
US005920857A

United States Patent
Rishe et al.

[19] 5,920,857
Jul. 6, 1999

Patent Number:

Date of Patent:

[11]

[45]

[54] EFFICIENT OPTIMISTIC CONCURRENCY
CONTROL AND LAZY QUERIES FOR B
TREES AND OTHER DATABASE
STRUCTURES

[75] Inventors: Naphtali David Rishe; Artyom
Shaposhnikov, both of Miami, Fla.

[73] Assignee: Naphtali Rishe, Miami, Fla.

[21] Appl. No.: 08/905,679

[22] Filed: Aug. 4, 1997

[51] Int. Cl.6 G06F 17/30

[52] US. Cl. 707/3; 707/2; 707/8; 395/200.33;
395/200.43

[58] Field of Search 707/1—4, 100—102,

707/200-203, 8; 395/2003, 200.31, 200.33,
200.43, 200.45; 711/129, 120

[56] References Cited

U.S. PATENT DOCUMENTS

5,247,672 9/1993 Mohan .
5,263,156 11/1993 Bowen et a1. .
5,485,607 1/1996 Lomet et a1. .
5,806,065 9/1998 Lomet 707/8

OTHER PUBLICATIONS

A. Adya, R. Gruber, B. Liskov, U. MasheshWari. “Ef?cient
Optimistic Concurrency Control Using Loosely Synchro
niZed Clocks,” SIGMOD Record, Jun. 1995, v 24 n. 2, pp.
23—34.
D. Comer. “The Ubiquitous B—Tree,” ACM Computing
Surveys, Jun. 1979, v11 n. 2.

J. Gray. “Notes on Database Operating Systems” in R.
Bayer, R. Graham, And G. Seegmuller. Operating Systems;
An Advanced Course, pp. 394—481, Spring—Verlag, 1979.
T. Haerder. “Observations on Optimistic Concurrency Con
trol,” Information Systems, Jun. 1984, v 9 n. 2, pp. 111—120.
N. Rishe, A. Shaposhnikov, S. Graham. “Load Balancing in
a Massively Parallel Semantic Database” to appear in the
International Journal of Computer Science and Engineering.
Jul., 1996.
N. Rishe. Database Design: The Semantic Modeling
Approach. MacGraW—Hill, 1992, 528.
N. Rishe. “A File Structure for Semantic Databases,” Infor
mation Systems, v 16 n. 4, 1991, pp. 375—385.
N. Rishe. “Interval—based approach to lexicographic repre
sentation and compression of numeric data,” Data & Knowl
edge Engineering, n 8, 1992, pp. 339—351.

Primary Examiner—Thomas G. Black
Assistant Examiner—Hosain T. Alam
Attorney, Agent, or Firm—Jones & Askew, LLP

[57] ABSTRACT

The present invention relates to a system and methods for
?ne-granularity concurrency control in a parallel database.
Very ?ne granularity (at the level of B-tree records) is
implemented in a B-tree. Our method applies to B-trees,
B-trees With variable keys, and their applications, such as
semantic and object-oriented databases. Our method
involves accumulating a transaction and then “optimisti
cally” validating it, While attaining high ef?ciency With
maximum semantic safety. “LaZy queries”—an ef?cient
method for ?nding the intersection of tWo large queries—is
provided for the system.

8 Claims, 2 Drawing Sheets

T(I,I1V) IS SENT VIA NETWORK

I

CLIENT MACHINE

ACCUMULATED TRANSACTION T(I, D, v)

INSERT DELETE VERIFY

(L r, I, P) (I, r, r, PHI, nib P)
—x— —— II

I D

TRANSACTION ORIGINATOR MACHINE

SEND T1(I1,D1,V1) READ EADY SEND T2(I2,D2,V2)

COMMIT

PARTITION 1 MACHINE

B-TREE PARTITION l
LOGICAL TIME [1

COMMITTED TRANSACTIONS LOG (CL)

cm »
WAITING FOR COMMIT LOG (WL)

