
'-

CfJ-FS

Information Systems Vol. 16, No.4, pp. 375- 385, 1991
Printed in Great Britain. All rights reserved

0306-4379/91 $3.00 + 0.00
Copyright © 1991 Pergamon Press plc

A FILE STRUCTURE FOR SEMANTIC DATABASES

NAPHTALI RISHE

School of Computer Science, Florida International University-The State University of Florida at Miami,
University Park, Miami, FL 33199, U.S.A.

(Received 25 November 1988; in final revised form 15 October 1990)

Abstract-This paper presents a highly-efficient file structure for the storage of semantic databases. A
low-level access language is presented, such that an arbitrary query can be performed as one or several
elementary queries of the language. Most elementary queries, including such non-trivial queries as range
queries and others, can be performed in just one single access to the disk.

Key words: Semantic databases, implementation, semantic binary model, file structure, query languages,
transactions, indices, B-tree, efficiency, database access primitives, facts, inverted storage

I. INTRODUCTION

Since Abrial [1], many semantic data models have been studied in the computer science literature.
Although somewhat different in their terminology and their selection of tools used to describe the
semantics of the real world, they have several common principles:

• The entities of the real world are represented in the database in a manner invisible
to the user. (Unlike that, in the relational model the entities are represented by the
values of keys of some tables; in the network model the entities are represented
by record occurrences.) Hereinafter, the user-invisible representations of real
world entities are referred to as "abstract objects". The "concrete objects", or
"printable values", are numbers, character strings etc. The concrete objects have
conventional representations on paper and in the computer.

• The entities are classified into types, or categories, which need not be disjoint.
Meta-relations of inclusion are defined between the categories.

• Logically-explicit relationships are specified among abstract objects (e.g. " person
p 1 is the mother of person p2") and between abstract objects and concrete objects
(e.g. "person p 1 has first name 'Jack"). There are no direct relationships among
concrete objects. In most semantic models, only binary relations are allowed, since
higher order relations do not add any power of semantic expressiveness [2-4], but
do decrease the flexibility of the database and representablility of partially
unknown information, and add complexity and potential for logical redundancy
[4].

The advantages of the semantic models vs the relational and older models with respect to database
design and maintenance, data integrity, conciseness of languages and ease of DML programming
have been discussed in many works [e.g. 4]. This paper advocates the potential of an efficient
implementation for the semantic models.

Several semantic data models have been implemented as interfaces to database management
systems in other data models, e.g. the relational or the network model [5]. There are also less typical ,
direct implementations [e.g. 6-8] . The efficiency of an interface implementation is limited to that
of the conventional DBMS, and is normally much worse due to the interface overhead. The direct
implementations are commonly believed to have to be less time-efficient than the conventional
systems, as a trade-off for the extra services that semantic databases provide. However, this author

375

376 NAPHTALI RISHE

contends that the semantic models have the potential for a much more efficient implementation
than the conventional data models. This is due to two reasons:

• All the physical aspects of representation of information by data are invisible to
the user in the semantic models. This creates a greater potential for optimization:
more things may be changed for efficiency considerations, without affecting the
user programs. The relational model has more data independence than the older
models. For example, the order of rows in the tables (relations) is invisible to the
user. The semantic models have even more data independence. For example, the
representation of real-world entities by printable values is invisible to the user. One
may recall that not long ago the relational model was criticized as less efficient
than the network and hierarchical models. However, it is clear now that
optimizing relational database systems have the potential to be much more
efficient than the network and hierarchical system due to the data independence
of the relational model.

• In the semantic models, the system knows more about the meaning of the user's
data and about the meaningful connections between such data. This knowledge
can be utilized to organize the data so that meaningful operations can be
performed faster at the expense of less meaningful or meaningless operations.

In this paper, the author uses the semantic binary model (SBM) (3, 4, 9], a descendant of the model
proposed in Ref. [I]. This model does not have as rich an arsenal of tools for semantic description
as can be found in some other semantic models, e.g. the IFO model [10], SDM [II] (implementation
[12]), the functional model [13] (implementation [7]), SEMBASE [14], NIAM [15, 16, 17], GEM [5] ,
TAXIS (18] or the semi-semantic entity-relationship model [19]. Nevertheless, the SBM has a small
set of sufficient simple tools by which all the semantic descriptors of the other models can be
constructed. This makes SBM easier to use for the novice, easier to implement, and usable for
delineation of the common properties of the semantic models. The results of this paper are
practically independent of the choice of a particular semantic model, and therefore they apply to
almost all of the other semantic models.

