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This paper proposes a new method of encoding numbers by variable-length byte-strings. The primary 
property of the encoding is that the lexicographic comparison of the encoded numbers corresponds correctly 
to the order of the real numbers. The encoding is space-efficient. Further, unlike the fixed-length 
representations of numbers (fixed-point, floating-point, etc.,) the encoded numbers are not limited in their 
magnitude or the number of their significant digits. The paper also elaborates the application of the encoding 
method to the storage of numeric data in databases. The proposed application for databases is a uniform 
format for all the numbers, regardless of their types and attributes (fields). All the numbers are represented 
in a form of lexicographically-comparable byte-strings. This form simplifies the data management software 
(only one format to deal with at the physical database level) and hardware (when associative memory and 
storage devices etc. are used); makes the applications more flexible (by removing limitations on the sizes of 
numbers); and is space-efficient for all numbers while being especially concise for those numbers that are 
used more frequently in databases. 

Keywords. Numeric data fields; number encoding; comparison operations; databases; file structures; com­
pactness of data; data independency; formats; floating point; variable-length data fields; real numbers; data 
compression. 

1. Introduction 

Many applications require compact variable-length representations of arbitrary numbers. 
Among such applications are some advanced database management systems. These systems 
make the data formats transparent to the user. Furthermore, these systems should allow a 
logical field to hold numbers o~ unpredictably large or small magnitude and unpredictably 
varying precision, if the user's logic warrants this. I shall call this requirement 'unboundness'. 
The typical representations of numbers, such as floating point or fixed point formats, fail the 
'unboundness' requirement. (For example, in any fixed-point format the number of bits, n, is 
the application's constant, and, therefore, when a datum exceeding 2n is input, it cannot be 
represented.) A representation which satisfies the 'unboundness' requirement is the standard 
mathematical notation (on ~aper) using a variable-length string of arabic numerals and 
exponent (e.g. -3.57 x 10- 1 1

), or its imitation in computer printouts (e.g. -3.57E-101). 
A further requirement on the number representation is the efficiency of the application's 
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typical operations. The predominant operations performed on stored numbers in databases 
and many other applications are comparisons (=, >, etc.), rather than the arithmetic 
operations (i.e. +, x, etc., which are more typical for applications involving engineering 
calculations). This is true even in those data bases where the bulk of updates involve 
arithmetic adjustment of values (e.g. accounting databases)-most of the effort in such 
databases is spent on finding the data in the database, which involves comparisons, not 
arithmetics. Consider, for example, a search for a record with a given key value in an 
index-sequential or B-tree file, or in associative memory or storage device (e.g. a disk with a 
controller capable of string search and comparison). The efficiency of such applications 
would benefit if numbers could be handled as character strings. For example, in most cases 
the result of a lexicographic comparison of two long character strings can be found by 
comparing their short prefixes, while the whole strings need not be scanned or even retrieved 
from the storage devices. This would also simplify the hardware and lower-level software 
(i.e. microcode or software resident in the storage device or its controller) since they would 
not have to distinguish between numbers and character strings, i.e. they would store and 
compare numbers in the same way they work for character strings. I shall call this 
requirement 'lexicographic comparability'. 

This paper proposes an encoding of numbers which is unbound, lexicographically compar­
able, and compact. The properties of the encoding are fully defined in Section 2. Section 3 
describes the proposed method of representing numbers. The method can be adapted to 
different types of applications by choosing a 'tree of intervals' which is more efficient for a 
particular type. Section 4 proposes such a 'tree of intervals' for database applications. 

2. Specification of requirements 

The encoding of numbers E: Numbers-+ ByteStrings proposed in this paper satisfies the 
following requirements: 
1. Bitwise-lexicographic comparison of the encodings 1 will coincide with the meaningful 

comparison of numbers, i.e. the order of the real numbers. This is essential for fast search 
of sorted and indexed files containing character strings and numeric data. (This means 
that E(n 1 )"'ings::;;; E(n 2 ) iff n 1reals::;;; n2 • Thus, e.g., if n1 is encoded by a byte string b:b;b; 
and n2 is encoded by a byte string b:b;b;b~, where b; < b; (i.e. the first byte in this 
example is identical in the two strings, while the second byte of the second string is 
greater than the second byte of the first string), then n1 < n2 .) The conventional 
representations of numbers do not allow bitwise comparison. (Consider, for example, the 
representation of floating point numbers by mantissa and exponent.) 

