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_’nc_qligible CPU overhead. In conirast, the popular sam-
_ pling methods incur run-time overheads in page faults

(for sampling), CPU time and space. These overheads of
. sampling methods increase the response time of process-

Abstract

 This paper proposes a novel sirategy for estimaiing
the size of the resulting relation after an equi-join and
_selection using o regression model. An approzimating

~ " series representing the underlying data distribution and
. dependency is derived from the actual data.
. posed method provides an instant and accurate size es-
" timation by performing an evaluaiion of the series, with

The pro-

no run-time overheads in page faulis and space, and with

ing a query. The results of a comprehensive ezperimen-

_tal study are also reported, which demonsirate that the

estimation accuracy by the proposed method is compara-
ble with that of the sampling methods which are believed
to provide the most accurate estimation. The proposed
method seems ideal for reirieval-intensive database and
information systems. Since the overheads involved in de-
riving the approzimating series are fairly moderate, we
believe that this method is also an eziremely competent
method when moderate or periodical updates are present.

1 Introduction

Query processing and optimization has been a classical
topic in database researches. The central task of a query
optimizer is to identify a query evaluation/ezecution plan
among many possible plans, that is least costly to be exe-

- cuted. A query evaluation plan will determine the execu-

tion sequence order of relational operators such as joins,
selections, and projections. The basis on which costs of
different query evaluation plans can be compared with
each other is the estimation of sizes of (temporary or
intermediate) relations after an operation and/or opera-
tions, because the sizes of participating operands (rela-
tions) of an operator play a central role in determining
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the cost of an operation in almost all the cost models in
the literature [11, 28]. As a result, an efficient and accu-
rate size estimation method is essential. Size estimation
has been well studied since the 1970%s. Selectivity theory
developed for System R [24] was among the earliest and
most representative methods. Current estimation meth-
ods can be categorized below [17, 21]:

Sampling methods: Methods of this type collect de-
sired information for size estimation by examining
a small fraction of the database/relation instances.
Sampling methods have received intensive study in
recent years, and have been shown to be rather ac-
curate in estimation [6, 7, 8, 9, 16, 17]. There exist
many variations of sampling methods.

Parametric methods: Methods of this type provide
size estimation using certain analytical/statistical
data distribution functions [2, 3, 19, 24]. In most
cases, certain-assumptions are placed on the distri-
bution of data (for example, the widely used uniform
data distribution assumption as in System R [24]).
In addition, data under different attributes/relations
are normally assumed to be independent.

Table-based methods: Methods of this type (also
called histogram method (3, 13, 22]) estimate sizes
based on the detailed stored information about the
underlying relation/database instance. Storing and
maintaining detailed statistics about the data in a
relation/database could be prohibitively costly in
both space and computational overhead, particu-
larly in the presence of updates. Therefore, methods
of this type have essentially not been used in prac-
tical database systems.

Studies in the 70s and early 80s were focused on
parametric methods, and they normally took the two
assumptions that (1) data under an attribute are uni-
formly distributed, and (2) data under different at-
tributes/relations are independent [4, 18, 24, 27, 28].
Many recent studies show that data are very likely to
be skewed and data are somewhat dependent in realis-
tic situations [17, 25, 26]. Size estimations based on the
above two traditional assumptions have been shown to
differ from the reality (for example, the two assumptions
often lead to a size overestimation [4]), therefore, may
mislead a query optimizer. There are other parametric
methods that use some predefined and more complicated
distributions of data [2, 3, 19]. Nevertheless, realistic



data distribution could be rather arbitrary and complex,
and therefore can hardly be characterized by a few prede-
fined pure mathematical models such as Poisson, Normal,
Uniform and so on. As a result, the application scope for
these parametric methods are rather limited. However,
a clear advantage of parametric methods is its efficiency:
size estimation can be done almost instantly with no disk
I/Os, and little computational and space overheads.

On the other hand, sampling methods have been
shown to be very accurate in estimation, regardless of the
underlying data distributions and dependencies. They
have gained popularity since the mid-80s. However, they
also have a few severe drawbacks and limitations:

1. Samplingis still rather costly. Clearly, that sampling
requires run-time disk I/O’s, since tuples/relations
are to be accessed. In addition, in order to obtain
fair overall characteristic properties of the popula-
tion, random sampling (that is, every tuple is equally
likely to be sampled) shall be deployed. This implies
that the number of pages to be fetched for sampling
is normally bigger than the sampling percentage of
the total number of pages of the relation. Further-
more, the run time overhead of a sampling method
1s incurred every time a size estimation is needed.

2. Achieving good estimation accuracy and high effi-
ciency is inherently conflicting: for lowering sam-
pling cost, a smaller sampling percentage is sought,
thus a less accurate estimation is made; for achiev-
ing a good estimation accuracy, the representative-
ness of the whole population by the samples must
be ensured, which in turn requires a larger sampling

percentage, implying a larger numberofPage faults.

3. Size estimation for different operations by sampling
methods is not uniformly handled. For example, for
estimating a join, two independent samplings are
used; while only one-pass sampling is used for es-
timating a selection.

