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Abstract-This paper presents a highly-efficient file structure for the storage of semantic databases. A 
low-level access language is presented, such that an arbitrary query can be performed as one or several 
elementary queries of the language. Most elementary queries, including such non-trivial queries as range 
queries and others, can be performed in just one single access to the disk. 
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I. INTRODUCTION 

Since Abrial [1], many semantic data models have been studied in the computer science literature. 
Although somewhat different in their terminology and their selection of tools used to describe the 
semantics of the real world, they have several common principles: 

• The entities of the real world are represented in the database in a manner invisible 
to the user. (Unlike that, in the relational model the entities are represented by the 
values of keys of some tables; in the network model the entities are represented 
by record occurrences.) Hereinafter, the user-invisible representations of real­
world entities are referred to as "abstract objects". The "concrete objects", or 
"printable values", are numbers, character strings etc. The concrete objects have 
conventional representations on paper and in the computer. 

• The entities are classified into types, or categories, which need not be disjoint. 
Meta-relations of inclusion are defined between the categories. 

• Logically-explicit relationships are specified among abstract objects (e.g. " person 
p 1 is the mother of person p2") and between abstract objects and concrete objects 
(e.g. "person p 1 has first name 'Jack"). There are no direct relationships among 
concrete objects. In most semantic models, only binary relations are allowed, since 
higher order relations do not add any power of semantic expressiveness [2-4], but 
do decrease the flexibility of the database and representablility of partially 
unknown information, and add complexity and potential for logical redundancy 
[4]. 

The advantages of the semantic models vs the relational and older models with respect to database 
design and maintenance, data integrity, conciseness of languages and ease of DML programming 
have been discussed in many works [e.g. 4]. This paper advocates the potential of an efficient 
implementation for the semantic models. 

Several semantic data models have been implemented as interfaces to database management 
systems in other data models, e.g. the relational or the network model [5]. There are also less typical , 
direct implementations [e.g. 6-8] . The efficiency of an interface implementation is limited to that 
of the conventional DBMS, and is normally much worse due to the interface overhead. The direct 
implementations are commonly believed to have to be less time-efficient than the conventional 
systems, as a trade-off for the extra services that semantic databases provide. However, this author 
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contends that the semantic models have the potential for a much more efficient implementation 
than the conventional data models. This is due to two reasons: 

• All the physical aspects of representation of information by data are invisible to 
the user in the semantic models. This creates a greater potential for optimization: 
more things may be changed for efficiency considerations, without affecting the 
user programs. The relational model has more data independence than the older 
models. For example, the order of rows in the tables (relations) is invisible to the 
user. The semantic models have even more data independence. For example, the 
representation of real-world entities by printable values is invisible to the user. One 
may recall that not long ago the relational model was criticized as less efficient 
than the network and hierarchical models. However, it is clear now that 
optimizing relational database systems have the potential to be much more 
efficient than the network and hierarchical system due to the data independence 
of the relational model. 

• In the semantic models, the system knows more about the meaning of the user's 
data and about the meaningful connections between such data. This knowledge 
can be utilized to organize the data so that meaningful operations can be 
performed faster at the expense of less meaningful or meaningless operations. 

In this paper, the author uses the semantic binary model (SBM) (3, 4, 9], a descendant of the model 
proposed in Ref. [I]. This model does not have as rich an arsenal of tools for semantic description 
as can be found in some other semantic models, e.g. the IFO model [10], SDM [II] (implementation 
[12]), the functional model [13] (implementation [7]), SEMBASE [14], NIAM [15, 16, 17], GEM [5] , 
TAXIS (18] or the semi-semantic entity-relationship model [19]. Nevertheless, the SBM has a small 
set of sufficient simple tools by which all the semantic descriptors of the other models can be 
constructed. This makes SBM easier to use for the novice, easier to implement, and usable for 
delineation of the common properties of the semantic models. The results of this paper are 
practically independent of the choice of a particular semantic model, and therefore they apply to 
almost all of the other semantic models. 

The semantic binary model represents the information of an application's world as a collection 
of elementary facts of two types: unary facts categorizing objects of the real world; and binary facts 
establishing relationships of various kinds between pairs of objects. The graphical database schema 
and the integrity constraints determine what sets of facts are meaningful, i.e. can comprise an 
instantaneous database (the database as may be seen at some instance of time.) 

