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ABSTRACf 
Databases created using the Semantic Binary 
Model represent real world data more naturally 
than those created using the table representation 
of the relational model. This results in databases 
requiring less storage space as well as smaller 
programming efforts. This paper presents data 
structures used in the Semantic Binary Object­
Oriented Database. Algorithms for B-tree index 
and suffix compression are described. 
Compression results in significantly reduced 
index data size and fast database index lookups. 

Keywords: B-tree, database indexes, 
compression, semantic database. 

1. INTRODUCTION 
B-trees and B+ Trees [1] are used as indexing 
structures for variable length records in most 
databases. A B-tree is a large collection of 
lexicographically ordered strings (keys) with 
attached data records. Both keys and the records 
attached to them can be of variable length. The 
lexicographic order allows index lookups to be 
performed in O(log(N)) time where N is the 
total number of records in the B-tree. While this 
runtime is close to optimal for variable length 
data, there are algorithms that work faster than 
B-trees for fixed length data, for example hash 
tables that can give 0(1) runtime. Therefore, B­
trees should be used primarily for variable 
length data. Many commercial databases use 

predominately fixed length data due to the 
above mentioned performance considerations. 
However, a large part of real life data is of 
variable length. Street addresses, names, and 
phone numbers are examples of variable length 
data. To deal with this, software engineers have 
to model the variable length data either by 
reserving more space than necessary to 
accommodate all possible variable length 
records or by writing additional software code 
that represents variable length data using fixed 
length records. Variable length data containers, 
such as B-trees, can be utilized to save both 
space and programming efforts. For example, 
the Semantic Binary Object-Oriented Database 
(Sem-ODB) [7], described in more detail in 
section 2, is based on B-trees. Sem-ODB 
efficiently accommodates variable length 
database records using B-trees. Performance 
comparisons with commercial databases [4] 
demonstrated significant improvements in space 
and runtime database performance. B-trees are 
also used by Sem-ODB to efficiently represent 
one-to-many relationships. One-to-many 
relationships cannot be modeled in relational 
databases without either duplicating the records 
in a table or creating additional artificial tables. 
Sem-ODB results in significantly shorter 
application programs partly due to this fact. [8] 
This paper describes the implementation of 
Sem-ODB using B-trees and shows how the 
storage and run-time performance of B-trees 
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can be improved by using compressed B-tree 
indexes. 

2. SEMANTIC DATABASES 

The semantic database models in general, and 
the Semantic Binary Object-Oriented Model 
(Sern-ODM) ([7] and others) in particular, 
represent information as a collection of 
elementary facts categorizing objects or 
establishing relationships of various kinds 
between pairs of objects. The central notion of 
semantic models is the concept of an abstract 
object. This is any real world entity about 
which we wish to store information in the 
database. The objects are categorized into 
classes according to their common properties. 
These classes, called categories. need not be 
disjoint, that is, one object may belong to 
several of them Further, an arbitrary structure 
of subcategories and supercategories can be 
defined. The representation of the objects in the 
computer is invisible to the user, who perceives 
the objects as real-world entities, whether 
tangible, such as persons or cars, or intangible, 
such as observations, meetings, or desires. 

The database is perceived by its user as a set of 
facts about objects. These facts are of three 
types: facts stating that an object belongs to a 
category; facts stating that there is a 
relationship between objects; and facts relating 
objects to data, such as numbers, texts, dates, 
images, tabulated or analytical functions, etc. 
The relationships can be of arbitrary kinds; for 
example, stating that there is a many-to-many 
relation address between the category of 
persons and texts means that one person may 
have an address, several addresses, or no 
address at all. 

Logically, a semantic database is a set of facts 
of three types: categorization of an object 
denoted by xiC; relationship between two 
objects denoted by xRy; and relationship 
between an arbitrary object and a value denoted 
by xRv. Efficient storage structure for semantic 
models has been proposed in [6]. 
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The collection of facts fonning the database is 
represented by a file structure which ensures 
approximately one disk access to retrieve any of 
the following: 

1. For a given abstract object x, verify/find to 
which categories the object belongs. 

2. For a given category, find its objects. 
3. For a given abstract object x and relation 

R, retrieve ally such that xRy. 
4. For a given abstract object y and relation 

R, retrieve all abstract objects x such that 
xRy. 