2. There is no limit on arbitrarily large, arbitrarily small, or arbitrarily precise numbers. 
(The precision of a number is the number of its significant digits in the standard 
mathematical notation on paper.) In a database or a file we wish to be able to compare 
and store integers, real numbers, numbers with very many significant digits, and numbers 
with just a few significant digits. We wish to have one uniform format to represent all 
these kinds of numbers. We do not wish to set a limit on the range of the data at the time 
of the design of the file formats. For example, the number '1T truncated after the first 1000 
digits is a very precise number of 1000 significant digits. The number 10100 is large, but 

1 A bit-string (or byte-string) v is (bitwise-) lexicographically ,,,;; than a string w iff w = vu for some string u (i.e. v 
is a prefix of w) or for some strings x, y, and z, v = xy and w = xz and the first bit of y is 0 and the first bit of z is '1' 
(x may be empty). 
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not precise -: it has only one significant digit. We need one common format convention to 
represent both numbers. 

3. Every number bears its own precision, i.e. the precision is not uniform. (In a database, 
the varying precision will allow us to treat integers, reals, and values of different 
attributes with different precisions, in a uniform way in one file in the database.) 

4. The encodings are of varying length and are about maximally space efficient with respect 
to their informational content. For example, consider the following three numbers having 
only one significant digit each : 3,000,000; 5; o.ooo,ooo,ooo,ooo,ooo,7. Each of these three 
numbers should require only a few bits each, while the number 12345678. 90 should 
require many more bits. The number of bits in the representation of a number should be 
approximately equal to the amount of information2 in that number. 

5. No additional byte(s) are required to store the length of the encoded representation or to 
delimit its end: the representation should contain enough information within itself so that 
the decoder would know where the representation of one number ends and where that of 
the next number begins (within the same record in the file). The absence of delimiters 
facilitates the handling of records. It also results in the saving of space, at leas.t for 
numbers whose encodings are short. For example, if we were to use a scheme with 
delimiters, the shortest numbers would be represented by two bytes: one for the contents 
and one for the delimiter; in a non-delimiter scheme one byte will suffice for the shortest 
numbers. 

6. The representation of numbers is one-to-one. For example, there should not be several 
representations for the number zero, as there are in the mathematical notation on paper: 
0, 0.00, -0.0, OE23, OEO. (This means that the encoding E is a function. Furthermore E 
is 1: 1. Thus, E(x) = E(y) iff x = y.) 

7. The encoding and decoding should be relatively efficient (linear in the length of the data 
string), but they need not be as efficient as comparisons. The database system can handle 
encoded numbers in all the internal operations, and translate them only on input/ output 
to the external user. The translation can be done in user interfaces. 

The conventional computer encodings of numbers do not satisfy the requirements of 
lexicographic comparability, unboundness, and others. The lexicographic comparability 
requirement is satisfied by a method proposed in [2]. Their encoding works nicely with small 
integers and with rational numbers p/ q where p and q are of the same order of magnitude. It 
is not useful for numbers with large exponents. Nor can their encoding be tuned for 
databases as discussed in Section 4. On the other hand, their encoding has interesting 
properties useful for numeric processing, which is not a goal of the method that I propose 
below. [2] is based on the continued fraction theory. The encoding that I propose below is 
based on building an infinite tree of intervals of the real numbers, with the interval (-oo, oo) 
at the root. The children of a node partition the parent interval into sub-intervals. (Although 
the tree is infinite, the algorithm by which the children of a node are generated is finite.) 

Among applications of the encoding method proposed in this paper is the implementation 

2 The amount of information in an arbitrary number roughly corresponds to the size of the most compact 
representation of that number. The amount of information in a decimal number is roughly the number of its 
significant digits times log2 10. Thus, the amount of information in 0.00056 is roughly 2 x log2 10 = 6.6, because this 
number has only two significant digits. This rough estimate does not include the usually small information contained 
in non-redundant leading and trailing zero digits. If the number of such zero digits is z then the additional 
information is log2 z. The number 0.00056 has three such zeros; thus the additional information amounts to 
approximately log2 3 = 1.6. The number 123,456, 789 ,000,000,000,000 has 9 significant digits and 12 non-redundant 
trailing zeros. Its amount of information is approximately 9 x log2 10 + log2 12 = 33.5. The above way to estimate 
the amount of information is appropriate to arbitrary numbers that do not come from a known context or 
application or distribution frequencies. A deeper discussion on the subject can be found in [10]. 
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of the Semantic Binary Database Model [3, 6, 5], by an efficient data structure [7] and by a 
database machine [9]. 