The semantic binary model represents the information of an application's world as a collection
of elementary facts of two types: unary facts categorizing objects of the real world; and binary facts
establishing relationships of various kinds between pairs of objects. The graphical database schema
and the integrity constraints determine what sets of facts are meaningful, i.e. can comprise an
instantaneous database (the database as may be seen at some instance of time.)

Example I

Consider a database of which the following is a sub-schema:

• Category COMPANY
• Category PRODUCT
• Relation company-name from COMPANY to the category of values String (I: I)
• Relation description from PRODUCT to the category of values String (I: I)
• Relation manufactures from COMPANY to PRODUCT (m: m)

COMPANY PRODUCT
manufactures

company- name:String 1:1 description :String 1:1

Fig. I. A sub-schema of a database.

The following set of facts can be a part of a logical instantaneous database:

I. object! COMPANY
2. object! COMPANY-NAME 'IBM'

A file structure for semantic databases 377

3. object! MANUFACTURED object2
4. object! MANUFACTURED object3
5. object2 PRODUCT
6. object2 DESCRIPTION 'IBM/SYSTEM-2'
7. object3 PRODUCT
8. object3 DESCRIPTION 'MONOCHROMATIC-MONITOR'

The formal semantics of the semantic binary model is defined in Ref. [20] using the methodology
proposed in Ref. [21]. The syntax and informal semantics of the model and its languages (data
definition languages, 4th generation data manipulation languages, non-procedural languages for
queries, updates, specification of constraints, userviews etc.) are given in Ref. [4]. A non-procedural
semantic database language of maximal theoretically-possible expressive power is given in Ref. [22]
(in this language, one can specify every computable query, transaction, constraint etc.)

The following section proposes an efficient storage structure for the SBM.

2. STORAGE STRUCTURE

2. 1. Abstracted Level

Every abstract object in the database is represented by a unique integer identifier. The categories
and relations of the schema are also treated as abstract objects and hence have unique identifiers
associated with them. Information in the database can then be represented using two kinds of facts,
denoted xC and xRy, where xis the identifier associated with an abstract object, C and Rare the
identifiers associated with a category or a relation, respectively, and y is either an identifier
corresponding to an abstract object or a concrete object (a number or a text string). xC indicates
that the object x belongs to the category C. xRy indicates that the object x is associated with the
object y by the relation R. Logically, the instantaneous database is a set of such facts.

2.2. Goals

2.2.1. Efficiency of retrieval requests

AT the intermediate level of processing queries and program retrieval requests, the queries are
decomposed into atomic retrieval operations of the types listed below. The primary goal of the
physical file structure is to allow a very efficient performance for each of the atomic requests.
Namely, each atomic retrieval request normally requires only one disk access, provided the output
information is small enough to fit into one block. When the output is large, the number of blocks
retrieved is close to the minimal number of blocks needed to store the output information.

(l) aC

(2) aRy
(3) a?

(4) ?C
(5) aR?

(6) ?Ra

(7) a?+ a??+ ??a

IS 16/4--B

Verify the fact aC. (For a given abstract object a and category
C, verify whether the object a is in the category C.)
Verify the fact aRy.
For a given abstract object a, find all the categories to which
a belongs.
For a given category, find its objects.
For a given abstract object a and relation R, retrieve ally such
that aRy. (The objects y may be abstract or concrete.)
For a given abstract object a and relation R, retrieve all
abstract objects x such that xRa.
Retrieve all the immediate information about an abstract
object. (That is, for a given abstract object a, retrieve all of
its direct and inverse relationships, i.e. the relations R and
objects y such that aRy or yRa; and the categories to which
a belongs.) (Although this request can be decomposed into a
series of requests of the previous types, we wish to be able to
treat it separately in order to ensure that the whole request will
normally be performed in a single disk access. This will also
allow a single-access performance of requests which require

378

(8) ?Rv

(9) ?R(vl, v2)

NAPHTALI RISHE

several, but not all, of the facts about an object, e.g. a query
to find the first name, the last name, and the age of a given
person.)
For a given relation (attribute) Rand a given concrete object
(value) v, find all abstract objects x such that xRv.
For a given relation (attribute) R and a given range of
concrete objects [v 1, v2], find all objects x and v such that xRv
and v1 ~ v ~ v2. (The comparison "~" is appropriate to the
type of v).