In this paper, we propose a novel approach to estimate
the resulting relation size after a join and a selection by
using a regression model. The proposed method derives
the actual distribution of values. The actual distribution
is described (more precisely, approximated) by a series
function. The series function is derived by scanning en-
tire relations and computing the optimal coefficients of
the series function using regression such that the series
best approximates the actual data distribution. These
off-line tasks are conducted during periods of low activity.
The proposed approach can be classified as an (adaptive)
parametric method, but it differs from the traditional
parametric methods in that the data distribution is de-
rived from the actual database/relation instance, rather
than depending on some predefmed¢ and untested data
distributions and dependencies. The proposed method
has the following advantages:

Efficiency: The proposed method is extremely efficient
that a size estimation is reduced to an evaluation of
the approximating/distribution series by supplying
the parameters/variables with the actual values used
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in a query qualification (say the range of a selection),
The estimation is made instantly, without run-time :
disk I/Os and space overhead, and only at negligible

computational cost (more precisely, only dozens of i

multiplications and additions of real numbers).

Accuracy: Unlike the traditional parametric methods, ?
our method provides accurate estimations, since the

approximating series derived from the actual data 4

captures the actual data distributions and depen.

dencies. Our comprehensive experimental study in |

Section 5 shows that the estimation accuracy of our
method is comparable to that of sampling.

Adaptivity: No assumption on the distribution and de- k-
pendency of the underlying data is needed for the
proposed method, which takes these two factors into [ -

consideration.

Uniformity: Both equi-joins and (simple and/or com-

plex) selections are uniformly handed.

It should be pointed out that the proposed method 4

does incur a moderate off-line cost to derive the distri-
bution series/function of the actual data. Precisely, the
off-line overhead involves a sequential scan of the entire
relation and the computation for identifying the opti-
mal coefficients of a series using regression and the least
square criterion. This off-line overhead is incurred only
once when the underlying data have been substantially

changed/updated. It is important to distinguish the run-

time overhead and off-line overhead: (1) the run-time
overhead of sampling increases the response time of a
query, while the estimation. by the proposed method can
be made instantly. (2) the run-time overhead of a sam-
pling method is incurred at least once for a query, while
our method incurs the off-line overhead only when the un-

derlying data have been substantially changed/updated, §

and these off-line tasks can be conducted during periods
of low activity. Our experimental study shows that the
cost of deriving the data distribution function from the

#5215

actual data is moderate (for a 50,000-tuple relation, it 4 "
takes about 5 minutes to derive the approximating dis- &
tribution function on VAX 8800/VMS using SAS with a ‘&

moderate system load of about 40 concurrent users).

The remainder of the paper is organized as follows:
Section 2 proposes the basic regression model for esti- §

mating simple selections. Sections 3 & 4 extend the basic

model to complez selections involving multiple attributes &

and equi-joins, respectively. In Section 5, a comprehen-

sive experimental study is reported, where comparisons

between our method and sampling are also provided. Fi-
nally, Section 6 concludes this paper.

s

2 Basic Model for Simple Selections

5 R g

In this section, the basic regression model is described
to estimate simple selections. A selection is simple if it *
only involves one attribute.

Definition 1 Let R.X be attribute X of relation R. f(z)

is a (data distribution) function for date under X #f
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lection] 3 : ﬁamaiﬂ value, say d, of X fora Qatabase instance,
UN-tipy N'denotes the n‘umb.er of tuples having d under R.X
egligih) %> sastance of relation R.m

Ozens i

Is).

By = llowing discussion, let |R| represent the num-
S 3 tfi‘:ples in relation R, and dist(X) represents the
1ethog e Jistinct values under R.X. In this study, we as-

ince t} sy ¢ (1) dist(X) only contains numerical values;
1a] da ‘ ;;‘ differences (the “gap”) between two adjacent do-

depeg
tudy j
y of oy

ues are approximately equal. In other words, let
X) consist of (z1, 2, ..., Zjaisr(x)|) and all values of
te in ascending order. All Az; = z;4; —z;,1 <
Idist(X)| — 1 will be approximately equal. These as-
B btions have also been adopted by other researchers
Mare shown to be true in many large databases [14, 23].
e above defined distribution function is a discrete map-
' It is reasonable that the discrete function can
: pproximated by a continuous function for size es-
S tion in a database system [2, 14, 23]. For exam-
a2 uniform distribution (system R [24]) for data un-
'R X can be described by the continuous function
|R|/|dist(X )|, z € dist(X)
istic data distribution can be very complex and
pitrary, which is hardly categorized by some predefined
gobability models. Our idea is to use a series, a poly-
omial in this case, to approximate the distribution. Let
£l ),z € disi(X), be the distribution function of the
actual data. The realistic f(z) is normally not known.
However, from the relation instance itself, the pairs of a
‘domain value and the number of tuples having the do-
Mmain value under R.X in the relation precisely character-
fges the data distribution function. With all the pairs de-
ved from the relation instance, we want to identify a se-
tries that will best approximate the data distribution. Let
'J\ = ?z‘_ma.,-z‘ be the approximating series, where