PARTITION 2 MACHINE

B~TREE PARTITION 2
LOGICAL TIME t2

COMMITTED TRANSACTIONS LOG (CL)

WAITING FOR COMMIT LOG (WL)

U.S. Patent Jul. 6, 1999 Sheet 1 of2 5,920,857

CLIENT MACHINE

30 STRINGS 30 STRINGS

'Ql ‘F1 ,1‘? '
'Q |_ ‘ “o '30 STRINGS 2 ‘l' '_ '

3O STRINGS 3O STRINGS 30 STRINGS
SENT SENT SENT

B-TREE SERVER MACHINE

‘Q1 1 10,000 STRINGS I l

,QZ I 10,000 STRINGS

FIG. 1

U.S. Patent Jul. 6, 1999 Sheet 2 0f 2 5,920,857

CLIENT MACHINE

ACCUMULATED TRANSACTION T(I, D, v)

INSERT DELETE VERIFY
(l, r, t, p) (l, r, r, p) (l, r, t, p)

I D V

T(I, D,V) IS SENT VIA NETWORK

TRANSACTION ORISINATOR MACHINE
’ ’

T1(/IbD1aV1) T2(I2,D2KV 2)
SEND T1(I1, D1, V1) EADY SEND T202, D2, V2)

PARTITION 1 MACHINE PARTITION 2 MACHINE

B-TREE PARTITION I B-TREE PARTITION 2
LOGICAL TIME t1 LOGICAL TIME t2

COMMITTED TRANSACTIONS LOG (CL) COMMITTED TRANSACTIONS LOG (CL)

CL: I T(I, D, v), I] |9LT<L D, v), r2| CL: | T(I, D, v), z] T(I, D, v), :2 |
WAITING FOR COMMIT LOG (WL) WAITING FOR COMMIT LOG (WL)

WBW WOW

FIG. 2

5,920,857
1

EFFICIENT OPTIMISTIC CONCURRENCY
CONTROL AND LAZY QUERIES FOR B

TREES AND OTHER DATABASE
STRUCTURES

BACKGROUND OF THE INVENTION

This invention relates to a system and method for guar
anteeing consistent and ef?cient access to a database man
agement system. More particularly, it relates to a ?ne
granularity optimistic concurrency control method and a
query optimization technique for parallel B-trees.

Finer granularity increases concurrency by reducing con
tention among transactions. There is a signi?cant body of
prior art relating to ?ne granularity concurrency control.
U.S. Pat. No. 5,247,672 “Transaction processing system and
method With reduced locking” describes a transaction pro
cessing system that reduces the number of page locks and
permits to use ?ner granularity for transactions that read
large quantities of data. U.S. Pat. No. 5,485,607
“Concurrency-control and apparatus in a database manage
ment system utiliZing key-valued locking” describes a neW
pessimistic concurrency control scheme that improves con
currency by utiliZing an eXpanded set of lock modes that
permit locks on the key values.

In prior art, ?ne granularity required a large amount of
computational resources to perform the con?ict detection,
and, therefore, optimistic concurrency control algorithms
available today sacri?ce granularity to improve the overall
server performance. U.S. Pat. No. 5,263,156 “Parallel, dis
tributed optimistic concurrency control certi?cation using
hardWare ?ltering” describes a system Which offers a hard
Ware solution to cope With high computational overhead of
con?ict detection in an optimistic concurrency control pro
tocol.

BRIEF SUMMARY OF THE INVENTION

In this invention We propose an ef?cient optimistic con
currency control method for B-trees. The concurrency con
trol method proposed in this invention alloWs to accumulate
the transactions at the user machines and to perform most
processing at the user machines. This alloWs us to reduce the
computational load for the servers and implement a very ?ne
granularity, thus improving the overall server performance.
This invention also proposes to use logical clocks in opti
mistic concurrency control protocol, eliminating the need to
use synchroniZed physical clocks in con?ict detection.
A frequently eXecuted query in databases is to ?nd an

