
ot~fJF

World Multt:onferenCP on
SystAI£s.Cy~netics

and lnfonnati=s

July 22-25, 2001
Orlando, Florida, USA

PR[][EElliNEiS
Volume I

Information Systems Development

Organized by IllS
International
Institute of
Informatics
and Systemics

Member of the International
Federation of Systems Research

IFSR
Co-organized by IEEE Computer Society

(Chapter: Venezuela)

EDITORS
Nagib Callaos

Ivan Nunes da Silva
Jorge Molero

Algorithms for Efficient Data Compression in Databases using the Semantic

Binary Model•

Art SHAPOSHNIKOV, Naphtali RISBE, Daniel MENDEZ
High Performance Database Research Center, Florida International University

Miami, Florida 33199, U.S.A.

Ouri WOLFSON
Department of Electrical Engineering and Computer Science

University of Dlinois at Chicago
Chicago, IL 60612, U.S.A.

ABSTRACf
Databases created using the Semantic Binary
Model represent real world data more naturally
than those created using the table representation
of the relational model. This results in databases
requiring less storage space as well as smaller
programming efforts. This paper presents data
structures used in the Semantic Binary Object
Oriented Database. Algorithms for B-tree index
and suffix compression are described.
Compression results in significantly reduced
index data size and fast database index lookups.

Keywords: B-tree, database indexes,
compression, semantic database.

1. INTRODUCTION
B-trees and B+ Trees [1] are used as indexing
structures for variable length records in most
databases. A B-tree is a large collection of
lexicographically ordered strings (keys) with
attached data records. Both keys and the records
attached to them can be of variable length. The
lexicographic order allows index lookups to be
performed in O(log(N)) time where N is the
total number of records in the B-tree. While this
runtime is close to optimal for variable length
data, there are algorithms that work faster than
B-trees for fixed length data, for example hash
tables that can give 0(1) runtime. Therefore, B
trees should be used primarily for variable
length data. Many commercial databases use

predominately fixed length data due to the
above mentioned performance considerations.
However, a large part of real life data is of
variable length. Street addresses, names, and
phone numbers are examples of variable length
data. To deal with this, software engineers have
to model the variable length data either by
reserving more space than necessary to
accommodate all possible variable length
records or by writing additional software code
that represents variable length data using fixed
length records. Variable length data containers,
such as B-trees, can be utilized to save both
space and programming efforts. For example,
the Semantic Binary Object-Oriented Database
(Sem-ODB) [7], described in more detail in
section 2, is based on B-trees. Sem-ODB
efficiently accommodates variable length
database records using B-trees. Performance
comparisons with commercial databases [4]
demonstrated significant improvements in space
and runtime database performance. B-trees are
also used by Sem-ODB to efficiently represent
one-to-many relationships. One-to-many
relationships cannot be modeled in relational
databases without either duplicating the records
in a table or creating additional artificial tables.
Sem-ODB results in significantly shorter
application programs partly due to this fact. [8]
This paper describes the implementation of
Sem-ODB using B-trees and shows how the
storage and run-time performance of B-trees

• This research was suppa1ed in part by NASA (unda grants NAG5-9478, NAGW-4080, NAG5-5095,
NAS5-97222, and NAG5-6830) and NSF (CDA-9711582, IRI-9409661, HRD-9707076, and ANI-9876409).

77

can be improved by using compressed B-tree
indexes.

2. SEMANTIC DATABASES

The semantic database models in general, and
the Semantic Binary Object-Oriented Model
(Sern-ODM) ([7] and others) in particular,
represent information as a collection of
elementary facts categorizing objects or
establishing relationships of various kinds
between pairs of objects. The central notion of
semantic models is the concept of an abstract
object. This is any real world entity about
which we wish to store information in the
database. The objects are categorized into
classes according to their common properties.
These classes, called categories. need not be
disjoint, that is, one object may belong to
several of them Further, an arbitrary structure
of subcategories and supercategories can be
defined. The representation of the objects in the
computer is invisible to the user, who perceives
the objects as real-world entities, whether
tangible, such as persons or cars, or intangible,
such as observations, meetings, or desires.

The database is perceived by its user as a set of
facts about objects. These facts are of three
types: facts stating that an object belongs to a
category; facts stating that there is a
relationship between objects; and facts relating
objects to data, such as numbers, texts, dates,
images, tabulated or analytical functions, etc.
The relationships can be of arbitrary kinds; for
example, stating that there is a many-to-many
relation address between the category of
persons and texts means that one person may
have an address, several addresses, or no
address at all.

Logically, a semantic database is a set of facts
of three types: categorization of an object
denoted by xiC; relationship between two
objects denoted by xRy; and relationship
between an arbitrary object and a value denoted
by xRv. Efficient storage structure for semantic
models has been proposed in [6].