and da
for the
0TS intg

8 @; _n.<i<n, are coefficients, and (n = n; + ny) is called
egree of g(z). Our experimental study based on a big
B variety of data shows that g(z) is accurately approach-
ing f(z) when n < 10 (n, is between 0 and 6, and nj is
tbetween 1 to 4). The accuracy is in the sense that the
gression model as well as its coefficients is statistically
ignificant[12], namely, g(z) well fits the discrete set of
(f(z1), f(z2), -, f(zm)) over the domain of R.X.
i Let (24,25, -,2,,), m = |dist(X)| represent elements
10 dist(X) in ascending order. From the relation instance
pairs of (z;, f(z:)), z: € dist(X), can be easily estab-
hed, where f(z:) is the number of occurrences of tu-
les in R having z; under X. Given n; and ng, the de-
ee of the series, we want to identify all the coefficients
\3-n;,..a_1, a9, a1, ..., an,) such that the resulting series
‘3Pproximates the above set of data as closely as possible.
*’-Ehe least square criterion is used to identify the optimal
Coefficients C, = (€_p,, -+, 6-1,0,1,"*,Cn,) among
all possible choices of coefficients ci's such that
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’ The optimal coefficients can be obtained as follows:
.. f(=) § : -
r X 1f 1 C. = (xlx)—].X/N
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where

zT "2 r,l_l 1 z, =z ... P
x=|z" z;' 1 zp 2z} ... P
ToA iwr gt B oy 2L zh

I

f(=z1 -
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f(zm) o
s

m = |dist(X)|, and X’ denotes the transpose of X.

Let g(z) = E;;__M ¢z’ and ¢, # 0,6_,, # 0 be
the optimal approximating series, whose coefficients are
obtained by the least square criterion. Given g(z) and
a simple selection on R.X, z;, < R.X < zy,, 21, < 23,7,
the likelihood that a tuple in R is going to satisfy the
selection predicate can be computed as follows:

[ 9(z)d=

p(tll <R.A<Lzy,) = ftm.’ g(z)dz

(2)

Tmin

where z,,;, and z,,.- are the minimal and maximal val-
ues in dist(X), respectively. The rationale of Equation 2
is as follows: since all Az; = z;4; — z; & Emsa—Zamia,
1 <1< m—1, are approximately equal, and we know
that f(z;) = g(z:),1 < ¢ < m, for g(z) is the apprexi-
mating function of f(z), we have

3

C XTie(E)An T [T g(a)dz

min

ity Fl2) _
Z:n:x f(:z:,')

Therefore, the number of tuples betyeen z;, < R.X-g
z;, can be approximated as

T, o(@)as o a(z)ds

13 [F2g(z)dz m

(D (=)

f:,::. g(z)dz ¥=1

The above approximation formula is said to have the
first-degree ezactness [20]. Consequently, the estimated
size of R after the selection is: |R| x Pz, <R.A<z,- That
is, the estimation is reduced to an evaluation of the defi-
nite integral. Since g(z) is a series, the indefinite integral
of g(z), denoted as integralg(z), can also be precom-
puted as follows:

n,

integralg(z) :/g(:z:)d:z::/ Z ?:"J-:z:j dz

j=-n3

NP AR =2 gzl+)
= : -1lnz + e 3
Laenteet L Gy @

'In the case that zy, /Z1, is not specified, Tmmin/Tmaz is used,
where T,nin/Tmaz is the minimal/maximal value in dist(X).




In Equation 2, we can see that the denominator, de-
noted by DENOMIN ATOR, is a constant with respect
to a given domain, and thus can be precomputed as

DENOMINATOR = integralg(zmaz )—integralg(Tmin)
The numerator in Eg. 21is a definite integral, whose lower
and upper limits are the selection range (i.e., z;, and
z;,). An evaluation of the definite integral of the nu-
merator can be easily done when the selection range (z;,
and z;,) is given, which only involves O(n) multiplica-
tions/divisions and additions/subtractions in addition to
a logarithm computation.

_ integralg(zi,) — integralg(z, )
Poyy SRS, = DENOMIN ATOR )

For each of the attributes that will possibly be in-
volved in a selection, such an approximating series de-
scribing the data distribution shall be obtained. The
identification of the optimal coefficients of the series is an
off-line task, and can be precomputed at the time when
the system is least loaded. Its cost is incurred only qmes
unless the data under the attribute have been substan-
tially changed/updated. A comprehensive experimental
study is reported in Section 5.1, demonstrating that the
proposed method is very accurate even under different
skewed data distributions, where comparisons with sam-
pling methods can also be found.

3 Estimating Complex Selections

A complez selection involves multiple attributes. We
start with a conjunctive selection involving two at-
wbutes: (2, < RX < z1;) A (yx, < RY < yi,). We
then discuss how to handle a disjunctive selection.

