
Data & Knowledge Engineering 8 (1992) 339-351
North-Holland

Interval-based approach to
lexicographic representation and
compression of numeric data*

Naphtali Rishe
School of Computer Science, Florida International University-The State University of Florida at Miami,
University Park, Miami, FL 33199, USA

Abstract

339

Rishe, N., Interval-based approach to lexicographic representation and compression of numeric data, Data &
Knowledge Engineering 8 (1992) 339-351.

This paper proposes a new method of encoding numbers by variable-length byte-strings. The primary
property of the encoding is that the lexicographic comparison of the encoded numbers corresponds correctly
to the order of the real numbers. The encoding is space-efficient. Further, unlike the fixed-length
representations of numbers (fixed-point, floating-point, etc.,) the encoded numbers are not limited in their
magnitude or the number of their significant digits. The paper also elaborates the application of the encoding
method to the storage of numeric data in databases. The proposed application for databases is a uniform
format for all the numbers, regardless of their types and attributes (fields). All the numbers are represented
in a form of lexicographically-comparable byte-strings. This form simplifies the data management software
(only one format to deal with at the physical database level) and hardware (when associative memory and
storage devices etc. are used); makes the applications more flexible (by removing limitations on the sizes of
numbers); and is space-efficient for all numbers while being especially concise for those numbers that are
used more frequently in databases.

Keywords. Numeric data fields; number encoding; comparison operations; databases; file structures; com­
pactness of data; data independency; formats; floating point; variable-length data fields; real numbers; data
compression.

1. Introduction

Many applications require compact variable-length representations of arbitrary numbers.
Among such applications are some advanced database management systems. These systems
make the data formats transparent to the user. Furthermore, these systems should allow a
logical field to hold numbers o~ unpredictably large or small magnitude and unpredictably
varying precision, if the user's logic warrants this. I shall call this requirement 'unboundness'.
The typical representations of numbers, such as floating point or fixed point formats, fail the
'unboundness' requirement. (For example, in any fixed-point format the number of bits, n, is
the application's constant, and, therefore, when a datum exceeding 2n is input, it cannot be
represented.) A representation which satisfies the 'unboundness' requirement is the standard
mathematical notation (on ~aper) using a variable-length string of arabic numerals and
exponent (e.g. -3.57 x 10- 1 1

), or its imitation in computer printouts (e.g. -3.57E-101).
A further requirement on the number representation is the efficiency of the application's

• This research has been supported in part by a grant from the Florida High Technology and Industry Council.

0169-023X/92/$05.00 © 1992- Elsevier Science Publishers B.V. All rights reserved

340 N. Rishe

typical operations. The predominant operations performed on stored numbers in databases
and many other applications are comparisons (=, >, etc.), rather than the arithmetic
operations (i.e. +, x, etc., which are more typical for applications involving engineering
calculations). This is true even in those data bases where the bulk of updates involve
arithmetic adjustment of values (e.g. accounting databases)-most of the effort in such
databases is spent on finding the data in the database, which involves comparisons, not
arithmetics. Consider, for example, a search for a record with a given key value in an
index-sequential or B-tree file, or in associative memory or storage device (e.g. a disk with a
controller capable of string search and comparison). The efficiency of such applications
would benefit if numbers could be handled as character strings. For example, in most cases
the result of a lexicographic comparison of two long character strings can be found by
comparing their short prefixes, while the whole strings need not be scanned or even retrieved
from the storage devices. This would also simplify the hardware and lower-level software
(i.e. microcode or software resident in the storage device or its controller) since they would
not have to distinguish between numbers and character strings, i.e. they would store and
compare numbers in the same way they work for character strings. I shall call this
requirement 'lexicographic comparability'.

This paper proposes an encoding of numbers which is unbound, lexicographically compar­
able, and compact. The properties of the encoding are fully defined in Section 2. Section 3
describes the proposed method of representing numbers. The method can be adapted to
different types of applications by choosing a 'tree of intervals' which is more efficient for a
particular type. Section 4 proposes such a 'tree of intervals' for database applications.

2. Specification of requirements

The encoding of numbers E: Numbers-+ ByteStrings proposed in this paper satisfies the
following requirements:
1. Bitwise-lexicographic comparison of the encodings 1 will coincide with the meaningful

comparison of numbers, i.e. the order of the real numbers. This is essential for fast search
of sorted and indexed files containing character strings and numeric data. (This means
that E(n 1)"'ings::;;; E(n 2) iff n 1reals::;;; n2 • Thus, e.g., if n1 is encoded by a byte string b:b;b;
and n2 is encoded by a byte string b:b;b;b~, where b; < b; (i.e. the first byte in this
example is identical in the two strings, while the second byte of the second string is
greater than the second byte of the first string), then n1 < n2 .) The conventional
representations of numbers do not allow bitwise comparison. (Consider, for example, the
representation of floating point numbers by mantissa and exponent.)