Example I 

Consider a database of which the following is a sub-schema: 

• Category COMPANY 
• Category PRODUCT 
• Relation company-name from COMPANY to the category of values String (I: I) 
• Relation description from PRODUCT to the category of values String (I: I) 
• Relation manufactures from COMPANY to PRODUCT (m: m) 

COMPANY PRODUCT 
manufactures 

company- name:String 1:1 description :String 1:1 

Fig. I. A sub-schema of a database. 

The following set of facts can be a part of a logical instantaneous database: 

I. object! COMPANY 
2. object! COMPANY-NAME 'IBM' 
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3. object! MANUFACTURED object2 
4. object! MANUFACTURED object3 
5. object2 PRODUCT 
6. object2 DESCRIPTION 'IBM/SYSTEM-2' 
7. object3 PRODUCT 
8. object3 DESCRIPTION 'MONOCHROMATIC-MONITOR' 

The formal semantics of the semantic binary model is defined in Ref. [20] using the methodology 
proposed in Ref. [21]. The syntax and informal semantics of the model and its languages (data 
definition languages, 4th generation data manipulation languages, non-procedural languages for 
queries, updates, specification of constraints, userviews etc.) are given in Ref. [4]. A non-procedural 
semantic database language of maximal theoretically-possible expressive power is given in Ref. [22] 
(in this language, one can specify every computable query, transaction, constraint etc.) 

The following section proposes an efficient storage structure for the SBM. 

2. STORAGE STRUCTURE 

2. 1. Abstracted Level 

Every abstract object in the database is represented by a unique integer identifier. The categories 
and relations of the schema are also treated as abstract objects and hence have unique identifiers 
associated with them. Information in the database can then be represented using two kinds of facts, 
denoted xC and xRy, where xis the identifier associated with an abstract object, C and Rare the 
identifiers associated with a category or a relation, respectively, and y is either an identifier 
corresponding to an abstract object or a concrete object (a number or a text string). xC indicates 
that the object x belongs to the category C. xRy indicates that the object x is associated with the 
object y by the relation R. Logically, the instantaneous database is a set of such facts. 

2.2. Goals 

2.2.1. Efficiency of retrieval requests 

AT the intermediate level of processing queries and program retrieval requests, the queries are 
decomposed into atomic retrieval operations of the types listed below. The primary goal of the 
physical file structure is to allow a very efficient performance for each of the atomic requests. 
Namely, each atomic retrieval request normally requires only one disk access, provided the output 
information is small enough to fit into one block. When the output is large, the number of blocks 
retrieved is close to the minimal number of blocks needed to store the output information. 

(l) aC 

(2) aRy 
(3) a? 

(4) ?C 
(5) aR? 

(6) ?Ra 

(7) a?+ a??+ ??a 

IS 16/4--B 

Verify the fact aC. (For a given abstract object a and category 
C, verify whether the object a is in the category C.) 
Verify the fact aRy. 
For a given abstract object a, find all the categories to which 
a belongs. 
For a given category, find its objects. 
For a given abstract object a and relation R, retrieve ally such 
that aRy. (The objects y may be abstract or concrete.) 
For a given abstract object a and relation R, retrieve all 
abstract objects x such that xRa. 
Retrieve all the immediate information about an abstract 
object. (That is, for a given abstract object a, retrieve all of 
its direct and inverse relationships, i.e. the relations R and 
objects y such that aRy or yRa; and the categories to which 
a belongs.) (Although this request can be decomposed into a 
series of requests of the previous types, we wish to be able to 
treat it separately in order to ensure that the whole request will 
normally be performed in a single disk access. This will also 
allow a single-access performance of requests which require 
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(8) ?Rv 

(9) ?R(vl, v2) 
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several, but not all, of the facts about an object, e.g. a query 
to find the first name, the last name, and the age of a given 
person.) 
For a given relation (attribute) Rand a given concrete object 
(value) v, find all abstract objects x such that xRv. 
For a given relation (attribute) R and a given range of 
concrete objects [v 1, v2 ], find all objects x and v such that xRv 
and v1 ~ v ~ v2. (The comparison "~" is appropriate to the 
type of v). 