Definition 2 Let dist(X,Y) be the set of the all distinct
pairs of values under R.X and R.Y for the instance of
the relation R. f(z,y) is a (data distribution) func-
tion for data under R.X and R.Y if given o domain
value, say (dy,d;) € dist(X,Y), of R.X and R.Y fora
relation instance, f(dy,d;) denotes the number of tuples
having di under R.X and having d; under R.Y in the
instance of relation R. B

In a similar manner, Z;in, Tmaz, Ymin 20d Ymez are
used for z;,, zi,, Yk, and y;,, respectively, when they are

é e n oo

not specified. Let g(z,y) = Z‘_‘_n_: Ejlx_ ny, Gij z'y be
an approxlmatmg series. We want to identify the optimal
set of ch —ngz, <1< ngy,—ny, < j < ny,, such that

for any other choice of c;; s, the following inequality holds
using the least square crxtenon

m Na, Ty

Yoo Y (EEi - A

I=1 i=—ng, j=—ny,

Zi, y‘))2
m Mo,y Ny,

52 Z E (cisziyi — fzi,3))? (5)

I=1 i=—ng, j=—ny,
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Let n; = n;, +n;, and n, = n,, +n,,. The optimal

coefficient vector 6’,1, based on the least square criterion
can be obtained by C,, = (X'X)"1X'N
(mx (nz xn,)) matrix, N is an (m x 1) matrix, Cz, is an
((nz x ny) x 1) coefficient matrix, and m = |dist(X,Y)|,
as shown below.

, where X is an

zl_n"y;n“ S TR VRN W v
X=|ai™y™ o o oy -t - | (6)
z;"". e I z;n T w R il

E‘"-:n‘"n
€10 f(z1, %)
co1 f(z2,2)
S Cr.0 3 f(zi‘, %) @)
A E‘:(n—l)l f(zm,yvn)
- .
Cneyiny,

The probability that a tuple in R satisfies the selection
(also see Eg. 2) becomes:

f:l, Yy ( ,y)d:cdy

] Vi,
P(zi,<z<zi, A Ya, Sy<yn,) = fz:....‘, fy..... %, y)d:ndy )

Zmain

Where Zmin, Ymin and Tz, Ymerz are the minimal do-
main values and the maximal domain values in dist(X) |
and dist(Y'), respectively. The estimated size of the }
relation after the above complex selection becomes !
|R| x P(zi, <z<zi,Aya, <y<ya,)- 1B Eg. 8, the denomina- |
tor, denoted by DENOMINATOR, is a constant when ?
dist(X,Y) is given. In a similar manner, the indefinite
integral of g(z,y) can be precomputed as follows:

i 1
Skt

Ney Lo
integralg(z, y) // Z Z &'y dzdy =
I==Ma, JE =Ny,
N "E i c".?z(‘+1)y(i+1)
e . : (i+1)(G+1)
(f=-mp,,iF—1) (j=—ny,j#-1)
Ty yj+1 i
+elitilog(a)log(y) +log(z) D €Thiiys

(j=—n¥,|j¢—1)

n.l

+log(y) Y. ani—

(j=-noy,i#-1)

i+1 f
i+1

Consequently, the size estimation for a conjunctive co{ﬁ‘~
plex selection is reduced to an evaluation of the definite:
integral, whose cost is clearly negligible.

In order to estimate a disjunctive complex selectxoﬂ
“z;, S RX <z, Vyr, < RY < w,”, the follome



rovided to compute the probability that a
- g.s the above disjunctive selection:

L2<z1, Ve, <y<yms) T

mas L f‘n..- yy“: = f:': yv:: )9(2, y)dzdy(lo)
Ymin Tmin oy s i
f::: :::- 9(z, y)dzdy

--:,nale is that the “common” area in the last
e integral has been counted twice, in each of the
f¥wo  integrals. The estimated size of the rel.a-
ter the above disjunctive complex selection is:
s o e <1 Vim, SY<HR,)" The results of our experi-
well as comparison with sampling methods are
in Section 5.2.

tion 3 Let R.X = S.Y be an equi-join between
ns R and S (also denoted as R>aS). The func-
f(z,y) is called the join distribution function if
‘s domain value z € dist(X) of R.X and a do-
alue y € dist(Y) of S.Y, ff(z,v) = f(z) x f(y),
Iy, ff(z,y) denotes the number of tuples having z
hue under R.X times the number of tuples having y
galues under S.Y. W

above definition is in fact applicable to a more gen-
“§—join with a modification. Similar to the func-
'g(z, y) defined for a complex selection in Section J,
9(z,y) = Yot Yii0,, Gz'y be an approx-
imating function of ff(z,y). The least square crite-
ion can be applied to identify the optimal coefficients
8 Gjy Nz, < i< ngy, —ny, <j < ny among all possible
e of c;;s such that the following inequality holds:

my My Ny Ny, .
XY Y Y (G- fmw) <
=1 k:ll’:—n.: j=_nv:

my My Tay Ny,

ZZ Z Z (csjzivh — fF(z,me))? (1)