2. There is no limit on arbitrarily large, arbitrarily small, or arbitrarily precise numbers.
(The precision of a number is the number of its significant digits in the standard
mathematical notation on paper.) In a database or a file we wish to be able to compare
and store integers, real numbers, numbers with very many significant digits, and numbers
with just a few significant digits. We wish to have one uniform format to represent all
these kinds of numbers. We do not wish to set a limit on the range of the data at the time
of the design of the file formats. For example, the number '1T truncated after the first 1000
digits is a very precise number of 1000 significant digits. The number 10100 is large, but

1 A bit-string (or byte-string) v is (bitwise-) lexicographically ,,,;; than a string w iff w = vu for some string u (i.e. v
is a prefix of w) or for some strings x, y, and z, v = xy and w = xz and the first bit of y is 0 and the first bit of z is '1'
(x may be empty).

Interval-based approach 341

not precise -: it has only one significant digit. We need one common format convention to
represent both numbers.

3. Every number bears its own precision, i.e. the precision is not uniform. (In a database,
the varying precision will allow us to treat integers, reals, and values of different
attributes with different precisions, in a uniform way in one file in the database.)

4. The encodings are of varying length and are about maximally space efficient with respect
to their informational content. For example, consider the following three numbers having
only one significant digit each : 3,000,000; 5; o.ooo,ooo,ooo,ooo,ooo,7. Each of these three
numbers should require only a few bits each, while the number 12345678. 90 should
require many more bits. The number of bits in the representation of a number should be
approximately equal to the amount of information2 in that number.

5. No additional byte(s) are required to store the length of the encoded representation or to
delimit its end: the representation should contain enough information within itself so that
the decoder would know where the representation of one number ends and where that of
the next number begins (within the same record in the file). The absence of delimiters
facilitates the handling of records. It also results in the saving of space, at leas.t for
numbers whose encodings are short. For example, if we were to use a scheme with
delimiters, the shortest numbers would be represented by two bytes: one for the contents
and one for the delimiter; in a non-delimiter scheme one byte will suffice for the shortest
numbers.

6. The representation of numbers is one-to-one. For example, there should not be several
representations for the number zero, as there are in the mathematical notation on paper:
0, 0.00, -0.0, OE23, OEO. (This means that the encoding E is a function. Furthermore E
is 1: 1. Thus, E(x) = E(y) iff x = y.)

7. The encoding and decoding should be relatively efficient (linear in the length of the data
string), but they need not be as efficient as comparisons. The database system can handle
encoded numbers in all the internal operations, and translate them only on input/ output
to the external user. The translation can be done in user interfaces.

The conventional computer encodings of numbers do not satisfy the requirements of
lexicographic comparability, unboundness, and others. The lexicographic comparability
requirement is satisfied by a method proposed in [2]. Their encoding works nicely with small
integers and with rational numbers p/ q where p and q are of the same order of magnitude. It
is not useful for numbers with large exponents. Nor can their encoding be tuned for
databases as discussed in Section 4. On the other hand, their encoding has interesting
properties useful for numeric processing, which is not a goal of the method that I propose
below. [2] is based on the continued fraction theory. The encoding that I propose below is
based on building an infinite tree of intervals of the real numbers, with the interval (-oo, oo)
at the root. The children of a node partition the parent interval into sub-intervals. (Although
the tree is infinite, the algorithm by which the children of a node are generated is finite.)

Among applications of the encoding method proposed in this paper is the implementation

2 The amount of information in an arbitrary number roughly corresponds to the size of the most compact
representation of that number. The amount of information in a decimal number is roughly the number of its
significant digits times log2 10. Thus, the amount of information in 0.00056 is roughly 2 x log2 10 = 6.6, because this
number has only two significant digits. This rough estimate does not include the usually small information contained
in non-redundant leading and trailing zero digits. If the number of such zero digits is z then the additional
information is log2 z. The number 0.00056 has three such zeros; thus the additional information amounts to
approximately log2 3 = 1.6. The number 123,456, 789 ,000,000,000,000 has 9 significant digits and 12 non-redundant
trailing zeros. Its amount of information is approximately 9 x log2 10 + log2 12 = 33.5. The above way to estimate
the amount of information is appropriate to arbitrary numbers that do not come from a known context or
application or distribution frequencies. A deeper discussion on the subject can be found in [10].

342 N. Rishe

of the Semantic Binary Database Model [3, 6, 5], by an efficient data structure [7] and by a
database machine [9].