The elementary queries defined above form a lower-level language of retrieval from semantic 
databases. Any query in any language can be solved by performing several elementary queries and 
processing their results in the memory. 

Example 2.1 

Consider the following query in the semantic predicate calculus: 

get c.NAME, c.ADDRESS 
where cis an LTD-COMPANY and c.YEAR-FOUNDED < 1989 and 
exists pin PROD UCT: c MANUFACTURES p and p.COST>=670 and 
p.COST < = 680 

(This query prints the names and addresses of the limited companies founded before 
1989 that manufacture products costing between $670 and $680. It is assumed that 
LTD-COMPANY is a subcategory of COMPANY.) 

A query processor/optimizer can perform this as follows: 

(I) Perform (? COSTS [670, 680]) (resulting, say, in objects p1, p2 , and PJ.) 
(2) For each of i in I .. . 3 perform(? MANUFACTURES p1) (let us assume that the union 

of the results of the three queries is c1, c2 , c3 and c4 ). 

(3) For each j in I ... 4 perform the elementary (c1? + c1?? + ??c1) , obtaining the immediate 
information about the company c1. This includes the information necessary to check 
(c.YEAR-FOUNDED < 1989 and c is an LTD-COMPANY) as well as the values of 
NAME and ADDRESS to be printed if the result of the latter is positive. 

The total number of elementary queries here was 8. 

2.2.2. Efficiency of update transactions 

Efficient performance of update transactions is required, although more than one disk access per 
transaction is allowed. 

A transaction is a set of interrelated update requests to be performed as one unit. Transactions 
are generated by programs and by interactive users. A transaction can be generated by a program 
fragment containing numerous update commands, interleaved with other computations. However, 
until the last command within a transaction is completed, the updates are not physically performed, 
but rather accumulated by the DBMS. Upon completion of the transaction, the DBMS checks its 
integrity and then physically performs the update. The partial effects of the transaction may be 
inconsistent. Every program and user sees the database in a consistent state: until the transaction 
is committed, its effects are invisible. 

A completed transaction is composed of a set of facts to be deleted from the database, a set 
of facts to be inserted into the database, and additional information needed to verify that there 
is no interference between transactions of concurrent programs. If the verification produces a 
positive result, then the new instantaneous database is: [(the-old-instantaneous-database)- (the­
set-of-facts-to-be-deleted)]u(the-set-of-facts-to-be-inserted). 
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Example 2.2 

Consider the database of Example 1. 
The following is a transaction to rename Burroughs into Unisys, transfer all business from Sperry to Unisys, 

and delete Sperry. 

transaction 
forb where s COMPANY-NAME 'Burroughs' do 

for s where s COMPANY-NAME 'Sperry' do 
begin 

b.COMPANY-NAME•='Vnisys' ; 
for p where s MANUFACTURES p do 

relate b MANUFACTURES p; 
decategorize s from COMPANY 
end 

Let us assume that before the transaction the two companies are objects b0 and s0 , respectively and Sperry 
manufactures products PI and p2 • The following queries were performed from within this transaction: 

(a) ? COMPANY-NAME 'Burroughs' (results in b0 ) 

(b) ? COMPANY-NAME 'Sperry' (results in s0 ) 

(c) s0 MANUFACTURES? (results in {p i ,p2 } ) 

At the end of the programmatic transaction, the accumulated transaction will be (V, D, 1), where V, the 
verification specification, is the above three queries with their time-stamps; D is the following specification 
of the facts to be deleted: 

s0 COMPANY 
s0 COMPANY-NAME* 
s0 MANUFACTURES* 
b0 NA ME* 

and I is the following set of facts to be inserted: 

b0 NAME 'Unisys' 
b0 MANUFACTURES PI 
b0 MANUFACTURES p2 

2.3. Solution: a File Structure Achieving the Goals 

The following file structure supports the above requirements. The entire database is stored in 
a single file. This file contains all the facts of the database (xC and xRy ) and additional information, 
called inverted facts, which are described below. The file is maintained as a B-tree. The variation 
of the B-tree used here allows both sequential access according to the lexicographic order of the 
items comprising the facts and the inverted facts, as well as random access by arbitrary prefixes 
of the facts and inverted facts. 