intersection of several other queries. For eXample, a library
database user may need to retrieve all papers that have
certain keyWords. The simplest Way to eXecute the intersec
tion query is to actually eXecute all sub-queries and then ?nd
the intersection of these sub-queries. The problem arises
When one or several sub-queries are very large, While the
?nal result is small—the straightforWard algorithm is inef
?cient because of the large computational and memory load
necessary to store the intermediate results. A number of
query optimiZation techniques that use statistical knoWledge
about the data are knoWn. For eXample, if one of the
sub-queries is likely to produce a small output, it makes
sense to retrieve this query ?rst, and then obtain the inter
section by simply checking the membership predicate of the
?nal set for each member of the small sub-query. The present
invention proposes a method called “laZy queries” to ?nd the
intersection of the sub-queries in a very ef?cient Way, Which
does not require full eXecution of large sub-queries nor does
it require any statistical knoWledge about the data.

10

15

20

25

30

35

40

45

55

60

65

2
These methods are applied to a parallel B-tree With

variable length keys and a semantic binary database system.
Our method also applies to B-trees With ?Xed keys and their
applications, such as object-oriented databases.

BRIEF DESCRIPTION OF THE DRAWINGS

The improvement of the present invention and its advan
tages Will become more apparent from the description in the
neXt section of the preferred embodiment in Which:

FIG. 1 shoWs the eXecution of tWo laZy queries and
demonstrating its typical optimiZation that reduces the
server traf?c from 20,000 strings to just 90 strings after
optimiZation.

FIG. 2 shoWs the Work of our optimistic concurrency
control algorithm With logical timestamps, and novel vali
dation method.

DETAILED DESCRIPTION OF THE
INVENTION

De?nitions

B-tree is a data type that stores a large number of database
records (strings). B-tree interface alloWs its users to insert,
delete, and retrieve a number of strings. For eXample, a
B-tree can be a data type de?ned as a leXicographically
ordered set of strings With the folloWing operations:

1. Elementary query (interval) operator
[1, r], Where 1 and r are arbitrary strings.

[1, r]S={XES|l éxér}, Where i is the lexicographic order
of strings.

2. Update operator. Let D and I be tWo sets of strings:

S+(I,D)=(S—D)UI (i.e., We remove a set of strings D and
insert a set I instead).

Query OptimiZation

We Will demonstrate the bene?ts of our query optimiZa
tion method by applying it to a semantic object-oriented
database.

Introduction to Semantic DBMS

The semantic database models in general, and the Seman
tic Binary Model SBM ([Rishe-92-DDS] and others) in
particular, represent the information as a collection of
elementary facts categoriZing objects or establishing rela
tionships of various kinds betWeen pairs of objects. The
central notion of semantic models is the concept of an
abstract object. This is any real World entity about Which We
Wish to store information in the database. The objects are
categoriZed into classes according to their common proper
ties. These classes, called categories, need not be disjoint,
that is, one object may belong to several of them. Further, an
arbitrary structure of subcategories and supercategories can
be de?ned. The representation of the objects in the computer
is invisible to the user, Who perceives the objects as real
World entities, Whether tangible, such as persons or cars, or
intangible, such as observations, meetings, or desires.
The database is perceived by its user as a set of facts about

objects. These facts are of three types: facts stating that an
object belongs to a category; facts stating that there is a
relationship betWeen objects; and facts relating objects to
data, such as numbers, teXts, dates, images, tabulated or
analytical functions, etc. The relationships can be of arbi
trary kinds; for example, stating that there is a many-to
many relation address betWeen the category of persons and

5,920,857
3

texts means that one person may have an address, several

addresses, or no address at all.

Logically, a semantic database is a set of facts of three

types: categorization of an object denoted by XC; relation
ship betWeen tWo objects denoted by XRy; and relationship
betWeen an arbitrary object and a value denoted by XRv.
Ef?cient storage structure for semantic models has been

proposed in [Rishe-91-FS].