3. The method of representing numbers 

The input number v is translated into a sequence (string) of bytes. 
The least significant bit3 of each byte is the continuation bit: '1' means 'more bytes to 

follow', 'O' means 'the current byte ends the number's encoding'. The other 7 bits of the byte 
give partial information about the number v by specifying which one of 128 intervals the 
number falls into. The intervals are not necessarily of equal length, and some may be 
infinite. Thus, the first byte specifies a partitioning of (-oo, +oo) into 128 intervals 

(-oo, a1), [a1' a1), [a2, a3), · · · '[a121' 00) 

All the intervals except the first one are closed on the left and open on the right. The 
interval boundaries a1, ••• , a127 are constants (they may depend on the application: one 
partitioning is better for database management systems, while another may be preferable for 
manufacturing control). 

The first seven bits of the byte give the interval number, i + l(i = 0, 1, ... , 127), of one of 
the 128 intervals [a 0 a;+ 1). When the continuation bit is zero, the number vis a0 which is 
the lower boundary of the interval. (Notice that there is no lower boundary in the first 
interval, (-oo, a1 ), since it is open on the left.) Otherwise, when the continuation bit is 'l', it 
is known that v is inside the interval (a;, a;+i) and further information is provided by the 
bytes that follow. 

The boundaries of the intervals are selected in such a way as to minimize the average 
length of encoding of numbers in the application. Particularly, numbers which appear most 
frequently in the application should be encoded by just one byte. That is, those numbers 
must be the lower boundaries of the intervals in the partitioning specified by the first byte. 

The second byte partitions the interval (a;, a;+i) into 128 sub-intervals: 

and so forth in the bytes that follow. 
The interval boundaries can and must be chosen in such a manner so as to satisfy all the 

requirements from the encodings as listed above. 
The tree of all intervals is infinite, but the interval boundaries must be constants 

hard-coded in the application's encoding algorithms. Thus, the algorithm must be able to 
generate those constants by a finite number of interval-partitioning methods known to the 
algorithm. The simplest interval-partitioning method is the 'arithmetic sequence': an interval 
(x, y), where both x and y are finite, is partitioned into 

( 
y- x) 

X, y + 128 ' ... ' 

[ 
y-x . y-x . ) 

x + 
128 

x z, x + 
128 

x (z + 1) ,. · · , 

[ 
y- x ) 

x + 128 x 127' y 

3 A byte is regarded as a bit strings of 8 bits. Its least-significant bit (for the purpose of comparison) is the 
rightmost bit of the string. Thus, the least significant bit of 101010102 is 'O'. 
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Fig. 1. Encoding of the number 35.01237 by 3 bytes. 
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+oo 

(In the above, the first interval is open, and the remaining 127 left-closed intervals 
correspond to i = 1, 2, ... , 127.) 

However, for most intervals the use of the 'arithmetic sequence' is either impossible (e.g. 
one cannot partition an infinite interval into equal subintervals) or would violate some of the 
requirements of the encoding. In some incorrect partitionings it would happen that the 
decimal precision of v is less than the size of an interval, but v is not the lower boundary of 
the interval and many additional bytes would be needed to zero down on the number v. That 
would not be a compact representation. A correct partitioning must avoid such situations. 

Consider, as an example, a possible encoding of the number 35.01237 as shown in Fig. 1. 
Assume that one of the intervals in the first byte is [35, 36). Say, e.g., it is the interval #38. 
It may be, that the algorithm further partitions the interval (35, 36) so that there is a 
sub-interval #13 which is [35.012, 35.013). The second byte would indicate interval #13 and 
continuation bit 'l'. It may be that the algorithm further partitions the interval [35.012, 
35.013) so that there is a sub-interval #56 which is [35.01237, 35.01238). Since the original 
number is the lower boundary of this sub-interval, the third and last byte would indicate 
interval #56 and continuation bit 'O'. 

An example of a correct tree of intervals particularly suitable for database applications is 
given in the last section. 

Theorem. Bitwise lexicographic comparison of the encodings coincides with the meaningful 
comparison of numbers, i.e. the order of the real numbers. 