- =1 k‘:liz—n,2 j=-ny,
1 + 7z, = n; and ny, + ny, = ny. The optimal
: ents are CXJT;ny = (X'X)"'X'N, where X is an
Xmy) X (ng x ny)) matrix, N is an ((mz x my) x 1)

il L el
= SNTIX, Coniny is an ((nz x ny) x 1) coefficient matrix,

dist(X)|, and m, = |dist(Y)| (all matrices are not
SoWD, and they can be similarly derived).
‘Q’e note that there are four-level 3.’ s in Equation 11,
f@d of three-level 3’ s as in Equation 5, because z;
2ad 'y, wi]) independently go over their own domains.
: :a.f:,t° th'e inherent difficulty in handling data correla-
ot Previous studies normally assumed that data under
o0 attributes in the two relations are independent [17].
€ argue that data under joinable attributes are some-
\ undt corre.lated, because the joinable relationship of data
- “hder the join attributes, and the domains of the two join

-tion
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attributes are compatible exactly indicate that they are
correlated in some way. The proposed method takes both
data distribution and dependencies into consideration.
The above g(z, y) is a rather general data distribution
function, which can handle size estimation for #—joins
(we will not discuss this here due to space limit). In
order to estimate an equi-join, we need to refine g(z,y):

Ny Ny
Fepuiioinl®) = glz; 8) = Z Z Gzt
i=—Nay J=ny,

The above refined function g(z, z) indicates that only
tuples under the equi-join attribute with the same value
will generate tuples in the resulting relation. Let d; =
Mz(-’”min;?/min); dy = min(zmam ymaz:)y dy < dy (Oth'
erwise, it is not difficult to observe that the size of the
resulting relation is zero). Then the probability that a
pair of tuples (tg,ts), where tg € R.X and tg € S.Y
will be in the resulting relation is

dy
_ dy gequijoin(z)dz
P(R.A=5.4) fz,,“. g(:z:, y)d::dy

Tomin

Yman

Ymin

We have observed in our experiments that in order
to sufficiently approximate the real join distribution, the
degree for the g series is rather large, which in turn, in-
curs much bigger rounding error and higher, although off-
line, computational complexity for the regression. Also
note that a join distribution may be different from the
previous distribution functions, because the magnitude
of data distribution under the join distribution function
varies Substeniniily {the difference between the smallest
to largest can easily be of the order of 10,000 or higher).
Due to this high non-liner feature, the previous regression
method may not be directly applicable in the sense that a
much bigger rounding error may be produced. Therefore,
we elect to take logarithm of join function ff(z,y), and
use the series gjo4(z,y) to approximate the transformed
join distribution using the least square criterion. Conse-
quently, the approximating join distribution becomes:

nvl n,l
9(2,9) = exp(giog(z,¥)) =exp( Y. D Gz'Y)
J==ny i=—ng, P

b L

Correspondingly, the equi-join distribution becomes: -

Ray "y
Gequijein(z) = exp(giog (5, 2N) =exp( 3 3 &a¥)
i=—na, j=—ny,

The indefinite integral of a series for both denominator
and nominator of g(z,y) and g.quijoin(z) may not be
able to be precomputed as we did in previous sections.
Therefore, the Quadrature Formulas [5, 20] is used to
evaluate the approximation to the integral of g(z,y) and
Gequijoin(z). The Quadrature Formulas of approximately
evaluating the integral of F(z) becomes

/:2 F(z)dz

~
~

h[F(d1)/2+ F(dy + h) + -+ F(d3)/2]




where h, “the mean gap”, is the increment that divides
the integration interval [d;, dz]. The Quadrature Formu-
las can easily be expanded for a double integral. Thus,
the probability that a pair of tuples (tr,ts), one from
each relation, will be in the resulting relation is,

ds
_ fd, gzquijm'n(::)dz N
P(R.A=S.A) — fzm.- Vmes g(z, y)dz:dy

Tmin YVmin

hy - [Z:’:}}:;h, geqm'jm'ﬂ(z) T (gzquijm'n(dl) =+ gzquijoin(d2))/2]

DENOMINATOR
(12)

where

Tmaez—h, Ymaz—hgy

22

T=Zminthy V=Vmintry

DENOMINATOR = hyhy| 9(z,v)

Tman—hy

>

T=Tminth,

(9(2, Ymin) + 9(Z, Ymaz))/2 +

Ymesn _hZ

2

Y=¥Ymin+ha
g(zminy ymaz) + g(zmaz ) ymin) + g(zmuz ) yma:))/4]

(g(zmim y) + 9(Zmaz, y))/2 + (9(Zmin, ymin) +

(13)

hy and h; are the increments that divide x-axis interval
and y-axis interval, respectively. Consequently, the esti-
mated size of R > S is pir.a=5.4) X |S| x |R|. Clearly,
a little computation is needed to evaluate the definite
integral by using the Quadrature Formulas. Again, we
have observed in our experiments that this computational
overhead is negligible. The experimental results for esti-
mating an equi-join are presented in Section 5.3.