The collection of facts forming the database is represented
by a ?le structure Which ensures approximately one disk

access to retrieve any of the following:

1. For a given abstract object X, verify/?nd to Which
categories the object belongs.

2. For a given category, ?nd its objects.

3. For a given abstract object X and relation R, retrieve all
y such that XRy.

4. For a given abstract object y and relation R, retrieve all
abstract objects X such that XRy.

5. For a given abstract object X, retrieve (in one access) all
(or several) of its categories and direct and/or inverse
relationships, i.e. relations R and objects y such that XRy or
yRX. The relation R in XRy may be an attribute, i.e. a relation
betWeen abstract objects and values.

6. For a given relation (attribute) R and a given value v,
?nd all abstract objects such that XRv.

7. For a given relation (attribute) R and a given range of
values [V1, v2], ?nd all objects X and v such that XRv and

vlévévz.
The operations 1 through 7 are called elementary queries.

The entire database can be stored in a single B-tree. This

B-tree contains all of the facts of the database (XIC, XRv,
XRy) and additional information called inverted facts: CIX,
RvX, and yRl-nVX. (Here, I is the pseudo-relation IS-IN
denoting membership in a category.) The inverted facts
alloW ansWers to the queries 2, 4, 6, 7 to be kept in a
contiguous segment of data in the B-tree and ansWer them
With one disk access (When the query result is much smaller
than one disk block). The direct facts XIC and XRy alloW
ansWers to the queries 1, 3, and 5 With one disk access. This
alloWs both sequential access according to the leXicographic
order of the items comprising the facts and the inverted
facts, as Well as random access by arbitrary pre?Xes of such
facts and inverted facts. The facts Which are close to each
other in the leXicographic order reside close in the B-tree.
(Notice, that although technically the B-tree-key is the entire
fact, it is of varying length and typically is only several bytes
long, Which is a typical siZe of the encoded fact XRy.).

Numeric values in the facts are encoded as substrings
using the order-preserving variable-length number encoding
of [Rishe-91-IB].

Table 1 summariZes hoW the elementary semantic queries
are implemented using the B-tree interval operators. We use
notation S+1 to denote a string derived from the original
string S by adding 1 to the last byte of S. (For strings
encoding abstract objects, this operation never results in
over?oW.)

10

15

20

25

30

35

40

45

50

60

65

4

TABLE 1

Implementation of elementary queries

For most elementary queries (queries 1, 3, 4, 5, and 6) the
number of binary facts is usually small. Some queries
(queries 2 and 7), hoWever, may result in a very large
number of facts, and it may be inef?cient to retrieve the
Whole query at once.

A common operation in databases is to calculate an
intersection of tWo queries. For eXample, consider a query:
“Find all objects from category Student that have the
attribute BirthYear 1980”. This query can be eXecuted using
several scenarios:

Scenario 1
a. Retrieve all persons born in 1980. EXecute an elemen

tary query “BirthYear 1980?”
b. For each person retrieved in the step a verify that the

person belongs to the category Student
Scenario 2
a. Retrieve all persons born in 1980. EXecute an elemen

tary query “BirthYear 1980?”
b. Retrieve all students: eXecute an elementary query

“Student?”
c. Find an intersection of the objects retrieved in a and b.
In Scenario 1 We retrieve all persons from all categories

(Person, Instructor, and Student) Who Were born in 1980, and
for each person We eXecute an additional elementary query
to verify that the retrieved person is a student. In this
scenario We have to eXecute a large number of small queries.

In Scenario 2 We eXecute only tWo elementary queries and
then ?nd an intersection of the results. The problem is that
the elementary query “Student?” may result in a very large
set of binary facts. Not only is this very inef?cient in terms
of eXpensive communication betWeen client and server, but
also such a big query Would be affected by any transaction
that inserts or deletes students. Also our query Would be
aborted more often than the query in the Scenario 1.

Thus, Scenario 1 is obviously better in our case. Consider
noW another query: “Find all instructors born in 1970”. The
number of persons born in 1970 could be larger or compa
rable With the total number of instructors. In this case,
Scenario 2 Would be much more efficient because We need
to eXecute only tWo elementary queries.