78

The collection of facts fonning the database is
represented by a file structure which ensures
approximately one disk access to retrieve any of
the following:

1. For a given abstract object x, verify/find to
which categories the object belongs.

2. For a given category, find its objects.
3. For a given abstract object x and relation

R, retrieve ally such that xRy.
4. For a given abstract object y and relation

R, retrieve all abstract objects x such that
xRy.

5. For a given abstract object x, retrieve (in
one access) all (or several) of its categories
and direct and/or inverse relationships, i.e.
relations R and objects y such that xRy or

. yRx. The relation R in xRy may be an
attribute, i.e. a relation between abstract
objects and values.

6. For a given relation (attribute) Rand a
given value v, find all abstract objects such
thatxRv.

7. For a given relation (attribute) Rand a
given range of values [v1 , v2], find all

objects x and v such that xRv and v 1 :s; v S

Vz.

The operations 1 through 7 are called
elementary queries. The entire database can be
stored in a single B-tree. This B-tree contains
all of the facts of the dat~base (xiC, xRv, xRy)
and additional information called inverted facts:
Clx, Rvx, and YRinvx. (Here, I is the pseudo
relation IS-IN denoting ~rembership in a
category.) The inverted facts allow answers to
the queries 2, 4, 6, 7 to be kept in a contiguous
segment of data in the B-tree and answer them
with one disk access (when the query result is
much smaller than one disk block). The direct'
facts xiC and xRy allow answers to the queries
1, 3, and 5 with one disk access. This allows
both sequential access according to the
lexicographic order of the items comprising the
facts and the inverted facts, as well as random
access by arbitrary prefixes of such facts and
inverted facts. The facts which are close to each
other in the lexicographic order reside close in

--

the B-tree. (Notice, that although technically the
B-tree-key is the entire fact, it is of varying
length and typically is only several bytes long,
which is a typical size of the encoded fact xRy.)

Numeric values in the facts are encoded as
substrings using the order-preserving variable
length number encoding of [5].

Table 1: Implementation of elementary queries
summarizes how the elementary semantic
queries are implemented using the B-tree
interval operators. We use notation S + 1 to
denote a string derived from the original string
S by adding 1 to the last byte of S. (For strings
encoding abstract objects. this operation never
results in overflow.)

Query B-tr.ee
Implementation

1. x? [xi, xl+ 1]
2.C? [CI, Cl+ 1]
3.xR? [xR, xR+ 1]
4. ?Rx [xRinv, xR.inv+ 1]
5.x?? [X, X+ 1)
6. ?Rv [Rv, Rv+ 1]
7. R[v] .. V2)? [RVJ' RV2 + 1]

Table 1: Implementation of elementary queries

For most elementary queries (queries 1, 3, 4, 5,
and 6) the number of binary facts is usually
small. Some queries (queries 2 and 7), however,
may result in a very large number of facts, and
it may be inefficient to retrieve the whole query
at once.

3. B-TREE COMPRESSION

Compression in databases not only reduces the
storage requirements but also improves the
runtime performance of queries by reducing the
number of disk accesses needed to traverse the
B-tree index. (2] [9] As explained in the
previous section. the Semantic Binary database
can be represented as a lexicographically
ordered set of strings where each string
represents a binary relationship between two

79

objects. Physically this set is organized as a B+
tree:

Data Blocks ot Level 0

Figure 1: Semantic Database as a B+ tree
where:

I is an index string,

A is a binary string representing a
R binary fact ARB that an abstract

object A is related
B to object B by relation R.

It is reasonable to expect that in a large B+ tree
we will have many data strings with common
prefixes. In the Semantic Binary database we
also need to store inverted facts - binary facts
where the relation identifier and the concrete
object (such as character string) precede the
abstract object identifier: RV A

There will be many facts that start with the
same relation identifier R. Moreover, the
concrete objects V are also likely to have large
common prefixes. For example, in case of a
relation Last Name in a category PERSON we
will have large average common prefixes that
one can observe by looking into a residential
telephone book.

Common B-tree string prefixes can be
compressed by a modified [3] encoding, where
the first character of the string R represents the
number of matching characters in the previous
string. Since the length of the strings in our B
tree is variable, we also need to store the length
of the string L. It is reasonable to limit the
compression block length to the length of the
data or index block in a B-tree, otherwise we

will have to perform more disk accesses. When
the prefix compression is limited to one block,
the first string in each block is stored
uncompressed. A typical B-tree block would
looks as follows:

OLSX RLSX RLSX ... RLSX 00

where R is the common prefix length, L is the
length of the string, S is the string suffix that
cannot be compressed, and X is a data suffix
string. Characters in the data suffix do not
affect the lexicographical ordering. So, the data
suffix can be used to store some additional
information about the string. For example, a
suffix of an index string can contain the address
of the corresponding data block in the B+ tree.
The last string indicates the end of data and has
R=OandL=O.

