definite 
integral by using the Quadrature Formulas. Again, we 
have observed in our experiments that this computational 
overhead is negligible. The experimental results for esti­
mating an equi-join are presented in Section 5.3. 

5 A Comprehensive Experimental Study 

Experimental results are reported in this section. SAS 
statistical package on VAX 8800 running VMS is used to 
perform the regression. RANLIB developed at Univer­
sity of Texas at Austin on Sun 4/Sparc running Unix 
is used to generate data of two dimensional (correlated) 
distribution. We have chosen three different file sizes of 
10,000, 20,000 and 50,000 tuples for each distribution of 
data used in our experiment. For each file size, we use 
five representative distribution functions: uniform, nor­
mal, exponential, x, and F distributions[15]. The last two 
distributions are rather skewed with properly selected pa­
rameters to demonstrate the adaptability and applicabil­
ity of our methodology (due to space limit, only figures 
for normal, x, and F distributions are shown in Figure 1-
3). 

In order to obtain unbiased results, random (simple 
and complex) selections are generated. A simple selection 
c1 ~ X ~ c:;~ is random, if c1 and c2 are two random 
numbers between the domain range and satisfying c1 ~ 
c2. In the case that c1 = c2, c1 is modified to be c1 =c2 -
~:z:, where ~:z: is the mean width between two adjacent 
distinct domain values under the attribute X[2, 23]. In 
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a similar manner, random complex selections are used in 
the experiment. Every performance figure is obtained 
through running 60 random (simple/complex) selections. 

For a comparison study, we have implemented the sim­
ple random sampling. The same set of testing files and 
random queries are used for both our method and the 
sampling method. The sampling percentage of 10% is 
used, because typically, a 10% or smaller sampling per­
centage has been adopted by sampling methods. Only 
comparisons with sampling methods are provided, since 
the performance of sampling methods is believed to be 
better than that of other (parametric) methods. For es­
timating joins by sampling methods, we elect to use the 
sample-and-scan method in [17), for that this method is 
representative, less costly than the simplest form pro­
posed by [8, 9), and not quite sensitive tq the data cor­
relation between R.X and S.Y. The sample-and-scan 
method will denote one relation as the source relation 
and the other one as the target relation. Then a tuple t 
of the source relation is randomly chosen (the sample), 
and all tuples of the target relation that join with t are 
identified (the scan ). In order to increase the efficiency, 
the target relation is sorted on the join attribute. 

Relative (estimation) errors and CPU times consumed 
are the measurements used in this study. We have ob­
served the O.Oms CPU time for our method (probabally 
the amount of time spent by our method is negligible 
such that it is not audited by the operating system). 
Therefore, there is no CPU time column in the tables 
for our method; whik the sampling method does in­
cur CPU times as repor ted. We have not reported the 
elapsed time of the sampling method, because elapsed 
time heavily depends on the system load. We believe 
that the CPU time consumed by the sampling method 
comes mostly from processing page faults, and in gen­
eral we have observed in our experiments that 1-second 
CPU time corresponds to 10-100 seconds elapsed time. 
The experimental study shows that, for estimating sizes 
for simple selections, conjunctive and disjunctive complex 
selections, and equi-joins, the average of relative error of 
our method is comparable to that of the sampling method 
over different data distributions/dependencies and differ­
ent relation sizes. 

The following briefly describes our experimental pro­
cedures. We first generate the file(s} with the given size 
arid distribution of values under the attribute(s). Then, 
the regression package of SAS is applied to obtain the 
initial approximating distribution function with a degree 
of 10, (say, for simple selections, nl = 6 and n2 = 4, see· 
Eq. 4.) Since not all functions so obtained are statisti­
cally significant in approximating the actual data distri­
bution, significance tests are applied to the approximat­
ing function as well as its coefficients/terms[12). In the 
case that the model is not statistically significant, a larger 
degree of the polynomial is used. In the case that some 
terms in the series is not statistically significant , these 
terms will be dropped (the coefficients of these terms 
will be set zero). Repeat the above significant tests until 
all the coefficients as well as the model are statistically 
significant. The statistically significance level of 0.0001 
is used in this study (i.e., the rejection probability of the 
model/coefficient is less than 0.0001[12]). Our experi-
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ments indicate that it seems to be sufficiently accurate 
when the degree of the series is 10 for all the data used 
in this study. 