The inverted facts do introduce some physical redundancy (no logical redundancy since they are 
invisible to the user), which results in a storage overhead and update-time overhead. However, as 
it is shown below, this overhead is not greater than if index structures were used. Of course, it is 
impossible to achieve any reasonable retrieval efficiency without physical redundancy, such as the 
indices in conventional implementations or the inverted facts proposed in this paper. 

The facts which are close to each other in the lexicographic order reside close together in the 
file. (Notice, that although technically the B-tree-key is the entire fact, it is of varying length and 
on the average is only several bytes long, which is the average size of the encoded fact xRy). The 
total size of the data stored in the index-level blocks of the B-tree is < 1% of the size of the 
database: e.g. each 10,000-byte data block may be represented in the index level by its first fact-S 
bytes- and block address- 3 bytes- which would amount to 0.08% of the data block. Thus, all 
the index blocks will fit into even a relatively small main memory. 

The file contains the original facts and additionally the following "inverted facts": 

1. In addition to xC, we store its inverse Cx. (Cis the system-chosen identifier to represent the 
inverse information about the category C. For example, it can be defined as C = 0-C.) (If a 
category CI is a subcategory of category C2 , an object a belongs to CI and, thus, also to C2 , 
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then we choose to store both inverted facts C, a and C2 a. When the user requests the deletion 
of the fact aC2 , it triggers automatic deletion of the facts aC1 , C1 a, and C2a in order to guarantee 
consistency.) Thus, the elementary query ?C to find all the objects of the category C, can be 
answered by examining the (inverted) facts whose prefix is C. The latter inverted facts are 
clustered together in the lexicographic order of the physical database. 

2. In addition to xRv, where v is a concrete object (a number, a string, or a value of other type), 
we store Rvx. Thus, the range query "?R[v1, v2]" is satisfied by all and only the inverted facts 
which are positioned in the file between Rv1 and Rv2 HighSuffix. (HighSuffix is a suffix which 
is lexicographically greater than any other possible suffix.) Thus, the result will most probably 
appear in one physical block, if it can fit into one block. 

3. In addition to xRy, where both x andy are abstract objects, we store yRx. Thus, for any abstract 
object x, all its relationships xRy, xRv, zRx, and xC can be found in one place in the file: the 
regular and inverted facts which begin with the prefix x. (The infixes are: categories for xC, 
relations for xRy and xRv, and inverse relations xRz from which we find z such that zRx.) 

Example 2.3 

Consider the instantaneous database of Example 1. The additional inverted facts stored in the database 
are: 

I. COMPANYi•• object! 
2. COMPANY-NAMEmv 'IBM' object! 
3. object2 MANUFACTURED;"" object! 
4. object3 MANUFACTUREDi•v object! 
5. PRODUCTinv object2 
6. DESCRIPTION•• 'IBM/SYSTEM-2' object2 
7. PRODUCTi•v object3 
8. DESCRIPTION"" 'MONOCHROMATIC-MONITOR' object3 

Notice that facts xRa and xRv (x and a are abstract objects, vis a value) are inverted dissimilarly. 
This is because we have different types of atomic retrieval requests concerning abstract and concrete 
objects: 

• Concrete objects can be used to form range queries, e.g. "Find all persons with 
salaries between $40,000 and $50,000". In such queries we know the identifier of 
the relation and partial information about the value. Therefore we need to use the 
inverted facts with R as the prefix. Unlike concrete objects, ranges of abstract 
objects cannot form a meaningful range query. 

• On the other hand, we have multiple-fact retrievals about an abstract object, e.g. 
"Find all the immediate information about a given person p" (while such a request 
about a concrete object would be meaningless: "Find all the information about 
the number 5" makes no sense, as opposed to a meaningful query "Find 
information about item(s) whose price is $5".) Here we know the object, but do 
not know the identifiers of the inverted relations. We need to cluster together all 
the inverted relations of one object. Therefore, the inverted relation should appear 
in the infix. 