3. The method of representing numbers

The input number v is translated into a sequence (string) of bytes.
The least significant bit3 of each byte is the continuation bit: '1' means 'more bytes to

follow', 'O' means 'the current byte ends the number's encoding'. The other 7 bits of the byte
give partial information about the number v by specifying which one of 128 intervals the
number falls into. The intervals are not necessarily of equal length, and some may be
infinite. Thus, the first byte specifies a partitioning of (-oo, +oo) into 128 intervals

(-oo, a1), [a1' a1), [a2, a3), · · · '[a121' 00)

All the intervals except the first one are closed on the left and open on the right. The
interval boundaries a1, ••• , a127 are constants (they may depend on the application: one
partitioning is better for database management systems, while another may be preferable for
manufacturing control).

The first seven bits of the byte give the interval number, i + l(i = 0, 1, ... , 127), of one of
the 128 intervals [a 0 a;+ 1). When the continuation bit is zero, the number vis a0 which is
the lower boundary of the interval. (Notice that there is no lower boundary in the first
interval, (-oo, a1), since it is open on the left.) Otherwise, when the continuation bit is 'l', it
is known that v is inside the interval (a;, a;+i) and further information is provided by the
bytes that follow.

The boundaries of the intervals are selected in such a way as to minimize the average
length of encoding of numbers in the application. Particularly, numbers which appear most
frequently in the application should be encoded by just one byte. That is, those numbers
must be the lower boundaries of the intervals in the partitioning specified by the first byte.

The second byte partitions the interval (a;, a;+i) into 128 sub-intervals:

and so forth in the bytes that follow.
The interval boundaries can and must be chosen in such a manner so as to satisfy all the

requirements from the encodings as listed above.
The tree of all intervals is infinite, but the interval boundaries must be constants

hard-coded in the application's encoding algorithms. Thus, the algorithm must be able to
generate those constants by a finite number of interval-partitioning methods known to the
algorithm. The simplest interval-partitioning method is the 'arithmetic sequence': an interval
(x, y), where both x and y are finite, is partitioned into

(
y- x)

X, y + 128 ' ... '

[
y-x . y-x .)

x +
128

x z, x +
128

x (z + 1) ,. · · ,

[
y- x)

x + 128 x 127' y

3 A byte is regarded as a bit strings of 8 bits. Its least-significant bit (for the purpose of comparison) is the
rightmost bit of the string. Thus, the least significant bit of 101010102 is 'O'.

Byte 1
Interval#: 38
Continuation Bit: 1

Byte2
Interval#: 13
Continuation Bit: 1

Byte3
Interval#: 56

Continuation Bit: 0

Interval-based approach

35

v =35.01237

36

Interval
#56

Fig. 1. Encoding of the number 35.01237 by 3 bytes.

343

+oo

(In the above, the first interval is open, and the remaining 127 left-closed intervals
correspond to i = 1, 2, ... , 127.)

However, for most intervals the use of the 'arithmetic sequence' is either impossible (e.g.
one cannot partition an infinite interval into equal subintervals) or would violate some of the
requirements of the encoding. In some incorrect partitionings it would happen that the
decimal precision of v is less than the size of an interval, but v is not the lower boundary of
the interval and many additional bytes would be needed to zero down on the number v. That
would not be a compact representation. A correct partitioning must avoid such situations.

Consider, as an example, a possible encoding of the number 35.01237 as shown in Fig. 1.
Assume that one of the intervals in the first byte is [35, 36). Say, e.g., it is the interval #38.
It may be, that the algorithm further partitions the interval (35, 36) so that there is a
sub-interval #13 which is [35.012, 35.013). The second byte would indicate interval #13 and
continuation bit 'l'. It may be that the algorithm further partitions the interval [35.012,
35.013) so that there is a sub-interval #56 which is [35.01237, 35.01238). Since the original
number is the lower boundary of this sub-interval, the third and last byte would indicate
interval #56 and continuation bit 'O'.

An example of a correct tree of intervals particularly suitable for database applications is
given in the last section.

Theorem. Bitwise lexicographic comparison of the encodings coincides with the meaningful
comparison of numbers, i.e. the order of the real numbers.

A proof is given in Appendix 1.

4. A tree of intervals suggested for database systems

In many database applications, the most frequent numbers include: zero, small positive
integers, the number '-1' (which is often abused to represent null values), numbers with two
decimal digits after the period (representing dollars and cents). Also, most numbers in a
database normally have originated in a decimal form from a human user, or are the results of

344 N. Rishe

simple arithmetic operations on those decimal numbers. (Notice that the prec1s10n of a
number as measured by the number of its significant digits crucially depends on the digit
base, e.g. the number 1/8 has only 1 significant octal digit: 0.1 8 , but three significant decimal
digits: 0.125 10 ; whereas the opposite holds for the number 1/ 10.) The tree of intervals for
databases should provide an especially concise representation of the numbers occurring more
frequently in databases, but also to satisfy all the requirements of Section 2 for all the
rational numbers having a finite number of significant decimal digits.