LaZy Queries
Our technique of laZy elementary query eXecution greatly

reduces the number of disk accesses, the server traf?c, and
the transaction con?ict probability by automatically reduc
ing one scenario to another. For eXample, the intersection
operator gets a close-to-optimal implementation Without
keeping any data distribution statistics.

In our B-tree access method, the actual query eXecution is
deferred until the user actually utiliZes the query results. We
de?ne the elementary laZy query programmatic interface in
a B-tree B as folloWs:

5,920,857
5

1. Q:=[l, r]B—de?ne a lazy query [1, r] but do not execute
it yet. Let Z be the longest common pre?x of the strings I and
r. A query result is a set of strings X such that ZxEB and
lizxir.

2. Let Q.P be a pointer to future results of the query.
Initially Q.PA:=", i.e. P points to an empty string.

3. Seek(Q, x)—moves the pointer Q.P, so that Q.PA=
min{y|ZyE[l, r]B and zyix}.

Derived from the above are the actual principal operations
on the query results:

1. Read(Q):=Q.PA—reads the current string pointed by the
logical pointer Q.P. This operation results in an error if
Q.P=null.

2. Next(Q):=Seek(Q, Read(Q)+0). We use notation s+0 to
denote a string derived from the string s by appending a Zero
byte, i.e. s+0 is lexicographically the loWest string after s.
When the Seek operation is executed, the string pointed to

by the neW logical pointer is fetched from the B-tree, and
normally a small number of lexicographically close strings
are pre-fetched and placed in a laZy query cache buffer. It is
likely that the next Seek operation Will request a string
Which is already in the cache buffer, so only a feW Seek
operations require actual disk and server access.
Many queries can efficiently use the Seek operation. For

example, We can very ef?ciently ?nd the intersection of tWo
laZy queries Q1 and Q2: construct a neW laZy query (laZy
intersection) Q3 Where the Seek operation uses the folloWing
algorithm:

od;
if Q1.P = null or Q2.P = null then

Q3.P: = null

This algorithm gives an ef?cient solution for the sample
queries described in the previous section. For the query
“Find all objects from category Student that have the
attribute BirthYear 1980” We use three laZy queries:

a. Q1:=elementary laZy query “BirthYear 1980?”
b. Q2:=elementary laZy query “Student?”

Since query Q3 is not actually executed, our algorithm
that ?nds intersection Will not require retrieving of every
student from the database: the number of actual disk
accesses to retrieve the students in the query Q2 Will be less
than or equal to the number of persons born in 1980. Thus,
the cost of the laZy query Q3 Will be smaller than the cost of
the best solution for elementary queries in Scenario 1
described in the previous section.

For the query “Find all instructors born in 1970” We use
three similar laZy queries. Since the number of instructors is
likely to be small, it is possible that all instructors Will be
fetched at the ?rst disk access, and the Whole query Will
require a number of server accesses close to 2, Which is the
optimal number.

FIG. 1 shoWs execution of tWo laZy queries Q1 and Q2.
Each query contains 10,000 strings at the server machine. A

10

15

20

25

30

35

40

45

50

55

60

65

6
laZy query execution algorithm requires only 3 requests
(Seek operations) to the server of 30 strings each, so that the
total number of strings retrieved from the server is 90.
Without our optimiZation, it Would be necessary to retrieve
both queries With siZe of 20,000 strings from the B-tree
server to ?nd the intersection.

LaZy queries can also be used to ef?ciently subtract a
large set of strings Q2 from a another set Q1. The algorithm
for subtraction is similar: We retrieve a string from Q1 and
use the Seek operation to verify that this string does not
belong to Q2.

LaZy queries not only result in a smaller number of server
accesses. We Will shoW that laZy queries alloW the improve
ment of the granularity of our concurrency control algorithm
and reduce the transaction con?ict probability.