Example 2.4 
When the set of original facts is interleaved and lexicographically sorted with the inverted facts of the 

previous example, we obtain: 

I. object! COMPANY 
2. object! COMPANY-NAME 'IBM' 
3. object! MANUFACTURED object2 
4. object! MANUFACTURED object3 
5. object2 DESCRIPTION 'IBM/SYSTEM-2' 
6. object2 PRODUCT 
7. object2 MANUFACTURED;"" object! 
8. object3 DESCRIPTION 'MONOCHROMATIC-MONITOR' 
9. object3 PRODUCT 
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10. object3 MANUFACTUREDin• objectl 
II. COMPANYinv objectl 
12. DESCRIPTION•• 'IBM/SYSTEM-2' object2 
13. DESCRIPTIONinv 'MONOCHROMATIC-MONITOR' object3 
14. COMPANY-NAMEin• 'IBM' object! 
15. PRODUCTinv object2 
16. PRODUCTi•v object3 

Example 2.5 
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To answer the elementary query to find all the information about object3, including its direct and inverse 
relationships, we find all the entries whose prefix is object3. These entries are clustered together in the sorted order. 

To answer the elementary query "Find all objects manufactured by objectl" we find all the facts whose 
prefix is object !..MANUFACTURED. ('_' denotes concatenation.) These entries are clustered together in the 
sorted order. 

The query to print the descriptions of the objects manufactured by the companies whose names are between 
'lATA' and 'K-mart', we solve several elementary subqueries: 

1. Find the companies whose names are in the range between the above strings. (We search 
for inverted facts which are lexicographically between COMPANY-NAMEin•_'IATA' and 
COMPANY-NAMEi••_'K-mart'JiighSuffix. For the instantaneous database given in the 
previous example we find only one mverted fact COMPANY-NAMEin•_'IBM'_objectl. 
The suffix object! is the company we are looking for.) 

2. Find the products manufactured by object!. (From facts with prefix objectL 
MANUFACTURED we find suffixes {object2, object3}.) 

3. Find the description of object2. (Prefix object2....DESCRIPTION); 
4. Find the description of object3. (Prefix object3J)ESCRIPTION); 

The sorted file is maintained in a structure similar to a B-tree. The "records" of the B-tree are 
the regular and inverted facts. The records are of varying length. The B-tree-keys of the "records" 
are normally the entire B-tree-records, i.e. facts, regular and inverted. (An exception to this is when 
the record happens to be very long. The only potentially long records represent facts xRv where 
vis a very long character string. We employ a special handling algorithm for very long character 
strings.) Access to this B-tree does not require knowledge of the entire key: any prefix will do. All 
the index blocks of the B-tree can normally be held in cache. 

At the most physical level, the data in the facts is compressed to minimal space. Also, since many 
consecutive facts share a prefix (e.g. an abstract object identifier) the prefix need not be repeated 
for each fact. In this way the facts are compressed further. The duplication in the number of facts 
due to the inverses is 100%, since there is only one inverse per each original fact [with a rare 
exception of the storage of redundant inverses of supercategories as described in (1)]. The B-tree 
causes additional 30% overhead. (This overhead occurs because in a B-tree the data blocks are 
only 75% full on the average, though this can be improved by periodic reorganization. The 
overhead for the index blocks of the B-tree is no more than 1-2% since they contain only one short 
fact per every data block.) The total space used for the database is therefore only about 160% more 
than the amount of information in the database, i.e. the space minimally required to store the 
database in the most compressed form with no regard to the efficiency of data retrieval or update. 
Thus, the date structure described herein is more efficient in space and time than the conventional 
approach with separate secondary index files for numerous fields. 

No separate index files are needed for the file structure proposed in this paper. The duplication 
of data (i.e. inverted relations) together with the primary sparse index which is a part of the B-tree 
effectively eliminate the need for secondary (dense) indices. Furthermore, it eliminates the 
horrendous 1/0 operations caused by sequentially retrieving along a secondary index, since the 
sequence of information represented by our primary sparse index is also stored in consecutive 
physical locations. These claims are proven in the following section. 