The elementary queries defined above form a lower-level language of retrieval from semantic
databases. Any query in any language can be solved by performing several elementary queries and
processing their results in the memory.

Example 2.1

Consider the following query in the semantic predicate calculus:

get c.NAME, c.ADDRESS
where cis an LTD-COMPANY and c.YEAR-FOUNDED < 1989 and
exists pin PROD UCT: c MANUFACTURES p and p.COST>=670 and
p.COST < = 680

(This query prints the names and addresses of the limited companies founded before
1989 that manufacture products costing between $670 and $680. It is assumed that
LTD-COMPANY is a subcategory of COMPANY.)

A query processor/optimizer can perform this as follows:

(I) Perform (? COSTS [670, 680]) (resulting, say, in objects p1, p2 , and PJ.)
(2) For each of i in I .. . 3 perform(? MANUFACTURES p1) (let us assume that the union

of the results of the three queries is c1, c2 , c3 and c4).

(3) For each j in I ... 4 perform the elementary (c1? + c1?? + ??c1) , obtaining the immediate
information about the company c1. This includes the information necessary to check
(c.YEAR-FOUNDED < 1989 and c is an LTD-COMPANY) as well as the values of
NAME and ADDRESS to be printed if the result of the latter is positive.

The total number of elementary queries here was 8.

2.2.2. Efficiency of update transactions

Efficient performance of update transactions is required, although more than one disk access per
transaction is allowed.

A transaction is a set of interrelated update requests to be performed as one unit. Transactions
are generated by programs and by interactive users. A transaction can be generated by a program
fragment containing numerous update commands, interleaved with other computations. However,
until the last command within a transaction is completed, the updates are not physically performed,
but rather accumulated by the DBMS. Upon completion of the transaction, the DBMS checks its
integrity and then physically performs the update. The partial effects of the transaction may be
inconsistent. Every program and user sees the database in a consistent state: until the transaction
is committed, its effects are invisible.

A completed transaction is composed of a set of facts to be deleted from the database, a set
of facts to be inserted into the database, and additional information needed to verify that there
is no interference between transactions of concurrent programs. If the verification produces a
positive result, then the new instantaneous database is: [(the-old-instantaneous-database)- (the
set-of-facts-to-be-deleted)]u(the-set-of-facts-to-be-inserted).

A file structure for semantic databases 379

Example 2.2

Consider the database of Example 1.
The following is a transaction to rename Burroughs into Unisys, transfer all business from Sperry to Unisys,

and delete Sperry.

transaction
forb where s COMPANY-NAME 'Burroughs' do

for s where s COMPANY-NAME 'Sperry' do
begin

b.COMPANY-NAME•='Vnisys' ;
for p where s MANUFACTURES p do

relate b MANUFACTURES p;
decategorize s from COMPANY
end

Let us assume that before the transaction the two companies are objects b0 and s0 , respectively and Sperry
manufactures products PI and p2 • The following queries were performed from within this transaction:

(a) ? COMPANY-NAME 'Burroughs' (results in b0)

(b) ? COMPANY-NAME 'Sperry' (results in s0)

(c) s0 MANUFACTURES? (results in {p i ,p2 })

At the end of the programmatic transaction, the accumulated transaction will be (V, D, 1), where V, the
verification specification, is the above three queries with their time-stamps; D is the following specification
of the facts to be deleted:

s0 COMPANY
s0 COMPANY-NAME*
s0 MANUFACTURES*
b0 NA ME*

and I is the following set of facts to be inserted:

b0 NAME 'Unisys'
b0 MANUFACTURES PI
b0 MANUFACTURES p2

2.3. Solution: a File Structure Achieving the Goals

The following file structure supports the above requirements. The entire database is stored in
a single file. This file contains all the facts of the database (xC and xRy) and additional information,
called inverted facts, which are described below. The file is maintained as a B-tree. The variation
of the B-tree used here allows both sequential access according to the lexicographic order of the
items comprising the facts and the inverted facts, as well as random access by arbitrary prefixes
of the facts and inverted facts.