5 A Comprehensive Experimental Study

Experimental results are reported in this section. SAS
statistical package on VAX 8800 running VMS is used to
perform the regression. RANLIB developed at Univer-
sity of Texas at Austin on Sun 4/Sparc running Unix
is used to generate data of two dimensional (correlated)
distribution. We have chosen three different file sizes of
10,000, 20,000 and 50,000 tuples for each distribution of
data used in our experiment. For each file size, we use
five representative distribution functions: uniform, nor-
mal, exponential, x, and F distributions[15]. The last two
distributions are rather skewed with properly selected pa-
rameters to demonstrate the adaptability and applicabil-
ity of our methodology (due to space limit, only figures
for normal, x, and F distributions are shown in Figure 1-
3).
) In order to obtain unbiased results, random (simple
and complez) selections are generated. A simple selection
c; € X < c3 is random, if ¢; and ¢, are two random
numbers between the domain range and satisfying ¢; <
cz. In the case that c; = ¢3, ¢; is modified to be ¢; =cz —
Az, where Az is the mean width between two adjacent
distinct domain values under the attribute X[2, 23]. In
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a similar manner, random complez selections are used in
the experiment. Every performance figure is obtained
through running 60 random (simple/complex) selections.

For a comparison study, we have implemented the sim-
ple random sampling. The same set of testing files and
random queries are used for both our method and the
sampling method. The sampling percentage of 10% is
used, because typically, a 10% or smaller sampling per-
centage has been adopted by sampling methods. Only
comparisons with sampling methods are provided, since
the performance of sampling methods is believed to be
better than that of other (parametric) methods. For es-
timating joins by sampling methods, we elect to use the
sample-and-scan method in [17], for that this method is
representative, less costly than the simplest form pro-
posed by [8, 9], and not quite sensitive to the data cor-
relation between R.X and S.Y. The sample-and-scan
method will denote one relation as the source relation
and the other one as the target relation. Then a tuple t
of the source relation is randomly chosen (the sample),
and all tuples of the target relation that join with ¢ are
identified (the scan). In order to increase the efficiency,
the target relation is sorted on the join attribute.

Relative (estimation) errorsand CPU times consumed
are the measurements used in this study. We have ob-
served the 0.0ms CPU time for our method (probabally
the amount of time spent by our method is negligible
such that it is not audited by the operating system).
Therefore, there is no CPU time column in the tables
for our method; while the sampling method does in-
cur CPU times as reported. We have not reported the
elapsed time of the sampling method, because elapsed
time heavily depends on the system load. We believe
that the CPU time consumed by the sampling method
comes mostly from processing page faults, and in gen-
eral we have observed in our experiments that 1-second
CPU time corresponds to 10-100 seconds elapsed time.
The experimental study shows that, for estimating sizes
for simple selections, conjunctive and disjunctive complex
selections, and equi-joins, the average of relative error of
our method is comparable to that of the sampling method
over different data distributions/dependencies and differ-
ent relation sizes.

The following briefly describes our experimental pro-
cedures. We first generate the file(s) with the given size
and distribution of values under the attribute(s). Then,
the regression package of SAS is applied to obtain the
initial approximating distribution function with a degree

-

of 10, (say, for simple selections, n; = 6 and n, = 4, see’

Eq. 4.) Since not all functions so obtained are statisti-

cally significant in approximating the actual data distri-
bution, significance tests are applied to the approximat-

ing function as well as its coefficients/terms[12]. In the #

case that the model is not statistically significant, a larger :
degree of the polynomial is used. In the case that some ;

terms in the series is not statistically significant, these
terms will be dropped (the coefficients of these terms
will be set zero). Repeat the above significant tests until
all the coefficients as well as the model are statistically
significant. The statistically significance level of 0.0001
is used in this study (i.e., the rejection probability of the
model/coefficient is less than 0.0001[12]). Our experi-
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ments indicate that it seems to be sufficiently accurate
when the degree of the series is 10 for all the data used
in this study.

5.1 Results For Simple Selections

Tables 1 (a & b) provide the results of our method
and sampling method. Note that each entry in the table
is the average of 60 random selections. See Figures -3
for the data distributions. The experiments show that
the overall relative error of our method over different
sizes/distributions is 7.64%, which is better than that
(10.31%) of the sampling method. The sampling method
also needs 1.73s CPU time on average for the 50,000-
tuple file, which implies an elapse time between 10s and
| minute or longer depending on the system load, while
our method will always provide the results instantly (with
no CPU time reported).

5.2 Results For Complex Selections

We only focus on complex queries involving two at-
tributes: ¢; < z < ca A di <y<dyorc <z <
¢z V di <y < d;. RANLIB is used to generate data
of two dimensional distribution (correlated data). There
are two factors that greatly affect the estimation accu-
racy: (1) the correlation among data under the two at-
tributes, and (2) the distribution of data under each sin-
gle attribute. We consider four types of data distribu-
tions/correlations: Normal vs. Normal, Exponential vs.
Uniform, Uniform vs. Normal, and Uniform vs. Uniform.
We have only shown the first two distributions and the
approximating surfaces (see Figure (4-5)). For Normal
vs. Normal, we further consider four different correla-
tion coefficients (p=10,0.5,-0.5,1). Although sampling
method is slightly better than ours in estimating complex
selections (14.56% vs 15.42% for conjunctive selections),
the estimation accuracy of both methods are practically
acceptable. However, the sampling method does incur
CPU time and disk 1/Os. We have observed about 10-
60 seconds or longer elapse time in most cases for the
sampling method on the 50,000-tuple file.