2.4. Proof of Time-efficiency of the File Structure 
Lemma 1. Let the file be logically perceived as a lexicographically ordered sequence of facts. Let 
req be an atomic retrieval request. Then there is a contiguous segment in the sequence, so that: 

(i) all the facts in the segment satisfy the request req; 
(ii) no fact outside the segment satisfies the req; and 
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(iii) the boundariesfact510, 1 andfactend of the segment can be derived from the syntax 
of the request req. (Thus, all the output facts are lexicographically between 
factstart and factend· The boundaries may be inclusive or exclusive.) 

Proof of Lemma 1. The following are the ranges for the segments for each of the atomic requests 
(the symbol HIGH denotes the bit string "11111111111111.. ... " which is lexicographically greater 
than any possible suffix in a fact): 

Request 
I. aC 

2. aRy 

3. a? 

4. ?C 

5. aR? 

6. ?Ra 

7. a?+a??+??a 

8. ?Rv 

9. ?R(vl, v2) 

Segment 
aC ~fact ~aC 
(Verify the fact aC.) 
aRy ~fact ~ aRy 
(Verify the fact aRy.) 
aCmin ~fact ~ aCmax (Here, it is assumed that all the categories 
of the schema are enumerated by identifiers between Cmin and 
Cmax .) 

(For a given abstract object a, find what categories the object 
belongs to). 
C <fact ~ CHIGH 
(For a given category, find its objects.) 
aR <fact~ aRHIGH 
(For a given abstract object a and relation R, retrieve ally such 
that aRy.) 
aR <fact ~ aRHIGH 
(For a given abstract object a and relation R, retrieve all 
abstract objects x such that xRa.) 
a< tuple~ aHIGH 
(Retrieve all the immediate information about an abstract 
object.) 
Rv <fact ~ RvHIGH 
(For a given relation (attribute)R and a given concrete object 
v, find all abstract objects x such that xRy.) 
Rv1 <fact~ Rv2 HIGH 
(For a given relation R and a given range of concrete objects 
[v 1 , v2 ], find all objects x and v such that: xRv and v1 ~ v ~ v2 .) 

• End of Lemma I • 

In the following, an estimate is given for the number of disk accesses per atomic retrieval request. 
Two cases are considered: 

(A) One disk access per request of small output. In the predominant case, the amount of 
information to be output for a given atomic request is much less than one block. According to 
Lemma I, all the information to be output comprises one contiguous segment. The segment has 
as many facts as there are items to be output. Therefore, the segment is much less than one block. 
(In the physical storage the facts are prefix-compressed, so that the physical space for each fact 
is normally just a few bytes.) Hence, normally the segment fits into one block. We can find the 
address of this block in the cache-resident B-tree index with the key fact,,0, 1 • Then, in a single access 
the block is brought to the memory. There is a small probability that the segment appears on the 
boundary of two blocks. In the latter case we may have to bring two blocks into the memory. On 
the other hand, the desired block[s] may have already been in cache and, thus, sometimes zero 
accesses are sufficient. 

Thus, the retrieval efficiency for the atomic requests is the optimum, or very close to the 
optimum. (One cannot retrieve a memory-unavailable datum in less than one disk access.) 

(B) For large output, the efficiency is also close to the optimum. When the output is larger than 
a block, so is the segment. If the output can be squeezed into n blocks, then n would be the 
theoretical optimum (not obtainable in any practical system) for the number of disk accesses per 



A file structure for semantic databases 383 

request. All the facts of the segment can be squeezed into slightly more than n blocks (depending 
on how much of the prefix can be compressed), say !.In blocks. Due to the space maintenance 
policy of the B-tree, each physical data block is 75% full on the average. The segment may begin 
in the middle of one block and end in another, thus, on the average, one additional block has to 
be fetched (the actual overhead of this type ranges between 0 and 2 block fetches). Thus the total 
expected number of blocks to be fetched is (l.ln/0.75) + l = l.47n + l. The number of disk 
accesses may be even less than that if some of the blocks are in cache. 

3. COMPARISON TO PERFORMANCE OF IMPLEMENTATIONS OF 
THE RELATIONAL MODEL 

The system proposed herein is not less efficient, and is normally more efficient, in both time and 
storage space than the relational model's implementations with multiple dense indices. 