A proof is given in Appendix 1. 

4. A tree of intervals suggested for database systems 

In many database applications, the most frequent numbers include: zero, small positive 
integers, the number '-1' (which is often abused to represent null values), numbers with two 
decimal digits after the period (representing dollars and cents). Also, most numbers in a 
database normally have originated in a decimal form from a human user, or are the results of 
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simple arithmetic operations on those decimal numbers. (Notice that the prec1s10n of a 
number as measured by the number of its significant digits crucially depends on the digit 
base, e.g. the number 1/8 has only 1 significant octal digit: 0.1 8 , but three significant decimal 
digits: 0.125 10 ; whereas the opposite holds for the number 1/ 10.) The tree of intervals for 
databases should provide an especially concise representation of the numbers occurring more 
frequently in databases, but also to satisfy all the requirements of Section 2 for all the 
rational numbers having a finite number of significant decimal digits. 

The following is a recommendation for the tree of intervals for database management 
systems. Although the tree is infinite, it is fully defined by 7 small fixed tables. There are 
seven types of partitioning within the tree: 
1. 'first-byte', for the initial interval (-oo, +oo) (Table 1 ). The partitioning scheme proposed 

Table 1 
Partitioning of (-oo, oo) in the first byte 

Sub-interval # Sub-interval Partitioning of sub-interval 

(-oc, -1) 'semi-progressive to -oo' 
2 (-1,0) 'semi-progressive to -0' 
3 (0, 1) 'semi-progressive to +0' 
4 (1, 2) 'semi-arithmetic' 
5 (2, 3) 'semi-arithmetic' 

82 (79, 80) 'semi-arithmetic' 
83 (80, 90) 'semi-arithmetic' 
84 [90, 100) 'semi-arithmetic' 
85 [100, 200) 'semi-arithmetic' 
86 (200, 300) 'semi-arithmetic' 
87 (300, 400) 'semi-arithmetic' 
88 (400, 500) 'semi-arithmetic' 
89 [500, 600) 'semi-arithmetic' 
90 [600, 700) 'semi-arithmetic' 
91 (700, 800) 'semi-arithmetic' 
92 [800, 900) 'semi-arithmetic' 
93 (900, 1000) 'semi-arithmetic' 
94 (1000, 1128) 'successive-integers' 
95 [1128, 1256) 'successive-integers' 
96 (1256, 1384) 'successive-integers' 
97 (1384, 1512) 'successive-integers' 
98 [1512, 1640) 'successive-integers' 
99 [1640, 1768) 'successive-integers' 

100 [1768, 1896) 'successive-integers' 
101 [1896, 2000) 'successive-integers' 
102 [2000, 3000) 'semi-arithmetic' 
103 (3000, 4000) 'semi-arithmetic' 

109 [9000, 10000) 'semi-arithmetic' 
110 [ 10000, 20000) 'semi-arithmetic' 
111 [20000, 30000) 'semi-arithmetic' 

117 (80000, 90000) 'semi-arithmetic' 
118 (90000, 1E5) 'semi-arithmetic' 
119 [1E5, 2E5) 'semi-arithmetic' 
120 [2E5, 3E5) 'semi-arithmetic' 

127 (9E5, 1E6) 'semi-arithmetic' 
128 (1E6, +oo) 'semi-progressive to +oo' 
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for the first byte, i.e. the interval (-oo, +oo), is designed in such a way that: 
a. Many most frequently used integers of many typical applications are represented by 

just one byte, i.e. the first byte is terminal. 
b. The above is also true for many single-significant-digit numbers, e.g. 2000, 300000, 

1000000. 
c. The sub-intervals grow larger and larger towards the edges of the interval. 
d. The interval boundaries are established in such a way so as to allow a short 

representation of the remainder of the number being encoded by successive bytes. 
2. 'successive-integers', normally partitioned into 128 equal sub-intervals (Table 2). This is 

useful for partitioning intervals like [1512, 1640), so that e.g. the number 1545 could be 
encoded by just two bytes. 