5.1 Results For Simple Selections 

Tables 1 (a & b) provide the results of ~ur method 
and sampling method. Note that each entry m the table 
is the average of 60 random selections. See Figv.reJ 1-3 
for the data distributions. The experiments sho.w that 
the overall relative error of our method over d1fferent 
sizes/distributions is 7.64%, which is · better. than that 
(10.31%) of the Jampling method. The samphng method 
also needs 1. 73s CPU time on average for the 50,000-
.tuple file, which implies a~ elapse time between l Os a~d 
1 minute or lon~er dependmg on the system load, wh1le 
our method will always provide the results instantly (with 
no CPU time reported). 

5.2 Results For Complex Selections 

We only focus on complex queries involving two at­
tributes: c1 < z < c~ 1\ d1 ::; y ::; d, or c1 ::; x ::; 
c2 v d1 ::; y- ~ d-:; RANLIB is used to generate data 
of two dimensional distribution (correlated data). There 
are two factors that greatly affect the estimation accu­
racy: (1) the correlation among data under the two ~t­
tributes, and (2) the distribution of data under e~ch .sm­
gle attribute. We consider four types of data dis.tnbu­
tionsfcorrelations: Normal vs. Normal, Exponential vs . 
Uniform, Uniform vs. Normal, and Uniform vs. Uniform. 
We have only shown the first two distributions and the 
approximating surfaces (see Figure (4- 5)). For Normal 
vs. Normal, we further consider four different correla­
tion coefficients (p = 0, 0.5, -0.5, 1). Although sampling 
methoci'is ~·lightly better than ours in estimating complex 
selections {14.56% vs 15.42% for conj unctive selecti_ons), 
the estimation accuracy of both methods are practically 
acceptable. However, the sampling method does incur 
CPU time and disk 1/0s. We have observed about 10-
60 seconds or longer elapse time in most cases for the 
sampling method on the 50,000-tuple file. 

5.3 Results For Equi-joins 

The same set of two-dimensional distribution used in 
Section 5.2 are used here (see Figures 6-8 ). The sample­
and-Jean method (17] is used for the sampling method 
(please see a description of the method at the beginning 
of this section). 

The above experiments demonstrate that our method 
is much more efficient than the .sampling method. The 
CPU time for the .sampling method takes l.84s seconds, 
which implies an elapse time of at least 20s in most cases 
to estimate equi-join size of two 50,000-tuple relations. 
The above. experiments demonstrate that our method is 
much more efficient than the .sampling method. The CPU 
time for the .sampling method takes 1.84s seconds which 
implies an elapse time of at least 20s in most cases to 
estimate equi-join size of two 50,000-tuple relations. Al­
though the sampling method provides a better accuracy 
than ours (1.81% vs. 3.69%), both methods are very good 
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and are certainly acceptable in terms of the estimation 
accuracy in practical situations. 

6 Discussions and Conclusions 

This paper proposes a novel strategy for estimating 
the size of the resulting relation after an equi-join and 
selection using the regression model. A series/function 
representing the underlying data distribution and depen­
dency is derived from the actual underlying data. There­
fore, the series precisely characterizes the data distribu­
tion and dependency. Using the derived approximatin~ 
series, the size estimation is reduced to an function eval­
uation by substituting the parameters with values in an 
actual query. The proposed method provides the estima­
tion instantly, with no run-time overheads in I/Os and 
space, and with little computational o\'erbead. We have 
observed, in our experimental study, an elapse time oi 
10-100 seconds or longer for the simple random sampling 
method on a 50,000-tuple relation on a Sun 4/280. This 
elapse time is believed to be caused by the page faults 
for sampling, which clearly adds to the response time of 
processmg a query. 