Parallel B-tree Structure

A massively parallel B-tree should perform many queries
and transactions simultaneously and its siZe should scale to
hundreds of terabytes even if the underlying computer
hardWare supports only 32 bit addressing. This is achieved
by splitting the B-tree into partitions of about 1 gigabyte in
siZe. The Whole B-tree is then a netWork of computers Where
each computer holds one or more B-tree partitions. The
B-tree partitions themselves are indexed by a partitioning
map.

Concurrency Control

Our concurrency control algorithm is an optimistic algo
rithm that ?rst accumulates a transaction, then performs it
using a 2-phase commit protocol [Gray-79], and performs a
backWard validation [Haerder-84] to ensure the serialiZabil
ity and external consistency of transactions. Our algorithm
bene?ts from and improves upon the validation technique of
the [Adya&al-95] algorithm for an object-oriented database.
Their algorithm uses loosely synchroniZed physical clocks
to achieve global serialiZation and detects con?icts at the
object level granularity. In our algorithm, a ?ner granularity
at the level of strings is attained, and We use logical clocks
to achieve global serialiZation; nevertheless, our algorithm
does not require maintaining any extra data per string or per
client.

Transaction Accumulation

In a parallel B-tree, updates and queries made by a client
should be veri?ed for con?icts With contemporaneous
updates and queries made by other B-tree clients. A trans
action is a group of B-tree updates and queries Which is
guaranteed to be consistent With the queries and updates
executed concurrently Within other transactions. To create
such a group of operations We have several B-tree operations
in addition to the laZy queries:

1. Insert String x

2. Delete String x
3. Transaction Begin
4. Transaction End
A transaction is the execution of a series of actions

betWeen a “Transaction Begin” and “Transaction End”.
When the Transaction End is executed, all queries and
updates made since the Transaction Begin are checked for
con?icts With the queries and updates made by concurrent
transactions. If there is a con?ict, the transaction is aborted
and the Transaction End returns an error.

The updates made Within a transaction do not change the
B-tree immediately. Instead, these updates are accumulated

5,920,857
7

at the client machine in a set of inserted strings I and a set
of deleted strings D. The B-tree strings remain unaffected.
The insert and delete operations Work as follows:

insert(x)={D:=D-{x}; I:=IU{x}}

When “Transaction End” is executed, the set D is deleted
from the B-tree and the set I is inserted into B-tree:

During the accumulation of a transaction into sets D and
I, the client machine also accumulates a set V to be used for
backward validation. The set V contains the speci?cation of
each subinterval read by a query Within the transaction and
a timestamp of this reading. A subinterval is a subrange
Within a query Which Was physically retrieved from one
database partition at one logical moment in time. The logical
time at a given database partition is incremented each time
When a committed transaction physically changes that par
tition. The subintervals are stamped With this logical time
and a number that identi?es the partition in the system. Thus
the set V is {([lk, rk], tk, pk)”k=1}, Where tk is the timestamp
and pk is the partition number.

In our validation technique, When committing a transac
tion T, the system does not need to remember the results of
T’s queries; it remembers only query speci?cations [1, r],
Which are checked against concurrent transactions at T’s
commit time. The validation is done against transaction
queues, normally Without any disk access.

LaZy queries can be used to further reduce the validation
speci?ed by the set V and improve the granularity in con?ict
detection. Previous examples have shoWn that the user does
not actually retrieve all facts from the laZy query interval.
The intersection of laZy queries uses the Seek operation and
retrieves only a feW strings from the original elementary
queries. A laZy query automatically keeps track of those
string subranges that have actually been retrieved by the
user. This union of subranges can be much smaller than the
union of the original elementary query intervals. This results
in a ?ner transaction granularity and smaller con?ict prob
ability. At the end of transaction execution, the string sub
ranges from all laZy queries are further optimiZed by merg
ing intersecting subranges of all laZy queries. This
optimiZation is done at the client side, Which alloWs us to
reduce the server Workload and the transaction execution
time.
An accumulated transaction is a triple T(I, D, V) of strings

to be inserted I, strings to be deleted D, and string intervals
V to be veri?ed.