The inverted facts do introduce some physical redundancy (no logical redundancy since they are
invisible to the user), which results in a storage overhead and update-time overhead. However, as
it is shown below, this overhead is not greater than if index structures were used. Of course, it is
impossible to achieve any reasonable retrieval efficiency without physical redundancy, such as the
indices in conventional implementations or the inverted facts proposed in this paper.

The facts which are close to each other in the lexicographic order reside close together in the
file. (Notice, that although technically the B-tree-key is the entire fact, it is of varying length and
on the average is only several bytes long, which is the average size of the encoded fact xRy). The
total size of the data stored in the index-level blocks of the B-tree is < 1% of the size of the
database: e.g. each 10,000-byte data block may be represented in the index level by its first fact-S
bytes- and block address- 3 bytes- which would amount to 0.08% of the data block. Thus, all
the index blocks will fit into even a relatively small main memory.

The file contains the original facts and additionally the following "inverted facts":

1. In addition to xC, we store its inverse Cx. (Cis the system-chosen identifier to represent the
inverse information about the category C. For example, it can be defined as C = 0-C.) (If a
category CI is a subcategory of category C2 , an object a belongs to CI and, thus, also to C2 ,

380 NAPHTALI RISHE

then we choose to store both inverted facts C, a and C2 a. When the user requests the deletion
of the fact aC2 , it triggers automatic deletion of the facts aC1 , C1 a, and C2a in order to guarantee
consistency.) Thus, the elementary query ?C to find all the objects of the category C, can be
answered by examining the (inverted) facts whose prefix is C. The latter inverted facts are
clustered together in the lexicographic order of the physical database.

2. In addition to xRv, where v is a concrete object (a number, a string, or a value of other type),
we store Rvx. Thus, the range query "?R[v1, v2]" is satisfied by all and only the inverted facts
which are positioned in the file between Rv1 and Rv2 HighSuffix. (HighSuffix is a suffix which
is lexicographically greater than any other possible suffix.) Thus, the result will most probably
appear in one physical block, if it can fit into one block.

3. In addition to xRy, where both x andy are abstract objects, we store yRx. Thus, for any abstract
object x, all its relationships xRy, xRv, zRx, and xC can be found in one place in the file: the
regular and inverted facts which begin with the prefix x. (The infixes are: categories for xC,
relations for xRy and xRv, and inverse relations xRz from which we find z such that zRx.)

Example 2.3

Consider the instantaneous database of Example 1. The additional inverted facts stored in the database
are:

I. COMPANYi•• object!
2. COMPANY-NAMEmv 'IBM' object!
3. object2 MANUFACTURED;"" object!
4. object3 MANUFACTUREDi•v object!
5. PRODUCTinv object2
6. DESCRIPTION•• 'IBM/SYSTEM-2' object2
7. PRODUCTi•v object3
8. DESCRIPTION"" 'MONOCHROMATIC-MONITOR' object3

Notice that facts xRa and xRv (x and a are abstract objects, vis a value) are inverted dissimilarly.
This is because we have different types of atomic retrieval requests concerning abstract and concrete
objects:

• Concrete objects can be used to form range queries, e.g. "Find all persons with
salaries between $40,000 and $50,000". In such queries we know the identifier of
the relation and partial information about the value. Therefore we need to use the
inverted facts with R as the prefix. Unlike concrete objects, ranges of abstract
objects cannot form a meaningful range query.

• On the other hand, we have multiple-fact retrievals about an abstract object, e.g.
"Find all the immediate information about a given person p" (while such a request
about a concrete object would be meaningless: "Find all the information about
the number 5" makes no sense, as opposed to a meaningful query "Find
information about item(s) whose price is $5".) Here we know the object, but do
not know the identifiers of the inverted relations. We need to cluster together all
the inverted relations of one object. Therefore, the inverted relation should appear
in the infix.