The search algorithm for a given string S can be
implemented efficiently without decompressing
a block. The search procedure is a sequential
scan, but each step of this scan can be
implemented so efficiently that it requires only
one byte comparison operation to compare two
strings. So, this sequential scan in compressed
strings can be faster than a binary search in the
same decompressed block since the binary
search requires R comparisons for a pair of
strings.

We also used an alternative compression
technique that results in a smaller degree of
compression but pennits us to use a faster
binary search within a block. At the beginning
of each data or index block we store the largest
common prefix and an addressing map of the
string suffixes within the block. A binary search
is performed using the addressing map.

4. INDEX COMPRESSION
Consider an index block I that contains the B
tree index strings. Each index string S in I has a
data suffix three bytes in length. This suffiX
stores the disk address of a data block B that
corresponds to the index stringS. Each string in
the block B is greater or equal to the index
string S. The first string in a data block can

80

serve as the index stringS. However, any string l
which is shorter than the string S and is still ·
greater than the last string in the previous block,
can be used as the index string as well. So, the
index string of a data block B can be chosen as
the shortest prefix of the first string in the block
B which is still greater than the last string in the
previous block.

Note that we will not need to adjust the index
string when several strings are inserted or
deleted from the block B or its neighbors. This
is because such insertions/deletions do not
affect the main property of the index string:
after an insertion or deletion each string in the
block B will still be greater or equal than S and
each string in the previous block will be less
than S.

The prefix and suffiX compression in index
blocks results in very short index strings.
Indeed, each index string consists of the
repetition counter R, the length indicator L, the
string body, and the 3 byte data address. It turns
out that the average size of the index string
body in a large B+ three is only slightly greater
than one byte. So, the average index string
length is less than 7 bytes. Such short indexes
allow most of B+ tree index blocks to be stored
in cache memory, which reduces the average
number of disk accesses per user query.

Note that the index strings of an upper level
index block that reference the lower level index
blocks can not be compressed further because
this will violate the property of an index string
with respect to the data blocks: an index string
is a lexicographical boundary between two data
blocks.

5. CONCLUSION
Our compression algorithms were implemented
and their performance was compared with
relational databases using standard benchmarks
as well as other real life applications
benchmarks [4]. We compared the compression
and CPU performance of Semantic Binary
database with relational databases such as
Oracle. The Semantic Database was fully

.... -------------------

-

indexed by its nature, while relational databases
used only the indexes required to achieve the
best performance for queries. Variable length
data and B-tree compression allowed us to
compress the databases by a factor of 2 or more
compared to relational databases containing the
same data, while still outperforming or having
close performance to relational databases that
used fixed length data.

6. REFERENCES
[1] D. Comer. ''The Ubiquitous B-tree," ACM

Computing Surveys, Vol. 11 No. 2., June
1979.

[2] Susan J. Eggers, Frank Olken, Arie
Shoshani. "A Compression Technique for
Large Statistical Data-Bases", Proceedings
of Very Large Data Bases, 7th
International Conference, September 9-11,
1981, Cannes, France, VLDB 1981:424-
434.

[3] J.Ziv and A.Lempel. "A Universal
Algorithm for sequential Data
compression", IEEE Transactions on
Information theory, Vol IT-23, No.3, May
1977, PP337-343.

81

[4] Naphtali Rishe, Alexander Vaschillo,
Dmitry Vasilevsky, Artyom Shaposhnikov,
Shu-Ching Chen. "A benchmarking
technique for semantic databases",
Proceedings of ACM SIGMOD ADBIS
DASF AA Symposium on Advances in
Databases and Information Systems,
September 2000.

[5] N. Rishe. "Interval-based approach to
lexicographic representation and
compression of numeric data", Data &
Knowledge Engineering, n 8, 1992, pp.
339-351.

[6] N. Rishe. "A File Structure for Semantic
Databases", Information Systems, v 16 n. 4,
1991, pp. 375-385.

[7] N. Rishe. Database Design: The Semantic
Modeling Approach, McGraw-Hill, 1992.

[8] N. Rishe, J. Yuan, R. Athauda, S. Chen, X.
Lu, X. Ma, A. Vaschillo, A. Shaposhnikov,
D. Vasilevsky. "SemanticAccess: Semantic
Interface for Querying Databases",
Proceedings of the 26th International
Conference on Very Large Databases,
Cairo, Egypt, 2000 pp. 591-594.

[9] G. Ray and J.R Haritsa, S. Seshadri.
"Database Compression: A Performance
Enhancement Tool", Proceedings of
International Conference on Management
of Data, 1995.

980-07-7541-2 II 57000>

75417 II II