5. For a given abstract object x, retrieve (in 
one access) all (or several) of its categories 
and direct and/or inverse relationships, i.e. 
relations R and objects y such that xRy or 

. yRx. The relation R in xRy may be an 
attribute, i.e. a relation between abstract 
objects and values. 

6. For a given relation (attribute) Rand a 
given value v, find all abstract objects such 
thatxRv. 

7. For a given relation (attribute) Rand a 
given range of values [v1 , v2 ], find all 

objects x and v such that xRv and v 1 :s; v S 

Vz. 

The operations 1 through 7 are called 
elementary queries. The entire database can be 
stored in a single B-tree. This B-tree contains 
all of the facts of the dat~base (xiC, xRv, xRy) 
and additional information called inverted facts: 
Clx, Rvx, and YRinvx. (Here, I is the pseudo­
relation IS-IN denoting ~rembership in a 
category.) The inverted facts allow answers to 
the queries 2, 4, 6, 7 to be kept in a contiguous 
segment of data in the B-tree and answer them 
with one disk access (when the query result is 
much smaller than one disk block). The direct' 
facts xiC and xRy allow answers to the queries 
1, 3, and 5 with one disk access. This allows 
both sequential access according to the 
lexicographic order of the items comprising the 
facts and the inverted facts, as well as random 
access by arbitrary prefixes of such facts and 
inverted facts. The facts which are close to each 
other in the lexicographic order reside close in 
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the B-tree. (Notice, that although technically the 
B-tree-key is the entire fact, it is of varying 
length and typically is only several bytes long, 
which is a typical size of the encoded fact xRy.) 

Numeric values in the facts are encoded as 
substrings using the order-preserving variable­
length number encoding of [5]. 

Table 1: Implementation of elementary queries 
summarizes how the elementary semantic 
queries are implemented using the B-tree 
interval operators. We use notation S + 1 to 
denote a string derived from the original string 
S by adding 1 to the last byte of S. (For strings 
encoding abstract objects. this operation never 
results in overflow.) 

Query B-tr.ee 
Implementation 

1. x? [xi, xl+ 1] 
2.C? [CI, Cl+ 1] 
3.xR? [xR, xR+ 1] 
4. ?Rx [xRinv, xR.inv+ 1] 
5.x?? [X, X+ 1) 
6. ?Rv [Rv, Rv+ 1] 
7. R[v ] .. V2 )? [RVJ' RV2 + 1] 

Table 1: Implementation of elementary queries 

For most elementary queries (queries 1, 3, 4, 5, 
and 6) the number of binary facts is usually 
small. Some queries (queries 2 and 7), however, 
may result in a very large number of facts, and 
it may be inefficient to retrieve the whole query 
at once. 

3. B-TREE COMPRESSION 

Compression in databases not only reduces the 
storage requirements but also improves the 
runtime performance of queries by reducing the 
number of disk accesses needed to traverse the 
B-tree index. (2] [9] As explained in the 
previous section. the Semantic Binary database 
can be represented as a lexicographically 
ordered set of strings where each string 
represents a binary relationship between two 
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objects. Physically this set is organized as a B+ 
tree: 

Data Blocks ot Level 0 

Figure 1: Semantic Database as a B+ tree 
where: 

I is an index string, 

A is a binary string representing a 
R binary fact ARB that an abstract 

object A is related 
B to object B by relation R. 

It is reasonable to expect that in a large B+ tree 
we will have many data strings with common 
prefixes. In the Semantic Binary database we 
also need to store inverted facts - binary facts 
where the relation identifier and the concrete 
object (such as character string) precede the 
abstract object identifier: RV A 

There will be many facts that start with the 
same relation identifier R. Moreover, the 
concrete objects V are also likely to have large 
common prefixes. For example, in case of a 
relation Last Name in a category PERSON we 
will have large average common prefixes that 
one can observe by looking into a residential 
telephone book. 