Example 2.4
When the set of original facts is interleaved and lexicographically sorted with the inverted facts of the

previous example, we obtain:

I. object! COMPANY
2. object! COMPANY-NAME 'IBM'
3. object! MANUFACTURED object2
4. object! MANUFACTURED object3
5. object2 DESCRIPTION 'IBM/SYSTEM-2'
6. object2 PRODUCT
7. object2 MANUFACTURED;"" object!
8. object3 DESCRIPTION 'MONOCHROMATIC-MONITOR'
9. object3 PRODUCT

A file structure for semantic databases

10. object3 MANUFACTUREDin• objectl
II. COMPANYinv objectl
12. DESCRIPTION•• 'IBM/SYSTEM-2' object2
13. DESCRIPTIONinv 'MONOCHROMATIC-MONITOR' object3
14. COMPANY-NAMEin• 'IBM' object!
15. PRODUCTinv object2
16. PRODUCTi•v object3

Example 2.5

381

To answer the elementary query to find all the information about object3, including its direct and inverse
relationships, we find all the entries whose prefix is object3. These entries are clustered together in the sorted order.

To answer the elementary query "Find all objects manufactured by objectl" we find all the facts whose
prefix is object !..MANUFACTURED. ('_' denotes concatenation.) These entries are clustered together in the
sorted order.

The query to print the descriptions of the objects manufactured by the companies whose names are between
'lATA' and 'K-mart', we solve several elementary subqueries:

1. Find the companies whose names are in the range between the above strings. (We search
for inverted facts which are lexicographically between COMPANY-NAMEin•_'IATA' and
COMPANY-NAMEi••_'K-mart'JiighSuffix. For the instantaneous database given in the
previous example we find only one mverted fact COMPANY-NAMEin•_'IBM'_objectl.
The suffix object! is the company we are looking for.)

2. Find the products manufactured by object!. (From facts with prefix objectL
MANUFACTURED we find suffixes {object2, object3}.)

3. Find the description of object2. (Prefix object2....DESCRIPTION);
4. Find the description of object3. (Prefix object3J)ESCRIPTION);

The sorted file is maintained in a structure similar to a B-tree. The "records" of the B-tree are
the regular and inverted facts. The records are of varying length. The B-tree-keys of the "records"
are normally the entire B-tree-records, i.e. facts, regular and inverted. (An exception to this is when
the record happens to be very long. The only potentially long records represent facts xRv where
vis a very long character string. We employ a special handling algorithm for very long character
strings.) Access to this B-tree does not require knowledge of the entire key: any prefix will do. All
the index blocks of the B-tree can normally be held in cache.

At the most physical level, the data in the facts is compressed to minimal space. Also, since many
consecutive facts share a prefix (e.g. an abstract object identifier) the prefix need not be repeated
for each fact. In this way the facts are compressed further. The duplication in the number of facts
due to the inverses is 100%, since there is only one inverse per each original fact [with a rare
exception of the storage of redundant inverses of supercategories as described in (1)]. The B-tree
causes additional 30% overhead. (This overhead occurs because in a B-tree the data blocks are
only 75% full on the average, though this can be improved by periodic reorganization. The
overhead for the index blocks of the B-tree is no more than 1-2% since they contain only one short
fact per every data block.) The total space used for the database is therefore only about 160% more
than the amount of information in the database, i.e. the space minimally required to store the
database in the most compressed form with no regard to the efficiency of data retrieval or update.
Thus, the date structure described herein is more efficient in space and time than the conventional
approach with separate secondary index files for numerous fields.

No separate index files are needed for the file structure proposed in this paper. The duplication
of data (i.e. inverted relations) together with the primary sparse index which is a part of the B-tree
effectively eliminate the need for secondary (dense) indices. Furthermore, it eliminates the
horrendous 1/0 operations caused by sequentially retrieving along a secondary index, since the
sequence of information represented by our primary sparse index is also stored in consecutive
physical locations. These claims are proven in the following section.

2.4. Proof of Time-efficiency of the File Structure
Lemma 1. Let the file be logically perceived as a lexicographically ordered sequence of facts. Let
req be an atomic retrieval request. Then there is a contiguous segment in the sequence, so that:

(i) all the facts in the segment satisfy the request req;
(ii) no fact outside the segment satisfies the req; and

382 NAPHTALI RISHE

(iii) the boundariesfact510, 1 andfactend of the segment can be derived from the syntax
of the request req. (Thus, all the output facts are lexicographically between
factstart and factend· The boundaries may be inclusive or exclusive.)

Proof of Lemma 1. The following are the ranges for the segments for each of the atomic requests
(the symbol HIGH denotes the bit string "11111111111111.. ... " which is lexicographically greater
than any possible suffix in a fact):

Request
I. aC

2. aRy

3. a?