3. 'semi-arithmetic', in which an interval is partitioned into 97 sub-intervals of size 1 % and 
30 sub-intervals of size 0.1% of the original interval (Table 3). This is useful for 
partitioning intervals like [5, 6); [800, 900); [21.5436456546, 21.5436456547). Thus, a byte 
with semi-arithmetic partitioning adds at least two significant decimal digits to the 
information about the number. In some cases it adds 3 significant digits. The author has 
chosen to cluster the latter cases at the edges of the interval because he believes that 
numbers like 500.1 and 599.9 are somewhat more frequent in databases than 535.7, due 
to the rounding errors. In the proposed scheme, the numbers 500.1 and 599.9 are 

Table 2 
Successive-integers partitioning of interval (L, R). All the sub-intervals of (L, R) 
have the 'semi-arithmetic' partitioning (see Table 3). Examples are given for 
interval (1000, 1128). When R - L = 128, the successive-integers partitioning 
becomes 'arithmetic sequencing'. (R - L ¥-128 only for the interval (1896, 2000)) 

Sub-interval # 

1 
2-128 

Table 3 

Sub-interval 

(L, L + 1) 
for j = 2 .. 128: [L + j-1, L + j) 

Example 

(1000, 1001) 
[1001, 1002) 

[1127, 1128) 

,. ,.-;t 

Semi-arithmetic partitioning of interval (L, R). All the sub-intervals have the 'semi-arithmetic' partitioning:•& well. 
Examples are given for interval (7, 8) (i.e. L = 7, R = 8) ,' .· ' 

Sub-interval # Sub-interval 

(L,L+ ~~) 
2-20 . [ . R-L .R-L) 

for1=2 .. 20: L+(J-1) lOOO ,L+J lOOO , , 

21-117 . [ . R-L _R-L) 
foq = 3 .. 99: L + (J - 1) lOO , L + J lelo 1 

1.:j 

118-127 for j = 991 .. 1000: [ L + (j- 1) ~~ , L + j ~~) 
; )-',' ~ '. ~ '~ ' • , : \ j ! : . 

; ~ . . 

Example 

-. '_ (7~'7:0@1) 
l : •• ' 'J '!i'. 

[7:oor; 7.00~) 

[7.019, 7.02) 

[7.02, 7,.,G3) • 

[7.98, W9)-, 

[7.990, 7.991) 

[7.999, 8) 
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Table 4 
Semi-progressive to +oo partitioning of interval (L, R). Examples are given for interval (IE6, 00) 

Sub-interval # Sub-interval Example Sub-interval partitioning 

1 (L, 2L) (1E6, 2E6) 'semi-arithmetic' 
2-99 forj=2 .. 99: [jL,L+jL) [2E6, 3E6) 'semi-arithmetic' 

[99E6, 100E6) 'semi-arithmetic' 
100-108 for j = 1 .. 9: [IOOjL, IOOL + IOOjL) [1E8, 2E8) 'semi-arithmetic' 

[9E8, IOE8) 'semi-arithmetic' 
109-117 for j = 1 .. 9: [lOOOjL, lOOOL + lOOOjL) [1E9, 2E9) 'semi-arithmetic' 

[9E9, IOE9) 'semi-arithmetic' 
118-126 for j = 1 .. 9: [lOOOOjL, lOOOOL + lOOOOjL) [lElO, 2EIO) 'semi-arithmetic' 

[9EIO, IOEl ) 'semi-arithmetic' 
127 [L x lES, min(R, L x lElO)) [lEll, 1E16) 'semi-progressive to + oo' 
128 [L x lEIO, R) [1E16, oo) 'semi-progressive to +oo' 

represented by two bytes each, whereas 535.7 requires 3 bytes. If it were not for 
rounding-error consideration, it would not matter where to cluster the 3-digit sub­
intervals. 

4. 'semi-progressive to +oo' (Table 4), used for intervals of type [L, oo) 
5. 'semi-progressive to -oo' (Table 5) 
6. 'semi-progressive to +0' (analogous to -oo.) This is used for intervals like (0, H), where 

His a number of very small absolute value. 
7. 'semi-progressive to -0' (analogous to +oo). This is used for intervals like (L, 0), where L 

is a negative number of very small absolute value. 
The above encoding satisfies the requirements of section 2 and also the following property of 
short representation of numbers frequently used in databases: 
(a) 127 numbers are represented in a single byte (including the delimiter). These numbers 

include: 
•all integers from -1 to 80; 
• all positive numbers having only one significant digit from 90 through the number 

1,000,000. 