5.3 Results For Equi-joins

The same set of two-dimensional distribution used in
Section 5.2 are used here (see Figures 6-8). The sample-
and-scan method (17] is used for the sampling method
(please see a description of the method at the beginning
of this section).

The above experiments demonstrate that our method
is much more efficient than the sampling method. The
CPU time for the sampling method takes 1.84s seconds,
which implies an elapse time of at least 20s in most cases
to estimate equi-join size of two 50,000-tuple relations.
The above. experiments demonstrate that our method is
much more efficient than the sampling method. The CPU
_time for the sampling method takes 1.84s seconds which
Implies an elapse time of at least 20s in most cases to
estimate equi-join size of two 50,000-tuple relations. Al-
though the sampling method provides a better accuracy
than ours (1.81% vs. 3.69%), both methods are very good

and are certainly acceptable in terms of the estimation
accuracy in practical situations.

6 Discussions and Conclusions

This paper proposes a novel strategy for estimating
the size of the resulting relation after an equi-join and
selection using the regression model. A series/function
representing the underlying data distribution and depen-
dency is derived from the actual underlying data. There-
fore, the series precisely characterizes the data distribu-
tion and dependency. Using the derived approximating
series, the size estimation is reduced to an function eval-
uation by substituting the parameters with values in an
actual query. The proposed method provides the estima-
tion instantly, with no run-time overheads in I/Os and
space, and with little computational overhead. We have
observed, in our experimental study, an elapse time of
10-100 seconds or longer for the simple random sampling
method on a 50,000-tuple relation on a Sun 4/280. This
elapse time is believed to be caused by the page faults
for sampling, which clearly adds to the response time of
processing a query.

Our experiments also demonstrate that the proposed
method provides accurate size estimations under differ-
ent data distributions (including highly skewed data) and
correlations. “The estimation accuracy by the prapesed
method is comparable with that of the sampling method
that is believed to provide the most accurate estimation.

The proposed method seems ideal for retrieval-
intensive database and information applications. Since
the overheads involved in deriving the approximating se-
ries are fairly moderate, we believe that this method is
an extremely competent method for database applica-
tions with moderate or periodical updates. We note that
many database applications such as the credit card and
insurance databases update periodically. In this case, the
proposed method is clearly applicable. For moze general
applications, a watchdog on the updates/changes on the
underlying data shall be provided. When there have been
substantial updates/changes on the underlying data, the
watchdog will activate the package to derive the approxi-
mating series that represents the current data. How well
this scheme performs in the presence of frequent updates
deserves further and independent investigation. Further-
more, it is also interesting to study how to remove the
assumption of approximately equal “gap” between adja-
cent domain values.
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Table 1(a): Our model for simple selection
(CUP time 0.0 ms)

Size 10k 20k 50k Average
Distx. Re. Err Re. Err Re. Err Re. Err
uniform 4.45% 7.74% 5.47% 5.88%