4. ?C

5. aR?

6. ?Ra

7. a?+a??+??a

8. ?Rv

9. ?R(vl, v2)

Segment
aC ~fact ~aC
(Verify the fact aC.)
aRy ~fact ~ aRy
(Verify the fact aRy.)
aCmin ~fact ~ aCmax (Here, it is assumed that all the categories
of the schema are enumerated by identifiers between Cmin and
Cmax .)

(For a given abstract object a, find what categories the object
belongs to).
C <fact ~ CHIGH
(For a given category, find its objects.)
aR <fact~ aRHIGH
(For a given abstract object a and relation R, retrieve ally such
that aRy.)
aR <fact ~ aRHIGH
(For a given abstract object a and relation R, retrieve all
abstract objects x such that xRa.)
a< tuple~ aHIGH
(Retrieve all the immediate information about an abstract
object.)
Rv <fact ~ RvHIGH
(For a given relation (attribute)R and a given concrete object
v, find all abstract objects x such that xRy.)
Rv1 <fact~ Rv2 HIGH
(For a given relation R and a given range of concrete objects
[v 1 , v2], find all objects x and v such that: xRv and v1 ~ v ~ v2 .)

• End of Lemma I •

In the following, an estimate is given for the number of disk accesses per atomic retrieval request.
Two cases are considered:

(A) One disk access per request of small output. In the predominant case, the amount of
information to be output for a given atomic request is much less than one block. According to
Lemma I, all the information to be output comprises one contiguous segment. The segment has
as many facts as there are items to be output. Therefore, the segment is much less than one block.
(In the physical storage the facts are prefix-compressed, so that the physical space for each fact
is normally just a few bytes.) Hence, normally the segment fits into one block. We can find the
address of this block in the cache-resident B-tree index with the key fact,,0, 1 • Then, in a single access
the block is brought to the memory. There is a small probability that the segment appears on the
boundary of two blocks. In the latter case we may have to bring two blocks into the memory. On
the other hand, the desired block[s] may have already been in cache and, thus, sometimes zero
accesses are sufficient.

Thus, the retrieval efficiency for the atomic requests is the optimum, or very close to the
optimum. (One cannot retrieve a memory-unavailable datum in less than one disk access.)

(B) For large output, the efficiency is also close to the optimum. When the output is larger than
a block, so is the segment. If the output can be squeezed into n blocks, then n would be the
theoretical optimum (not obtainable in any practical system) for the number of disk accesses per

A file structure for semantic databases 383

request. All the facts of the segment can be squeezed into slightly more than n blocks (depending
on how much of the prefix can be compressed), say !.In blocks. Due to the space maintenance
policy of the B-tree, each physical data block is 75% full on the average. The segment may begin
in the middle of one block and end in another, thus, on the average, one additional block has to
be fetched (the actual overhead of this type ranges between 0 and 2 block fetches). Thus the total
expected number of blocks to be fetched is (l.ln/0.75) + l = l.47n + l. The number of disk
accesses may be even less than that if some of the blocks are in cache.

3. COMPARISON TO PERFORMANCE OF IMPLEMENTATIONS OF
THE RELATIONAL MODEL

The system proposed herein is not less efficient, and is normally more efficient, in both time and
storage space than the relational model's implementations with multiple dense indices.

Let us consider a simple relational database composed of one relation T with attributes
A 1, A2 , •.• , A •. Let us assume that for each j there are queries of the type

get A 1 where Aj = c (Ql)

and that each of those queries is required to be performed in a reasonable time.
For the purpose of physical implementation, the relational model's databases can be technically

represented (without affecting the user) as certain semantic binary databases. Specifically, the above
relational schema can be regarded in the SBM as a category T and relations A 1 between the objects
of T and values.

To assure reasonable time performance in the relational model for each of the above queries,
we need a dense index on each of the attributes A1• There are n index files (or n indices combined
in one file in some implementations). The total size of the indices thus exceeds the size of the table
T itself. Therefore the space overhead in the relational model is > 100% and, thus, is greater than
the space overhead in the proposed semantic implementation. Also, in the semantic implementation
there is only one physical file, while there are many physical files in the relational implementations
(and in some implementations there are as many files as number_of-tables x (1 +number-Of
attributes-Per _table). The management of multiple files is not only a hassle but also contributes
to additional space overhead due to allocation of growth areas for each file.