Table 5 
Semi-progressive to -oo partitioning of interval (L, R). Examples are given for interval (-oo, -1E6) 

Sub-interval # Sub-interval Example Sub-interval partitioning 

1 (L, Rx lEIO) (-oo, -1E16) 'semi-progressive to -oo' 
2 [max(L, Rx lElO), Rx lES) [-1El6, -lEll) 'semi-progressive to -oo' 
3-11 for j = 9 .. 1: [lOOOO(j + l)R, lOOOOjR) [- lOEIO, -9E10) 'semi-arithmetic' 

[-2El0, -lElO) 'semi-arithmetic' 
12-20 for j = 9 .. 1: [lOOOR + IOOOjR, lOOOjR) [-10E9, -9E9) 'semi-arithmetic' 

[-2E9, -IE9) 'semi-arithmetic' 
21-29 for j = 9 .. 1: (lOOR + lOOjR, lOOjR) [-10E8, -9E8) 'semi-arithmetic' 

[-2E8, -1E8) 'semi-arithmetic' 
30-128 forj=99 .. l: [R+jR,jR) [-100E6, -99E6) 'semi-arithmetic' 

[-2E6, -1E6) 'semi-arithmetic' 
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(b) 16383 numbers are represented by at most two bytes (including the delimiter.) These 
numbers include: 

• all integers from -100 to + 2000 
•all dollars-and-cents between $-1.00 and $80.00 
• all positive numbers having only three or less significant digits from the number 1 through 

the number 1,000,000. 
(c) Numbers with many significant digits require on the average less than 0.5 bytes per 

significant digit. 
Table 6 gives an example of encoding the number 35.01237 by the 3-byte self-delimiting 
string 010010110001100101101110, i.e. hexadecimal 4B196E. 

The algorithm of encoding has been implemented and runs efficiently under the UNIX and 
VMS operating systems. More discussion of this can be found in Appendix 2. 

Table 6 
An example of encoding the number 35.01237 

Byte Interval Interval Binary for Continuation Byte 
nbr. nbr. (intrv# - 1) bit code 

1 [35, 36) 38 0100101 01001011 
2 [35.012, 35.013) 13 0001100 1 00011001 
3 [35.01237,35.01338) 56 0110111 0 01101110 
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Appendix 1. Proof of the theorem 

Theorem. Bitwise lexicographic comparison of the encodings coincides with the meaningful 
comparison of numbers, i.e. the order of the real numbers. 

Proof. Consider two input numbers v1 > v2 • Assume v1 is encoded by a byte string 
E 1 = b~b;b; · · · b~ and v2 is encoded by a byte string E2 = bib;b; · · · b~. We have to show 
that lexicographically E 1 > E2 • 

Assume the contrary: E 1 ~ E2 • This can be one of the following cases: 
1. For some k > 0, bi< bi and b: = b7 for 1 ~ i < k. (This means that the two encodings 

have an identical, possibly empty prefix, after which the byte in £ 2 is greater than the 
corresponding byte in E 1 .) 

a. If bi and b! differ only in the least significant bit, then the kth byte puts both numbers 
in the same interval/. The least significant bit of b! is thus '1', meaning that v2 is inside 
I, while the least significant bit of bi is 'O', meaning that v1 is the lower boundary of 1. 
Thus, v < v2 , a contradiction. 

b. The first seven bits of b~ are lexicographically less than those of b!. Therefore, v1 falls 
into an interval / 1 and v2 into 12 , where 11 precedes 12 • Thus v1 < v2 in contradiction. 
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2. E1 is a prefix of E2 , i.e. E2 = E1s, wheres is any string. The last byte of every encoding 
has continuation bit 'O' (meaning it is the end of the string). Thus, the last byte of E 1 has 
continuation bit 'O'. But the last byte of E1 is also the byte before s in E2(E2 is E 1 

followed bys). Thus, the byte before s has continuation bit 'O', meaning that it is the last 
byte in E2 • Thus s must be empty. Thus E2 = E1 • Thus v1 and v2 are each the lower 
boundary of the same interval defined by the byte-string E 1 • Thus, v 1 = v1 , a 
contradiction. D 

Appendix 2. An implementation 

We have utilized this scheme for number encoding in our semantic binary database 
management system [7]. The semantic data model used is a modification [3, 6] of the Binary 
Model of [1]. The implementation is based on an algebra-like low-level access language [6], 
such that an arbitrary query can be performed as one or several elementary queries of the 
language. Most elementary queries, including such non-trivial queries as range queries and 
others, can be performed in just one single access to the disk. Queries in higher-level 
languages, like the Semantic Predicate Calculus [8] and the fourth-generation semantic 
extension of Pascal [4] are translated into elementary queries of the low-level access 
language. 