The following is a recommendation for the tree of intervals for database management
systems. Although the tree is infinite, it is fully defined by 7 small fixed tables. There are
seven types of partitioning within the tree:
1. 'first-byte', for the initial interval (-oo, +oo) (Table 1). The partitioning scheme proposed

Table 1
Partitioning of (-oo, oo) in the first byte

Sub-interval # Sub-interval Partitioning of sub-interval

(-oc, -1) 'semi-progressive to -oo'
2 (-1,0) 'semi-progressive to -0'
3 (0, 1) 'semi-progressive to +0'
4 (1, 2) 'semi-arithmetic'
5 (2, 3) 'semi-arithmetic'

82 (79, 80) 'semi-arithmetic'
83 (80, 90) 'semi-arithmetic'
84 [90, 100) 'semi-arithmetic'
85 [100, 200) 'semi-arithmetic'
86 (200, 300) 'semi-arithmetic'
87 (300, 400) 'semi-arithmetic'
88 (400, 500) 'semi-arithmetic'
89 [500, 600) 'semi-arithmetic'
90 [600, 700) 'semi-arithmetic'
91 (700, 800) 'semi-arithmetic'
92 [800, 900) 'semi-arithmetic'
93 (900, 1000) 'semi-arithmetic'
94 (1000, 1128) 'successive-integers'
95 [1128, 1256) 'successive-integers'
96 (1256, 1384) 'successive-integers'
97 (1384, 1512) 'successive-integers'
98 [1512, 1640) 'successive-integers'
99 [1640, 1768) 'successive-integers'

100 [1768, 1896) 'successive-integers'
101 [1896, 2000) 'successive-integers'
102 [2000, 3000) 'semi-arithmetic'
103 (3000, 4000) 'semi-arithmetic'

109 [9000, 10000) 'semi-arithmetic'
110 [10000, 20000) 'semi-arithmetic'
111 [20000, 30000) 'semi-arithmetic'

117 (80000, 90000) 'semi-arithmetic'
118 (90000, 1E5) 'semi-arithmetic'
119 [1E5, 2E5) 'semi-arithmetic'
120 [2E5, 3E5) 'semi-arithmetic'

127 (9E5, 1E6) 'semi-arithmetic'
128 (1E6, +oo) 'semi-progressive to +oo'

Interval-based approach 345

for the first byte, i.e. the interval (-oo, +oo), is designed in such a way that:
a. Many most frequently used integers of many typical applications are represented by

just one byte, i.e. the first byte is terminal.
b. The above is also true for many single-significant-digit numbers, e.g. 2000, 300000,

1000000.
c. The sub-intervals grow larger and larger towards the edges of the interval.
d. The interval boundaries are established in such a way so as to allow a short

representation of the remainder of the number being encoded by successive bytes.
2. 'successive-integers', normally partitioned into 128 equal sub-intervals (Table 2). This is

useful for partitioning intervals like [1512, 1640), so that e.g. the number 1545 could be
encoded by just two bytes.

3. 'semi-arithmetic', in which an interval is partitioned into 97 sub-intervals of size 1 % and
30 sub-intervals of size 0.1% of the original interval (Table 3). This is useful for
partitioning intervals like [5, 6); [800, 900); [21.5436456546, 21.5436456547). Thus, a byte
with semi-arithmetic partitioning adds at least two significant decimal digits to the
information about the number. In some cases it adds 3 significant digits. The author has
chosen to cluster the latter cases at the edges of the interval because he believes that
numbers like 500.1 and 599.9 are somewhat more frequent in databases than 535.7, due
to the rounding errors. In the proposed scheme, the numbers 500.1 and 599.9 are

Table 2
Successive-integers partitioning of interval (L, R). All the sub-intervals of (L, R)
have the 'semi-arithmetic' partitioning (see Table 3). Examples are given for
interval (1000, 1128). When R - L = 128, the successive-integers partitioning
becomes 'arithmetic sequencing'. (R - L ¥-128 only for the interval (1896, 2000))

Sub-interval #

1
2-128

Table 3

Sub-interval

(L, L + 1)
for j = 2 .. 128: [L + j-1, L + j)

Example

(1000, 1001)
[1001, 1002)

[1127, 1128)

,. ,.-;t

Semi-arithmetic partitioning of interval (L, R). All the sub-intervals have the 'semi-arithmetic' partitioning:•& well.
Examples are given for interval (7, 8) (i.e. L = 7, R = 8) ,' .· '

Sub-interval # Sub-interval

(L,L+ ~~)
2-20 . [. R-L .R-L)

for1=2 .. 20: L+(J-1) lOOO ,L+J lOOO , ,

21-117 . [. R-L _R-L)
foq = 3 .. 99: L + (J - 1) lOO , L + J lelo 1

1.:j

118-127 for j = 991 .. 1000: [L + (j- 1) ~~ , L + j ~~)
;)-',' ~ '. ~ '~ ' • , : \ j ! : .