With respect to the time required to solve the simple queries of type Ql it is the same in the
best relational implementations and in the proposed semantic implementation. Namely, the time is

(1 +number _of _values-in-the-output) x time-to_retrieve_one....hlock.

(In the relational implementation, there will be one visit to the dense index on Aj, and for every
Aj = c found there, there will be one random access to the main table. In the semantic
implementation, first the sub-query ? Ajc will be solved, and then for every match x found the
sub-query xA;? will be evaluated.)

If in Ql we desired to print many attributes A1 instead of just one, the same time results would
be obtained in both implementations. Notice that in the semantic implementation proposed herein
all the immediate information of an object, including all its attributes, is clustered together.

Now let us consider updates. Insertion of a row into the relational table takes replacement of
one block in the main table and n blocks in the dense indices. In the semantic implementation there
is insertion of the primary facts about the new object ob: obA 1 c1 , ••• , obA. c. (all the primary facts
will appear in contiguous storage in one block) and n inverse facts in possibly n different blocks.
Thus, here, as well as in the other types of sample updates, the performance of the semantic
implementation is not worse than that of the relational implementations supporting efficiency of
queries.

The advantages in the schematic implementation's performance become even more significant
for more complex queries and updates. Though the detailed analysis of these is beyond the
space-limit of this paper, I would like to mention that, for example, queries requiring natural join
in the relational implementations would be more efficient in the semantic implementation because
there are direct explicit relationships between the categories instead of relationships represented
implicitly by foreign keys in the relational model. The gap in performance between the faster

384 NAPHTALI RISHE

semantic implementation and the relational implementations is even greater when the relational
keys are composed of more than one attribute and when the relationships between the tables are
many-to-many, which requires an extra table to represent the many-to-many relationship in the
relational implementations. The gap increases with the number of joins in the query. In general,
the advantage in the efficiency of the proposed semantic implementation versus the relational
implementations normally becomes greater as the complexity of the queries increases.

Of course, there are also major efficiency advantages in the semantic implementation in support
of semantic complexities of the real world, which are very awkwardly and inefficiently implemented
in the relational implementations. These complexities include intersecting categories, sub-cat
egories, categories with no keys, varying-length attributes, missing ("null") values, multiple values,
etc.

4 . CONCLUSION

We have implemented this data structure in a prototype DBMS at the University of California,
Santa Barbara [23, 24]. Further improved software is under development. Our implementation
allows single-processor multi-user parallel access to the database. Optimistic concurrency control
is used.

Although the best results are obtained from our DBMS for the SBM it can also be used efficiently
with all other major semantic and conventional database models. This is due to the fact that the
relational, network and hierarchical data models can be implemented via the SBM (as shown in
Ref. [4]) .

Currently, at Florida International University, we are working on a project, financed by the state
government, to extend our semantic DBMS implementation into a massively-parallel very-high
throughput database machine [25], to be composed of many [thousand(s)] processors, each
equipped with a permanent storage device and a large cache memory. Our analysis has shown that
the proposed file structure greatly increases the parallelism in the operations of the DBMS, which
can be utilized by large-scale parallel machines.

Acknowledgements- The author gratefully acknowledges the advice of Narayanan Vijaykumar, Li Qiang, Nagarajan
Prabhakaran, Doron Tal, David Barton and Scott Graham. This research has been supported in part by a grant from the
Florida High Technology and Industry Council.

REFERENCES

[II J . R. Abrial. Data semantics. In Data Base Management (1. W. Klimbie and K. L. Koffeman, Eds). North-Holland,
Amsterdam (1974).

[2] G . Bracchi, P. Paolini and G. Pelagatti. Binary logical associations in data modelings. In Modeling in Data Base
Management Systems (G. M. Nijssen, Ed.) IFIP Work. Conf on Modeling in DBMS's (1976).

[3] N. Rishe. On representation of medical knowledge by a binary data model. J. Math. Comput. Modelling 8, 623--{;26
(1987).

[4] N. Rishe. Database Design Fundamentals: a Structured Introduction to D'llabases and a Structured Database Design
Methodology. Prentice-Hall, Englewood Cliffs, NJ (1988).

[5] S. Tsur and C. Zaniolo. An implementation of GEM- supporting a semantic data model on a relational backend.
In Proc. ACM SIGMOD Int . Conf on Management of Data (1984).