Logically, at any moment in time the database is a set of facts about abstract objects, which 
are entities of the real world represented by identifiers invisible to the user. The facts are: 
the unary facts xC stating that an object whose identifier is x belongs to a category whose 
identifier is C; and binary facts xRy stating that there is a relationship, R, between x and y, 
where x is an abstract object's identifier and y is an abstract object's identifier or a concrete 
object, i.e. a number, a character string, a date, etc. Non-binary relationships are decom­
posed into binary relationships. 

The entire database is stored in a single file. This file contains all the facts of the database 
(xC and xRy) and additional information, called inverted facts, which are described below. 
The file is maintained in a format similar to a B-tree. The variation of the B-tree used here 
allows sequential access according to the lexicographic order of the items comprising the 
facts and the inverted facts, as well as random access by arbitrary prefixes of the facts and 
inverted facts. The facts which are close to each other in the lexicographic order reside close 
together in the file. 

The file contains the original facts and the following 'inverted facts': 
l. In addition to xC, we store its inverse Cx. (C is the system-chosen identifier to represent 

the inverse information about the category C. For example, it can be defined as 
C = 0 - C.) Thus, the elementary query to find all the objects of the category C, can be 
answered by examining the (inverted) facts whose prefix is C. These inverted facts are 
clustered together in the lexicographic order of the physical database. 

2. In addition to xRv, where v is a concrete object (a number, a string, or a value of another 
type), we store Rvx. Thus, the elementary range query 'For given R, I and h find all the 
facts xRy such that I ~ y ~ h' is satisfied by all and only the inverted facts which are 
positioned in the file between RI and RhHighSuffix. (HighSuffix is a suffix which is 
lexicographically greater than any other possible suffix.) Thus, the result will most 
probably appear in one physical block, if it can fit into one block. 

3. In addition to xRy, where both x and y are abstract objects, we store yRx. Thus, for any 
abstract object x, all its relationships xRy, xRv, zRx, and xC can be found in one place in 
the file: the regular and inverted facts which begin with the prefix x. (The infixes are: 
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categories fot xC, relations for xRy and xRv, and inverse relations xRz from which we 
find z such that zRx.) 

The 'records' of the B-tree are the regular and inverted facts. The records are of varying 
length. The B,-tree-keys of the 'records' are normally the entire B-tree-records, i.e. facts, 
regular and inverted. (An exception to this is when the record happens to be very long. The 
only potentially long records represent facts xRv where v is a very long character string. We 
employ a special handling algorithm for very long character strings.) Access to this B-tree 
does not require knowledge of the entire key: any prefix will do. All the index blocks of the 
B-tree can normally be held in cache. 

At the most physical level, the data in the facts is compressed to minimal space. Also, 
since many consecutive facts share a prefix (e.g. an abstract object identifier) the prefix need 
not be repeated for each fact. In this way the facts are compressed further. The duplication 
in the number of facts due to the inverses is 100%, since there is only one inverse per each 
original fact. The B-tree causes an additional 30% overhead. (This overhead occurs because 
in a B-tree the data blocks are only 75% full on the average, though this can be improved by 
periodic reorganization. The overhead due the index blocks of the B-tree is no more. than 
1-2% since they contain only one short fact for every data block.) The total space used for 
the database is therefore only about 160% more than the amount of information in the 
database, i.e. the space minimally required to store the database in the most compressed 
form with no regard to the efficiency of data retrieval or update. No separate index files are 
needed. 

The scheme proposed in this paper is employed to encode the numbers in the facts. The 
following are the most important of the scheme's properties utilized: 
1. Bitwise lexicographic comparison of the encodings coincides with the meaningful com­

parison of numbers. Our B-tree search algorithms operate on and compare variable 
strings like xRy, where y can be character string or a number encoding, transparently to 

. the low-layer software of file-management. 
2. There is no limit on arbitrarily large, arbitrarily small, or arbitrarily precise numbers. This 

should be a requirement of any fully-flexible semantic database management system. 
Additionally, in our implementation, this requirement is particularly important since all 
of the facts xRy for various attribute relations R are stored in the same file and treated in 
the same way. We do not wish to set a limit on the range of the data at the time of the 
design or creation of the file. 