EXpo . 7.71% 9.72% 8.42% 8.62%
Normal 7.25% 4.63% 6.53% 6.13%
F1 561% 9.77% 6.66% 7.34%
-F2 17.72% 8.98% 12.98% 13.19%
X1 531% 8.98% 5.29% 6.52%
X2 6.43% 5.35% 5.71% 5.82%
Average 7.78% 7.88% 7.28% 7.64%
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Table 1(b): Simple sampling (10% sampling) Table 4(a) Our model for egi-joins
Size 10k 20k 50k Re .Err (CPU timc = 0.08)
Dists- Re.BrT cpo Re.Err cpO Re.Err | CPO Average Size 10k 20k 50k Average
ﬁm 13.268 0.248 15.85% 0.57s 7.25% 1.81s 12.12% Distr. Correaltion | pe grr. Re. Err. | Re. Err. | Re. Ecr
[ xpon. .6y | o33 .60 ] o.7% e | Lsm 316 Ol Vi Oal o 5 531 T .. 788 5.08%
Normal 10.30% 9.348 9. 348 0.678 5.72¢ 2.458 8.62¢ Uni. vs. Nor. 9 5.00% 8.58% 4.46% §.01%
n .81 | 0328 3.34% | 0.628 j’;-’“ 1.598 18. 038 Nor. vs. Nor. 0 3.640 2.818 1.408 2.611
n 179 0.33s 12,640 0.648 16.35¢ 1. 448 12.79% Woxr. wvs. Wo¥. 0.5 3.82% 1.658 2.18% 2.551
X1 . &5 1.26% 9:518 ki Slis so Nor. vs. Nor. -0.5 4.200 1.68% 2.09% 2.861
2 san | .9 e, | i0.6%s R L Nor. vs. Nor. 1 3.020 o | zan 2.361
Average | am 0.328 12.2 Y o.66s a6 | 173 10,310 . vai Ust] p P— . o i
Table 2(a):Our model for conjunctive selections el b e bl Wi s
(CUP time =0.0ms) Table 4(b):Simple sampling (10% sampling)
Size 10k 20k S0k Average Lt 108 20K ok te.frr
pistr. Correaltion | pe. Err. | Re. zrr.| Re. Err. | Re. Err. Batzr. Oorsaltion | pygry | o Stz N fuliy oW | s
Uni. vs. Uni 0 13.03% 13.07% 13.218 13.108 Ont. ve. Oal 0 e | s 2o | ose | 2| naw | 2m
Uni. vs. Nor. 0 23.74% 17.01% 15.21% 18.65% Oat. ve. Bor. ] 7.200 .35 s .18 S.650 | taws | sm
" w o 16.57% 16.52% 18.75% 17.288 Mor. vs. Wor. 0 o1 | g.ue 0.1 0.7 s | 1 | o
Nor. vs. Nor. 9.5 21.38% 19.661 19.55% 20.18% dor. ve. Bor.| 0§ 0.2 | 0. a.50¢ ons | yom | 19 | 1m
Nor. vs. Nor. -0.5 13.240 14.88% 16.56% 14.89% ¥or. ve. Nor. -0.3 e 2.3 0.6 0.708 01600 | 1.9%s 0.
Nor. ve. Nor. 1 10.63% 8.92% 4.36% 8.17% ¥or. ve. Nor. 1 0.4t 0,488 0.19 0158 0.v | 1. 0300
Bxp. ve. Uni 0 19.26% 14.97% 12.991 15.68% Rxp. ve. Oal 2 1.4 0.408 . 0.918 0.200 Lo | ten
Average 16.84% 14.97% “14.461% 15.42% Avarage 1 0.4ls 1.0 0.7 ra 1.4 tm
Table 2(b):Simple sampling (10% sampling) -
- TROrMal dietrbutiont 8
size 100 0 S0x Re.BXr o e 3 SEESEEEEs——
Distr. Corraaition | 3o ovy 5.7 te b cw refrr | ow Avetage 5 Y
Oui. vs. Ual 0 un 0.3 nmn 0.548 14,040 1.4l 19,000 L
oni. ve. Bor.| O RN 19000 | 0.3 | 16R |, g | 2090 5
wor. ve. ¥or. ° n.on .90 170 0478 a1 | 1 1240 -
wor. ve. ¥or 0.y . 0.3% 15950 9.4a T | ps 13 =
wor. ve. ¥or. 0.3 .55 9,398 oan 062 $.370 T4k 1240 5
Wor. vs. ¥or. 1 il o.00 | 9.3% T | e 5.8 ‘,
p. ve. Oui 9 wan 0.3 wom 0 40s sn 1.%% 17aa
Avarage wase | oose | m | sae || na | o Figure 1: Normal Distribution (mean 200, std. 150) vs.

n ) ] Approximating Curve (solid line)
Table 3(a):Our model for disjunctive selections

(CPU time =0.0ms) b s, ® seeia bz
Size 4 10k 20k S0k Average Gl 1
Distr. Correaltion | pe. grr Re. Err.| re. Err Re. Err =y
Uni. vs. Uni 0 ).860 1,780 1 3780 *oif
Uni. ve. Nor. 0 9.60% 1.618 4.870 7,360 e
Nor. vs. Nor. 0 4.78% S 5.09% 4760 o]
Nor. ve. Nor. 0.5 4.4 6.273 S.85% 5.52
Nor. ve. Nor. -0.5 4,160 3. 99 4.69% 4.28% ’
Nor. vs. Nor. 1 7. 688 3 omn 2,840 6 538 - e e e = L iail i
EXp. vs. Uni] 0 5.72% <3 397 .67 Figure 2:x Distribution with 10 degree of freedom vs.
Average 5.7 s 830 can s 2 Approximating Curve (solid line)
Table 3(b):Sirile sasapling (10% sampling) v TS e
Size | o 208 sox refer jn i _; T
Matz, corrmaitian (o e | cpu be.mxr w refrr  CW Avetaqe ‘: :?;c
Oul. v, Oad 0 1.64¢ 0.3t 2,060 0.81s 0.3030 | {449 1.8
Dal. vs. Bor. 0 2.0 0.20s 1.an 0.62 o.M | 1 AN
Bor, V‘r. Bor .| ° 1.5 0.2% 1.%1 0.4l .M 1.4ls 1
%o, vs. gor. 0.8 160 0.328 LM 0,638 RTINS L
%or. ve. mor.| .4 2.028 0.32s 1. 0568 0.3010 | 1.6 L
or. vs. Nor, ' 2040 | 0. L osse | o | tsm | s
B, ve. Ot " 2.9 9 1 L 0618 Lo | tus | 10 ’ h - - - o
F Do woe | o T o] e | Figure 3: F Distribution with 10/4 Degrees of Freedom for

Numerator/Denominator vs. Approx. Curve (solid line)
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Figure 7(a): Join Distribution of Two Dimensional Normal
Distribution (means 50, std. 20, and corre. 0)

Figure 7(b): the approximating surface

Figure 8(2): Join Distribution of Two Dimensional Normal
Distribution (means 50, std. 20, and corre. 1)
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Figure 8(b): the approximating surface

Figure 6(2): Join Distribution of Exponential (mean 15) vs.
Uniform