; ~ . .

Example

-. '_ (7~'7:0@1)
l : •• ' 'J '!i'.

[7:oor; 7.00~)

[7.019, 7.02)

[7.02, 7,.,G3) •

[7.98, W9)-,

[7.990, 7.991)

[7.999, 8)

346 N. Rishe

Table 4
Semi-progressive to +oo partitioning of interval (L, R). Examples are given for interval (IE6, 00)

Sub-interval # Sub-interval Example Sub-interval partitioning

1 (L, 2L) (1E6, 2E6) 'semi-arithmetic'
2-99 forj=2 .. 99: [jL,L+jL) [2E6, 3E6) 'semi-arithmetic'

[99E6, 100E6) 'semi-arithmetic'
100-108 for j = 1 .. 9: [IOOjL, IOOL + IOOjL) [1E8, 2E8) 'semi-arithmetic'

[9E8, IOE8) 'semi-arithmetic'
109-117 for j = 1 .. 9: [lOOOjL, lOOOL + lOOOjL) [1E9, 2E9) 'semi-arithmetic'

[9E9, IOE9) 'semi-arithmetic'
118-126 for j = 1 .. 9: [lOOOOjL, lOOOOL + lOOOOjL) [lElO, 2EIO) 'semi-arithmetic'

[9EIO, IOEl) 'semi-arithmetic'
127 [L x lES, min(R, L x lElO)) [lEll, 1E16) 'semi-progressive to + oo'
128 [L x lEIO, R) [1E16, oo) 'semi-progressive to +oo'

represented by two bytes each, whereas 535.7 requires 3 bytes. If it were not for
rounding-error consideration, it would not matter where to cluster the 3-digit sub­
intervals.

4. 'semi-progressive to +oo' (Table 4), used for intervals of type [L, oo)
5. 'semi-progressive to -oo' (Table 5)
6. 'semi-progressive to +0' (analogous to -oo.) This is used for intervals like (0, H), where

His a number of very small absolute value.
7. 'semi-progressive to -0' (analogous to +oo). This is used for intervals like (L, 0), where L

is a negative number of very small absolute value.
The above encoding satisfies the requirements of section 2 and also the following property of
short representation of numbers frequently used in databases:
(a) 127 numbers are represented in a single byte (including the delimiter). These numbers

include:
•all integers from -1 to 80;
• all positive numbers having only one significant digit from 90 through the number

1,000,000.

Table 5
Semi-progressive to -oo partitioning of interval (L, R). Examples are given for interval (-oo, -1E6)

Sub-interval # Sub-interval Example Sub-interval partitioning

1 (L, Rx lEIO) (-oo, -1E16) 'semi-progressive to -oo'
2 [max(L, Rx lElO), Rx lES) [-1El6, -lEll) 'semi-progressive to -oo'
3-11 for j = 9 .. 1: [lOOOO(j + l)R, lOOOOjR) [- lOEIO, -9E10) 'semi-arithmetic'

[-2El0, -lElO) 'semi-arithmetic'
12-20 for j = 9 .. 1: [lOOOR + IOOOjR, lOOOjR) [-10E9, -9E9) 'semi-arithmetic'

[-2E9, -IE9) 'semi-arithmetic'
21-29 for j = 9 .. 1: (lOOR + lOOjR, lOOjR) [-10E8, -9E8) 'semi-arithmetic'

[-2E8, -1E8) 'semi-arithmetic'
30-128 forj=99 .. l: [R+jR,jR) [-100E6, -99E6) 'semi-arithmetic'

[-2E6, -1E6) 'semi-arithmetic'

Interval-based approach 347

(b) 16383 numbers are represented by at most two bytes (including the delimiter.) These
numbers include:

• all integers from -100 to + 2000
•all dollars-and-cents between $-1.00 and $80.00
• all positive numbers having only three or less significant digits from the number 1 through

the number 1,000,000.
(c) Numbers with many significant digits require on the average less than 0.5 bytes per

significant digit.
Table 6 gives an example of encoding the number 35.01237 by the 3-byte self-delimiting
string 010010110001100101101110, i.e. hexadecimal 4B196E.

The algorithm of encoding has been implemented and runs efficiently under the UNIX and
VMS operating systems. More discussion of this can be found in Appendix 2.