3. Every number bears its own precision, i.e. the precision is not uniform throughout the 
database. (This allows integers, reals, and values of different attributes with different 
precisions to be treated in a uniform way in one file in the database.) 

4. The encodings are of varying length and are approximately maximally space efficient with 
respect to their informational content. 

5. No additional byte(s) are required to store the length of the encoded representation or to 
delimit its end. The absence of delimiters gives some additional saving in space (at least 
for those numbers whose encodings are shorter than 7 bytes), and also facilitates the 
handling of records. 

The file management software, which is the lowest layer of the DBMS, sees the numbers 
only in the encoded form and does not distinguish between numbers, strings, etc. The same 
applies to the intermediate layers of the DBMS, such as fact representation, integrity 
handling, concurrency control, query evaluation, etc. The encoding and decoding is done in 
the user interface software. This keeps the system simple and efficient. 

The user interface layer of the system includes two functions: encode: String~ String and 
its inverse decode. The encode function takes a printable number representation (a variable 
length string), e.g. '-2.34E107' or '102.3', and converts it into the encoded byte-string. The 



350 N. Rishe 

encode/decode functions work when the data comes from/goes to a human user. These 
functions are not quite sufficient when the data originates from or is retrieved into a user's 
program. (Such a program may be written in a data manipulation language which is an 
extension of a regular programming language.) In this case, the program's numbers are first 
converted into their printable form and then encoded by the function encode. 

The most important properties of the encodings are the lexicographic comparability, the 
variable length, and the uniformity between different data types. Another important 
property is the compactness (small sizes), as illustrated by the following example. 

As an example, consider the following subschema of a database. 

EMPLOYEE 

employee-name: String works in PROJECT 

birth-year: 0 .. 90 
(many-to-many) description: String 

number-of-dependents: 0 .. 100 budget: 0.00 .. 100,()()(J,(}()() 
annual-salary: 0.00 .. 6,000,000.00 
overtime-hourly-pay: 0. 00 .. 100. 00 

Consider the representation of attribute values for a hypothetical set of 10 employees. 
The salaries are: 20500.25, 11700, 9E4, six times 25E3, 1E6. The average size in the 

printable format (plus delimiters): 5.3. The average size in the encoded format: 2.2. The size 
of each number in the fixed-size decimal float format: 8 (The latter size depends on the 
programming language and the environment. Alternatively, a fixed-point 9-digit decimal 
format may be used, which takes 5 bytes.) 

The numbers of dependents are: seven times 0, 2, 2, 4. The average size in the printable 
format (plus delimiters): 2. The average size in the encoded format: 1. The size of each 
number in the fixed-size small-integer format: 2. 

The overtime hourly pay numbers are: eight times 0 (meaning: no overtime pay allowed), 
6.35, 12.20. The average size in the printable format (plus delimiters): 2.7. The average size 
in the encoded format: 1.2. The size of each number in the fixed-size decimal format: 3. 
(Assuming that the programming language allows a fixed-point decimal format with 5 
decimal digits stored in two digits per byte.) · 

The birth years are: 40, 45, 60, 60, 61, 61, 61, 63, 64, 64. The average size in the printable 
format (plus delimiters): 3. The average size in the encoded format: 1. The size of each 
number in the fixed-size small-integer format: 2. 

If we must have one fixed-size format for all the above numbers (as well as for other 
present and future attributes in the database), that would be the decimal float, with the size 8 
(depending on the language and the environment and provided no number with more than 
12 significant decimal digits will ever be stored in the database.) 

The following are some of the facts in this database. 

objectl EMPLOYEE 
objectl #DEPENDENTS 0 
objectl SALARY 9000 
objectl WORKS-IN object2 
objectl WORKS-IN object3 
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The objects are represented by integers. For example, objectl is represented by t~~ 
number 36. The schema concepts, such as EMPLOYEE and WORKS-IN, are represented, 
by small integers. Under the assumption that there are less than 80 schema concepts, the 
above 5 facts~ sizes are: 2 (1 byte for the representation of objectl + 1 byte for the 
representation of the category - no delimiters needed); 3 ( 1 + 1 + 1); 3 ( 1 + 1 + 1); 3 
(1+1+1); 3 (1+1+1). (In this estimate, objectl is encoded by just 1 byte, encode('36'). 
When the database grows, some other objects will be encoded by two or more bytes.) 
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