Let us consider a simple relational database composed of one relation T with attributes 
A 1, A2 , •.• , A •. Let us assume that for each j there are queries of the type 

get A 1 where Aj = c (Ql) 

and that each of those queries is required to be performed in a reasonable time. 
For the purpose of physical implementation, the relational model's databases can be technically 

represented (without affecting the user) as certain semantic binary databases. Specifically, the above 
relational schema can be regarded in the SBM as a category T and relations A 1 between the objects 
of T and values. 

To assure reasonable time performance in the relational model for each of the above queries, 
we need a dense index on each of the attributes A1• There are n index files (or n indices combined 
in one file in some implementations). The total size of the indices thus exceeds the size of the table 
T itself. Therefore the space overhead in the relational model is > 100% and, thus, is greater than 
the space overhead in the proposed semantic implementation. Also, in the semantic implementation 
there is only one physical file, while there are many physical files in the relational implementations 
(and in some implementations there are as many files as number_of-tables x (1 +number-Of­
attributes-Per _table). The management of multiple files is not only a hassle but also contributes 
to additional space overhead due to allocation of growth areas for each file. 

With respect to the time required to solve the simple queries of type Ql it is the same in the 
best relational implementations and in the proposed semantic implementation. Namely, the time is 

(1 +number _of _values-in-the-output) x time-to_retrieve_one....hlock. 

(In the relational implementation, there will be one visit to the dense index on Aj, and for every 
Aj = c found there, there will be one random access to the main table. In the semantic 
implementation, first the sub-query ? Ajc will be solved, and then for every match x found the 
sub-query xA;? will be evaluated.) 

If in Ql we desired to print many attributes A1 instead of just one, the same time results would 
be obtained in both implementations. Notice that in the semantic implementation proposed herein 
all the immediate information of an object, including all its attributes, is clustered together. 

Now let us consider updates. Insertion of a row into the relational table takes replacement of 
one block in the main table and n blocks in the dense indices. In the semantic implementation there 
is insertion of the primary facts about the new object ob: obA 1 c1 , ••• , obA. c. (all the primary facts 
will appear in contiguous storage in one block) and n inverse facts in possibly n different blocks. 
Thus, here, as well as in the other types of sample updates, the performance of the semantic 
implementation is not worse than that of the relational implementations supporting efficiency of 
queries. 

The advantages in the schematic implementation's performance become even more significant 
for more complex queries and updates. Though the detailed analysis of these is beyond the 
space-limit of this paper, I would like to mention that, for example, queries requiring natural join 
in the relational implementations would be more efficient in the semantic implementation because 
there are direct explicit relationships between the categories instead of relationships represented 
implicitly by foreign keys in the relational model. The gap in performance between the faster 
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semantic implementation and the relational implementations is even greater when the relational 
keys are composed of more than one attribute and when the relationships between the tables are 
many-to-many, which requires an extra table to represent the many-to-many relationship in the 
relational implementations. The gap increases with the number of joins in the query. In general, 
the advantage in the efficiency of the proposed semantic implementation versus the relational 
implementations normally becomes greater as the complexity of the queries increases. 

Of course, there are also major efficiency advantages in the semantic implementation in support 
of semantic complexities of the real world, which are very awkwardly and inefficiently implemented 
in the relational implementations. These complexities include intersecting categories, sub-cat­
egories, categories with no keys, varying-length attributes, missing ("null") values, multiple values, 
etc. 

4 . CONCLUSION 

We have implemented this data structure in a prototype DBMS at the University of California, 
Santa Barbara [23, 24]. Further improved software is under development. Our implementation 
allows single-processor multi-user parallel access to the database. Optimistic concurrency control 
is used. 

Although the best results are obtained from our DBMS for the SBM it can also be used efficiently 
with all other major semantic and conventional database models. This is due to the fact that the 
relational, network and hierarchical data models can be implemented via the SBM (as shown in 
Ref. [4]) . 

Currently, at Florida International University, we are working on a project, financed by the state 
government, to extend our semantic DBMS implementation into a massively-parallel very-high­
throughput database machine [25], to be composed of many [thousand(s)] processors, each 
equipped with a permanent storage device and a large cache memory. Our analysis has shown that 
the proposed file structure greatly increases the parallelism in the operations of the DBMS, which 
can be utilized by large-scale parallel machines. 
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