Table 6
An example of encoding the number 35.01237

Byte Interval Interval Binary for Continuation Byte
nbr. nbr. (intrv# - 1) bit code

1 [35, 36) 38 0100101 01001011
2 [35.012, 35.013) 13 0001100 1 00011001
3 [35.01237,35.01338) 56 0110111 0 01101110

Acknowledgement

The Author thanks Michael Alexopoulos, Scott Graham, and Wei Sun for their comments
and Vijaykumar Narayanan and Michael Alexopoulos for writing programs implementing
the encoding. The Author is grateful for the suggestions of the anonymous referees and the
Editor; these suggestions have resulted in a significant improvement of the revised version of
the paper.

Appendix 1. Proof of the theorem

Theorem. Bitwise lexicographic comparison of the encodings coincides with the meaningful
comparison of numbers, i.e. the order of the real numbers.

Proof. Consider two input numbers v1 > v2 • Assume v1 is encoded by a byte string
E 1 = b~b;b; · · · b~ and v2 is encoded by a byte string E2 = bib;b; · · · b~. We have to show
that lexicographically E 1 > E2 •

Assume the contrary: E 1 ~ E2 • This can be one of the following cases:
1. For some k > 0, bi< bi and b: = b7 for 1 ~ i < k. (This means that the two encodings

have an identical, possibly empty prefix, after which the byte in £ 2 is greater than the
corresponding byte in E 1 .)

a. If bi and b! differ only in the least significant bit, then the kth byte puts both numbers
in the same interval/. The least significant bit of b! is thus '1', meaning that v2 is inside
I, while the least significant bit of bi is 'O', meaning that v1 is the lower boundary of 1.
Thus, v < v2 , a contradiction.

b. The first seven bits of b~ are lexicographically less than those of b!. Therefore, v1 falls
into an interval / 1 and v2 into 12 , where 11 precedes 12 • Thus v1 < v2 in contradiction.

348 N. Rishe

2. E1 is a prefix of E2 , i.e. E2 = E1s, wheres is any string. The last byte of every encoding
has continuation bit 'O' (meaning it is the end of the string). Thus, the last byte of E 1 has
continuation bit 'O'. But the last byte of E1 is also the byte before s in E2(E2 is E 1

followed bys). Thus, the byte before s has continuation bit 'O', meaning that it is the last
byte in E2 • Thus s must be empty. Thus E2 = E1 • Thus v1 and v2 are each the lower
boundary of the same interval defined by the byte-string E 1 • Thus, v 1 = v1 , a
contradiction. D

Appendix 2. An implementation

We have utilized this scheme for number encoding in our semantic binary database
management system [7]. The semantic data model used is a modification [3, 6] of the Binary
Model of [1]. The implementation is based on an algebra-like low-level access language [6],
such that an arbitrary query can be performed as one or several elementary queries of the
language. Most elementary queries, including such non-trivial queries as range queries and
others, can be performed in just one single access to the disk. Queries in higher-level
languages, like the Semantic Predicate Calculus [8] and the fourth-generation semantic
extension of Pascal [4] are translated into elementary queries of the low-level access
language.

Logically, at any moment in time the database is a set of facts about abstract objects, which
are entities of the real world represented by identifiers invisible to the user. The facts are:
the unary facts xC stating that an object whose identifier is x belongs to a category whose
identifier is C; and binary facts xRy stating that there is a relationship, R, between x and y,
where x is an abstract object's identifier and y is an abstract object's identifier or a concrete
object, i.e. a number, a character string, a date, etc. Non-binary relationships are decom­
posed into binary relationships.

The entire database is stored in a single file. This file contains all the facts of the database
(xC and xRy) and additional information, called inverted facts, which are described below.
The file is maintained in a format similar to a B-tree. The variation of the B-tree used here
allows sequential access according to the lexicographic order of the items comprising the
facts and the inverted facts, as well as random access by arbitrary prefixes of the facts and
inverted facts. The facts which are close to each other in the lexicographic order reside close
together in the file.

The file contains the original facts and the following 'inverted facts':
l. In addition to xC, we store its inverse Cx. (C is the system-chosen identifier to represent

the inverse information about the category C. For example, it can be defined as
C = 0 - C.) Thus, the elementary query to find all the objects of the category C, can be
answered by examining the (inverted) facts whose prefix is C. These inverted facts are
clustered together in the lexicographic order of the physical database.

2. In addition to xRv, where v is a concrete object (a number, a string, or a value of another
type), we store Rvx. Thus, the elementary range query 'For given R, I and h find all the
facts xRy such that I ~ y ~ h' is satisfied by all and only the inverted facts which are
positioned in the file between RI and RhHighSuffix. (HighSuffix is a suffix which is
lexicographically greater than any other possible suffix.) Thus, the result will most
probably appear in one physical block, if it can fit into one block.