Common B-tree string prefixes can be 
compressed by a modified [3] encoding, where 
the first character of the string R represents the 
number of matching characters in the previous 
string. Since the length of the strings in our B­
tree is variable, we also need to store the length 
of the string L. It is reasonable to limit the 
compression block length to the length of the 
data or index block in a B-tree, otherwise we 



will have to perform more disk accesses. When 
the prefix compression is limited to one block, 
the first string in each block is stored 
uncompressed. A typical B-tree block would 
looks as follows: 

OLSX RLSX RLSX ... RLSX 00 

where R is the common prefix length, L is the 
length of the string, S is the string suffix that 
cannot be compressed, and X is a data suffix 
string. Characters in the data suffix do not 
affect the lexicographical ordering. So, the data 
suffix can be used to store some additional 
information about the string. For example, a 
suffix of an index string can contain the address 
of the corresponding data block in the B+ tree. 
The last string indicates the end of data and has 
R=OandL=O. 

The search algorithm for a given string S can be 
implemented efficiently without decompressing 
a block. The search procedure is a sequential 
scan, but each step of this scan can be 
implemented so efficiently that it requires only 
one byte comparison operation to compare two 
strings. So, this sequential scan in compressed 
strings can be faster than a binary search in the 
same decompressed block since the binary 
search requires R comparisons for a pair of 
strings. 

We also used an alternative compression 
technique that results in a smaller degree of 
compression but pennits us to use a faster 
binary search within a block. At the beginning 
of each data or index block we store the largest 
common prefix and an addressing map of the 
string suffixes within the block. A binary search 
is performed using the addressing map. 

4. INDEX COMPRESSION 
Consider an index block I that contains the B­
tree index strings. Each index string S in I has a 
data suffix three bytes in length. This suffiX 
stores the disk address of a data block B that 
corresponds to the index stringS. Each string in 
the block B is greater or equal to the index 
string S. The first string in a data block can 
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serve as the index stringS. However, any string l 
which is shorter than the string S and is still · 
greater than the last string in the previous block, 
can be used as the index string as well. So, the 
index string of a data block B can be chosen as 
the shortest prefix of the first string in the block 
B which is still greater than the last string in the 
previous block. 

Note that we will not need to adjust the index 
string when several strings are inserted or 
deleted from the block B or its neighbors. This 
is because such insertions/deletions do not 
affect the main property of the index string: 
after an insertion or deletion each string in the 
block B will still be greater or equal than S and 
each string in the previous block will be less 
than S. 

The prefix and suffiX compression in index 
blocks results in very short index strings. 
Indeed, each index string consists of the 
repetition counter R, the length indicator L, the 
string body, and the 3 byte data address. It turns 
out that the average size of the index string 
body in a large B+ three is only slightly greater 
than one byte. So, the average index string 
length is less than 7 bytes. Such short indexes 
allow most of B+ tree index blocks to be stored 
in cache memory, which reduces the average 
number of disk accesses per user query. 

Note that the index strings of an upper level 
index block that reference the lower level index 
blocks can not be compressed further because 
this will violate the property of an index string 
with respect to the data blocks: an index string 
is a lexicographical boundary between two data 
blocks. 

5. CONCLUSION 
Our compression algorithms were implemented 
and their performance was compared with 
relational databases using standard benchmarks 
as well as other real life applications 
benchmarks [4]. We compared the compression 
and CPU performance of Semantic Binary 
database with relational databases such as 
Oracle. The Semantic Database was fully 
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indexed by its nature, while relational databases 
used only the indexes required to achieve the 
best performance for queries. Variable length 
data and B-tree compression allowed us to 
compress the databases by a factor of 2 or more 
compared to relational databases containing the 
same data, while still outperforming or having 
close performance to relational databases that 
used fixed length data. 
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