Note that even if no updates Were made, a transaction is
still necessary to ensure the consistency of queries. Thus, a
query can produce an accumulated transaction T(I, D, V)
With empty sets D and I.

Validation Method

A validation is necessary to ensure tWo important prop
erties of transactions: serialiZability and external consis
tency. SerialiZability means that the committed transactions
can be ordered in a such a Way that the net result Would be
the same as if transactions ran sequentially, one at a time.
External consistency means that the serialiZation order is not
arbitrary: if transaction S Was committed before T began (in
real time), S should be ordered before T.
When a client commits a transaction, the accumulated

transaction T is delivered to one of the database servers. This
database server is called the transaction’s originator. The
transaction originator splits the arriving transaction into
subtransactions Ti according to the partitioning map and

10

15

25

35

45

55

65

8
distributes the subtransactions among the database parti
tions. A subinterval ([lk, rk], tk, pk) in the set V is distributed
to the partition p k (Without consulting the partitioning map).
This alloWs the detection of con?icts With system transac
tions that perform load balancing, Which may change the
partitioning map.

The transaction originator uses the 2-phase commit pro
tocol to update the database. In the ?rst phase, the transac
tion originator distributes the subtransactions among the
database partitions. Each database partition veri?es that no
con?icts With any other transaction is possible and sends a
“ready” or “failed” message to the transaction originator. If
the transaction originator receives a “failed” message, it
immediately aborts the other subtransactions and noti?es the
client. When all database partitions return a “ready”
message, the transaction originator sends a “commit” mes
sage to the participating partitions.

In our backWard validation protocol, the arriving sub
transaction Tl-(Ii, Di, V) is checked against all transactions
already validated successfully. In our B-tree, each partition
maintains a log of recently committed transactions CL and
a log of transactions Waiting for commit WL.
We say that a set of string intervals V intersects a set of

strings A iff there exists an interval [1, r] in V such that [1,
r]A#® (i.e. for some x€A:l§x§r).
We also say that tWo transactions T(IT, DT, VT) and S(IS,

D 5, VS) intersect if:

2. VS intersects ITUDT
or

3. VT intersects ISUDS
When the subtransaction Ti arrives, it is veri?ed that Ti

intersects With no transaction S in WL.
Additional veri?cation is necessary to ensure that no

query in Ti is affected by a recently committed transaction
S in CL. We check that each interval ([lk, rk], tk, nk) in Vi of
Ti does not intersect With the sets IS and D5 of any trans
action S in CL that has greater timestamp than tk.

If the subtransaction is successfully veri?ed, it is
appended to the WL and the “ready” message is sent to the
transaction originator. OtherWise the “failed” message is
sent to the transaction originator.

FIG. 2 shoWs a simple case of transaction accumulation,
distribution, and validation When only tWo B-tree partitions
are involved. A client at the Client Machine accumulates a
transaction T(I, D, V). When the client decides to commit
the transaction, T(I, D, V) is sent via the netWork to the
transaction originator machine. The transaction originator
machine splits the transaction into tWo subtransactions
T1(I1, D1, V1) and T2(I2, D2, V2) and sends them to the
corresponding B-tree partitions machines. Partitions 1 and 2
execute the validation protocol by checking the subtransac
tions against the committed transactions logs and the Waiting
for commit logs according to our validation method With
logical timestamps. When the veri?cation is done, a Ready
message is sent to the transaction originator, Which imme
diately sends the Commit message to the B-tree partitions.

It can be shoWn that our concurrency control algorithm
satis?es both serialiZability and external consistency
requirements.