3. In addition to xRy, where both x and y are abstract objects, we store yRx. Thus, for any
abstract object x, all its relationships xRy, xRv, zRx, and xC can be found in one place in
the file: the regular and inverted facts which begin with the prefix x. (The infixes are:

Interval-based approach 349

categories fot xC, relations for xRy and xRv, and inverse relations xRz from which we
find z such that zRx.)

The 'records' of the B-tree are the regular and inverted facts. The records are of varying
length. The B,-tree-keys of the 'records' are normally the entire B-tree-records, i.e. facts,
regular and inverted. (An exception to this is when the record happens to be very long. The
only potentially long records represent facts xRv where v is a very long character string. We
employ a special handling algorithm for very long character strings.) Access to this B-tree
does not require knowledge of the entire key: any prefix will do. All the index blocks of the
B-tree can normally be held in cache.

At the most physical level, the data in the facts is compressed to minimal space. Also,
since many consecutive facts share a prefix (e.g. an abstract object identifier) the prefix need
not be repeated for each fact. In this way the facts are compressed further. The duplication
in the number of facts due to the inverses is 100%, since there is only one inverse per each
original fact. The B-tree causes an additional 30% overhead. (This overhead occurs because
in a B-tree the data blocks are only 75% full on the average, though this can be improved by
periodic reorganization. The overhead due the index blocks of the B-tree is no more. than
1-2% since they contain only one short fact for every data block.) The total space used for
the database is therefore only about 160% more than the amount of information in the
database, i.e. the space minimally required to store the database in the most compressed
form with no regard to the efficiency of data retrieval or update. No separate index files are
needed.

The scheme proposed in this paper is employed to encode the numbers in the facts. The
following are the most important of the scheme's properties utilized:
1. Bitwise lexicographic comparison of the encodings coincides with the meaningful com­

parison of numbers. Our B-tree search algorithms operate on and compare variable
strings like xRy, where y can be character string or a number encoding, transparently to

. the low-layer software of file-management.
2. There is no limit on arbitrarily large, arbitrarily small, or arbitrarily precise numbers. This

should be a requirement of any fully-flexible semantic database management system.
Additionally, in our implementation, this requirement is particularly important since all
of the facts xRy for various attribute relations R are stored in the same file and treated in
the same way. We do not wish to set a limit on the range of the data at the time of the
design or creation of the file.

3. Every number bears its own precision, i.e. the precision is not uniform throughout the
database. (This allows integers, reals, and values of different attributes with different
precisions to be treated in a uniform way in one file in the database.)

4. The encodings are of varying length and are approximately maximally space efficient with
respect to their informational content.

5. No additional byte(s) are required to store the length of the encoded representation or to
delimit its end. The absence of delimiters gives some additional saving in space (at least
for those numbers whose encodings are shorter than 7 bytes), and also facilitates the
handling of records.

The file management software, which is the lowest layer of the DBMS, sees the numbers
only in the encoded form and does not distinguish between numbers, strings, etc. The same
applies to the intermediate layers of the DBMS, such as fact representation, integrity
handling, concurrency control, query evaluation, etc. The encoding and decoding is done in
the user interface software. This keeps the system simple and efficient.

The user interface layer of the system includes two functions: encode: String~ String and
its inverse decode. The encode function takes a printable number representation (a variable
length string), e.g. '-2.34E107' or '102.3', and converts it into the encoded byte-string. The

350 N. Rishe

encode/decode functions work when the data comes from/goes to a human user. These
functions are not quite sufficient when the data originates from or is retrieved into a user's
program. (Such a program may be written in a data manipulation language which is an
extension of a regular programming language.) In this case, the program's numbers are first
converted into their printable form and then encoded by the function encode.

The most important properties of the encodings are the lexicographic comparability, the
variable length, and the uniformity between different data types. Another important
property is the compactness (small sizes), as illustrated by the following example.

As an example, consider the following subschema of a database.

EMPLOYEE

employee-name: String works in PROJECT

birth-year: 0 .. 90
(many-to-many) description: String

number-of-dependents: 0 .. 100 budget: 0.00 .. 100,()()(J,(}()()
annual-salary: 0.00 .. 6,000,000.00
overtime-hourly-pay: 0. 00 .. 100. 00

Consider the representation of attribute values for a hypothetical set of 10 employees.
The salaries are: 20500.25, 11700, 9E4, six times 25E3, 1E6. The average size in the

printable format (plus delimiters): 5.3. The average size in the encoded format: 2.2. The size
of each number in the fixed-size decimal float format: 8 (The latter size depends on the
programming language and the environment. Alternatively, a fixed-point 9-digit decimal
format may be used, which takes 5 bytes.)