Our experiments also demonstrate that the proposed 
meth9d provides accurate size estimations under differ­
ent data distribut ions (including highly skewed data) and 
correlations. · ·The estimation accuracy by the pr~.sed 
method is comparable with that of the sampling method 
that is believed to provide t he most accurate estimation. 

The proposed method seems ideal for retrieval­
intensive database and information applications. Since 
the overheads involved in deriving the apj)roximating se­
ries are fairly moderate, we believe that this method is 
an extremely competent method for database applica­
tions with moderate or periodical updates. We note that 
many database applications such as the credit card and 
insurance databases update periodically. In this case, the 
proposed method is clearly applicable. Fw mo.r.e general 
applications, a watchdog on the updates/ changes on the 
underlying data shall be provided. When there have been 
substantial updates/changes on the underlying data, tne 
watchdog will activate the package to derive the approxi­
mating series that represents the current data. How well 
this scheme performs in the presence of frequent updates 
deserves further and independent investigation. Further­
more, it is also interesting to study how to remove the 
assumption of approximately equal "gap" between adja­
cent domain values. 
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Table 1( a): Our model for simple selection 
(CUP time 0.0 ms) 

::s: 10k 20k 50k Average 

Re . Err Re. Err Re. Err Re. Err 0 

Uniform 4 .45% 7 .74% 5 .47% 5 .88% 

Expo. 7 .71°/o 9.72% 8 .42% 8 .62% 

Nonna.l 7.25% 4 .63% 6 .53% 6 .13% 

Fl. 5 .61 °/o 9 .77% 6 .66% 7 .34% 

· F2 17. 72"/o 8 .98% 12.98% 13.19% 

Xl 5 .31% 8 .98% 5 .29% 6 .52% 

X2 6 .43% 5 .35% 5.71% 5.82% 

Average 7 .78°/o 7.88% 7.28% 7.64°/o 
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Table l(b ): Simple sampling (10% sampling) 
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Table 2( a) :Our model for conjunctive selections 
(CUP time =O .Oms) 

~-.. 
lohtr~ 

10k 20k SOk 

ItA . £rr . Re . i re . R• . Err . 

Uni. v• . Oni 1l . Ol\ ll .01 \ ll.l U ll . 10 ' 

Uni. v• . Nor. 2l . 7n 17 . 0 U l S . lU 

US . S7t \ 1 .75 \ 17.28\ 

Nor . v•. Nor . 
0 · ' 

ll.J I\ " ·" ' l'J . 55 \ 20 . 18\ 

Nor . v•. Nor . - 0 . s l l. H \ u .an 16 56\ 
1 4 · " ' 

Nor . v•. Nor. 10 .6 )\ 1 . ~ 2\ t .~n 8 .17\ 

U .2 6\ 14. 97 \ tl.9!n l S . U \ 

a . an H . 97 \ 1!1 folt 

Table 2(b):Simple sampling (10% sampling ) 
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Table 3( a):Our model fo r disjunctive selections 
(CPU time = O.Oms ) 
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Table 4( a) Our model for eqi-joins 
(CPU time= O.Os) 
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Figure 1: Normal Distribution (mean 200 , std . 150) vs . 
Approximating Curve (solid line ) 
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Fig~re 2:x Distributio n wit h 10 degree of fre edom vs. 
Ap proximating Curve (solid line) 
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Figu re 3: F Dis t ribution with 10/4 Degrees of Freedom for 
Numerator/ Denominator vs . Approx. Curve (solid line) 



Figure 4(a): Exponential vs Uniform 

Figure 4(b ): the approximating surface 

Figure 5(a): Normal vs. Normal 

Figure 5(b ) : the approximating surface 

Figure 6(a): Join Distribution ofExponential (mean 15) vs. 
Uniform 
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Figure 6(b ): the approximating surface 

Figure 7(a) : Join Distribution of Two Dimensional Normal 
Distribution (means 50 , std. 20 , and corre. 0) 
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Figure 7(b ): the approximating surface 

Figure 8(a): Join Distribution of Two Dimensional Normal 
Distribution (means 50, std. 20 , and corre. 1) 
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Figure 8(b ): the approximating surface 