That Which We claim is:
1. A concurrency control method for a multiserver data

base system comprising multiple server machines and mul
tiple client machines, comprising the steps of:

incrementing a logical time at each server machine during
transaction execution at the server machine;

5,920,857
9

accumulating a transaction T(I, D, V) at a client machine
in three sets, an Insert set I, a Delete set D, and a Verify
set V,
the Insert set comprising a set of data items to be

inserted,
the Delete set comprising a set of data items to be

deleted, and
the Verify set comprising a set of descriptions P, each

description P comprising information that identi?es
(a) data retrieval operations performed by the client
machine With respect to a particular server machine,
(b) the particular server machine subject to the client
data retrieval operations, and (c) a logical timestamp
at the particular server machine;

delivering transaction T from the client machine to a
selected server machine, the selected server machine
being designated as the transaction’s originator server
machine;

at the transaction’s originator server machine, splitting
transaction T into subtransactions Tn per relevant serv
ers and executing the subtransactions using a tWo-phase
commit protocol;

maintaining tWo logs of subtransactions at each server
machine, a ?rst log comprising a log of committed
subtransactions (CL) and a second log comprising a log
of subtransactions ready to commit (WL); and

performing subtransaction veri?cation at each server
machine for each incoming subtransaction T”:
(1) checking that the sets In, D”, and V” do not intersect

With the sets Ik, Dk, and Vk for each subtransaction
k in the set WL of the subtransactions ready to

commit,
(2) checking that each description P from the set V”

does not intersect the sets Ik or Dk of any subtrans
action k in the set CL of the committed subtransac
tions With the logical timestamp greater than or equal
to the timestamp of P.

2. A database management system that uses the concur
rency control method of claim 1.

3. The concurrency control method of claim 1, Wherein
the method is applied to database management systems
storing facts about objects.

4. The concurrency control method of claim 1, Wherein
the method is applied in a semantic binary database system.

5. The concurrency control method of claim 1, Wherein
the method is carried out in a B-tree database structure.

6. A concurrency control method for a parallel B-tree
comprising multiple server machines and multiple client
machines, comprising the steps of:

incrementing a logical time at each server machine during
transaction execution at the server machine;

accumulating a transaction T(I, D, V) at a client machine
in three sets, an Insert set I, a Delete set D, and a Verify
set V,

10

15

3O

35

45

10
the Insert set comprising a set of data items to be

inserted,
the Delete set comprising a set of data items to be

deleted, and
the Verify set comprising a set of descriptions P, each

description P comprising information that identi?es
(a) boundaries of intervals of B-tree strings retrieved
by the client machine With respect to a particular
server machine, (b) the particular server machine
subject to the client data retrieval operations, and (c)
a logical timestamp at the particular server machine;

delivering transaction T from the client machine to a
selected server machine, the selected server machine
being designated as the transaction’s originator server
machine;

at the transaction’s originator server machine, splitting
transaction T into subtransactions Tn per relevant serv
ers and eXecuting the subtransactions using a tWo-phase
commit protocol;

maintaining tWo logs of subtransactions at each server
machine, a ?rst log comprising a log of committed
subtransactions (CL) and a second log comprising a log
of subtransactions ready to commit (WL); and

performing subtransaction veri?cation at each server
machine for each incoming subtransaction T”;
(1) checking that the sets In, Dn, and Vn do not

intersect With the sets Ik, Dk, and Vk for each
subtransaction k in the set WL of the subtransactions
ready to commit,

(2) checking that each description P from the set V”
does not intersect the sets Ik or Dk of any subtrans
action k in the set CL of the committed subtransac
tions With the logical timestamp greater than or equal
to the timestamp of P.

7. Aquery optimiZation method for joining or intersecting
large queries in databases based on B-trees or other struc
tures of indeXed blocks of ordered records, the method
comprising the steps of:

rather than fully retrieving a query result at once, alloWing
the user to perform a Seek operation on the query result
to retrieve a record meeting a condition, prefetching
and caching certain subsequent records;

applying the Seek operation to ?nd the intersection of tWo
large queries comprising:
retrieving a small subset of records from a ?rst query;
using the Seek operation to retrieve matching results of

a second query;
submitting the matching results of the second query to

the Seek operation of the ?rst query; and
repeating the process of applying the Seek operation

until all matching records are retrieved.
8. The query optimiZation method in claim 7 applied to a

database management systems storing facts about objects.

* * * * *