The numbers of dependents are: seven times 0, 2, 2, 4. The average size in the printable
format (plus delimiters): 2. The average size in the encoded format: 1. The size of each
number in the fixed-size small-integer format: 2.

The overtime hourly pay numbers are: eight times 0 (meaning: no overtime pay allowed),
6.35, 12.20. The average size in the printable format (plus delimiters): 2.7. The average size
in the encoded format: 1.2. The size of each number in the fixed-size decimal format: 3.
(Assuming that the programming language allows a fixed-point decimal format with 5
decimal digits stored in two digits per byte.) ·

The birth years are: 40, 45, 60, 60, 61, 61, 61, 63, 64, 64. The average size in the printable
format (plus delimiters): 3. The average size in the encoded format: 1. The size of each
number in the fixed-size small-integer format: 2.

If we must have one fixed-size format for all the above numbers (as well as for other
present and future attributes in the database), that would be the decimal float, with the size 8
(depending on the language and the environment and provided no number with more than
12 significant decimal digits will ever be stored in the database.)

The following are some of the facts in this database.

objectl EMPLOYEE
objectl #DEPENDENTS 0
objectl SALARY 9000
objectl WORKS-IN object2
objectl WORKS-IN object3

Interval-based approach 351

The objects are represented by integers. For example, objectl is represented by t~~
number 36. The schema concepts, such as EMPLOYEE and WORKS-IN, are represented,
by small integers. Under the assumption that there are less than 80 schema concepts, the
above 5 facts~ sizes are: 2 (1 byte for the representation of objectl + 1 byte for the
representation of the category - no delimiters needed); 3 (1 + 1 + 1); 3 (1 + 1 + 1); 3
(1+1+1); 3 (1+1+1). (In this estimate, objectl is encoded by just 1 byte, encode('36').
When the database grows, some other objects will be encoded by two or more bytes.)

References

[1] J.R. Abrial, Data semantics, in J.W. Klimbie and
K.L. Koffeman, eds., Data Base Management
(North-Holland, Amsterdam, 1974).

[2] D. Matula and P. Komerup, An order preserving
finite binary encoding of rationals, Proc. 6th
Symp. on Computer Arithmetics (IEEE Compu­
ter Society Press, Silver Spring, MD, 1983).

[3] N. Rishe, Database Design Fundamentals: A
Structured Introduction to Databases and a Struc­
tured Database Design Methodology. (Prentice­
Hall, Englewood Cliffs, NJ, 1988).

[4) N. Rishe, Transaction-management system in a
fourth-generation language for semantic datab­
ases, in: Mini and Microcomputers: From Micros
to Supercomputers (Proc. ISMM Internat. Conj.
on Mini and Microcomputers, Miami Beach, Dec.
14-16, 1988; M.H. Hamza, ed.) (Acta Press,
1988) 92-95.

[5.J N. Rishe, Semantic database management: From
microcomputers to massively parallel database
machines, Keynote Paper, Proc. Sixth Symp. on
Microcomputer and Microprocessor Applications,
Budapest (Oct. 1989) 1-12.

[6) N. Rishe, Database Design: The Semantic Model­
ing Approach (McGraw-Hill, New York, 1992).

[7] N. Rishe, A file structure for semantic
databases., Inform. Syst. 16(4) (1991) 375-385.

[8] N. Rishe and W. Sun, A predicate calculus lan­
guage for queries and transactions in semantic

databases, in: N. Rishe, S. Navathe and D. Tai,
eds. Databases: Theory, Design and Applications
(IEEE Computer Society Press, Silver Spring,
MD, 1991). 204-221.

[9) N. Rishe, D. Tai and Q. Li, Architecture for a
massively parallel database machine, Microp­
rocessing Microprogramming 25 (1989) 33-38.

[10] G. Salton, Automatic Text Processing (Addison­
Wesley, Reading, MA, 1989).

Dr. Rishe is an Associate Pro­
fessor of Computer Science at
Florida International Universi­
ty. Dr. Rishe's publications on
databases and related issues
include two books (Database
Design Fundamentals: A Struc­
tured Introduction to Data­
bases and a Structured Data­
base Design Methodology,
Prentice-Hall, 1988; Database
Design: The Semantic Modell­
ing Approach, McGraw-Hill,

1992) and many papers. Dr. Rishe chaired the steering
and program committees of the PARBASE-90 confer­
ence. Dr. Rishe also has extensive experience in data­
base applications and database S¥Stems in the industry.
This included eight years of employment as head of
software and database projects (1976-84) and later
consulting for companies such as Hewlett-Packard.
Prof. Rishe has a Ph. D. in Computer Science from
Tel Aviv University.