[6] Y. E. Lien, J. E. Shopiro and S. Tsur. DSIS-A database system with interrelationa1 semantics. In Proc. 7th Int. Conf
on Very Large Data Bases (C. Zaniolo and C. Delobel, Eds), pp. 465-477. IEEE Computer Society Press (1981).

[7] A. Chan, Sy. Danberg, S. Fox, W-T. K. Lin, A. Nori and D. R. Ries. Storage and access structures to support a
semantic data model. In Proc 8th Int . Conf on Very Large Data Bases. IEEE Computer Society Press (1982).

[8] R. L. Benneworth, C. D. Bishop, C. J. M. Turnbull, W. D. Holman and F. M. Monette. The implementation of
GERM, an entity-relationship data base management system. In Proc. 7th Int. Conf on Very Large Data Bases
(C. Zaniolo and C. Delobel, Eds), pp. 465-477. IEEE Computer Society Press (1981).

[9] N. Rishe. Semantic database management: from microcomputers to massively parallel database machines. Keynote
paper. In Proc. 6th Symp. Microcomput . Microprocess. Applications, Budapest, pp. 1- 12 (1989).

[10] S. Abiteboul and R. Hull. IFO: a formal semantic database model. In Proc. ACM SIGACT-SIGMOD Symp. on
Principles of Database Systems (1984).

[II] M. Hammer and D. McLeod . Database description with SDM: a semantic database model. ACM Trans. Database
Systems 6(3), 351- 386 (1981).

[12] D. Jagannathan, R. L. Guck, B. L. Fritchman, J . P. Thompson and D. M. Tolbert. SIM: a database system based
on semantic model. In Proc. SIGMOD Int . Conf on Management Data. ACM-Press, Chicago, IL (1988).

[13] D. W. Shipman. The functional data model and the data language DAPLEX. ACM Trans. Database Systems 6(1),
140-173 (1981).

A file structure for semantic databases 385

(14] R. King. SEMBASE: a semantic DBMS. In Proc. 1st Workshop on Expert Database Systems, Univ. South Carolina,
Columbia, pp. 151-171 (1984).

(15] G. M. Nijssen. An architecture for knowledge base systems. In Proc. SPOT-2 Conf, Stockholm (1981).
[16] G. M. A. Verheijen and J. Van Bekkum. NIAM-an information analysis method. In Information Systems Design

Methodologies: a Comparative Review (T. W. Olle eta/., Eds.). IFIP, North-Holland, Amsterdam (1982).
[17] C. M. R. Leung and G. M. Nijssen. From a NIAM conceptual schema into the optimal SQL relational database

schema. Aust. Comput. J. 19(2),
[18] B. Nixon, L. Chung, I. Lauzen, A. Borgida and M. Stanley. Implementation of a compiler for a semantic data model:

experience with taxis. In Proc. ACM SIGMOD Conf, San Francisco, CA (1987).
[19] P. P. Chen. The entity-relationship model: toward a unified view of data. ACM Trans. Database Systems I 1, 9- 36

(1976).
[20] N. Rishe. Database semantics. Tech. Rep. TRCS87-2, Univ. of California, Santa Barbara, CA (1987).
[21] N. Rishe. On denotational semantics of data bases. In Lecture Notes in Computer Science, Vol. 239. Mathematical

Foundations of Programming Semantics (A. Melton, Ed.), pp. 249- 274. Springer, New York (1986).
[22] N. Rishe. Postconditional semantics of data base queries. In Lecture Notes in Computer Science, Vol. 239 Mathematical

Foundations of Programming Semantics (A. Melton, Ed.), pp. 275- 295. Springer, New York (1986).
[23] N. Vijaykumar. Toward the Implementation of a DBMS based on the semantic binary model. M.S. Thesis, Univ.

California, Santa Barbara, CA (1987).
[24] A. Jain. Design of a binary model based DBMS and conversion of binary model based schema to an equivalent schema

in other major database models. M.S. Thesis, Univ. California, Santa Barbara, CA (1987).
[25] N. Rishe, D. Tal and Q. Li. Architecture for a massively parallel database machine. Microprocess. Microprog.

(Euromicro .1.) 25, 33- 38 (1989).

IS 16/4-C

