
qb - 1---]!,

ciences
orida, Gainesville.

:emes. 46 Avenue
e. France

Jineering &
ty of Illinois at
. USA

iell'lnformazione.
alvi 2. 56100 Pi sa.

rn-Nurnberg,
Iangen, Germany

;ience. Tokyo
«iyama. Meguro-ku.

:ience . Duke
106. USA

4 Ltberty Corner
JSA

ctence. Untverst ty of

esearch lnstttute.
tXt. PRC

·.September and

525635):

Journals Fulfilment
~5635:

ption)

Repnnts

•y electrontc means.
·dance with the
:e. London WClE
ing of an

0
ys

Volume 11 Number 4 July 1996

Executive Editor Jeremy Thompson
Sub Editor Brenda Devers

Special issue: Massively Parallel Computing
Guest Editor. Giacomo R Sechi , CNR, lstituto di Fisica Cosmica, Milan, Italy

Performance comparison of interprocessor communication schemes
for a hashing technique on the Connection Machine
Z S KHAN AND E KWATNY

Load balancing in a massively parallel semantic database
I N RISHIE, A SHAPOSHNIKOV AND s GRAHAM

RETRAN: a recurrent paradigm for data-parallel computing
A V SHAFARENKO

The Modular Expandable Multiprocessor System MEMSY
M DAL CIN, H HESSENAUER AND w HOHL

Problems on routing bounded distance assignments in hypercubes
N 8AGHERZADEH AND M DOWD

Divide-and-conquer minimal-cut bisectioning of task graphs
S LOR , H SHEN AND P MIAHESHWARI

Fast algorithm for data exchange in reconfigurable tree structures
S SRINIVAS AND N N BISWAS

Scheduling, timing and intractability in massively parallel systems
G NEMETH

vol I I no .t july I 1)1)6

189

195

201

211

221

227

235

IX7

uns ~and 4

2768

0.2243
0.1968
5 1.923
70.8443

6P. We would like to
nments on the des ign
1 at Bloomsburg Uni-
1 and design of exper-

-2 Tec hnical Summary.
A.R7-4. Thinking Mach­
I 1987)
'crformance analysis of
·· the Connc<:ti on M<ll'h-

Oi.H. Sys. <Nove mber

Zahorjan • .I 'A<.Japllvc
trihutcll sys tems: IF:EE
) !iVIay 1986) pp. 662-

Y'is of the Connection
l)(l)

K S 'Analytic queuing
tal <:nncurrcn<:y: IEEE
' J-X~

.-tio. Dcll en Puhli shing

ien ce & engineering

comput syst Sci & Eng (1996) 4: 195-199
© 1996 CAL Pubilshmg Ltd Computer Systems

Science & Engineering

Load balancing in a massively
parallel semantic database

Naphtali Rishie, Artyom Shaposhnikov and Scott Graham

School of Computer Science. Florida Internati onal Uni versity. Unive rsi ty Park . Miami. FL 33199. USA. Email : rishcn @ l'iu .cdu

We are derelrlfilll g (I nw.uil ·ell· parallel semamic darabase machine. Our hasic .,ema/1/tc Horage srnwrure l'IISUrf'S !>a/anced load .Jfn· most
parts of rhe dawl}(lse. The load ro rhe other parts of the database is ke1il balanced hr a heuristic al~orithm u·hich ref'artitions data e1mr>n~
processors in our da ralw .l'l' machine as necessan· ro f'roduce a more •••·enh halanced lnad. We presenr our inexf>ensin•. dmamic load halww­
inR method ro~erher •.-irh a fa ult- roleran r dar a transfer poliCI' rhat •rill he ust•d to trwu(er rhe rt'l>artitioned data in a u ·e~r rmnxl"ll'l'llf to 1lw
11sers of the daralwse.

Keyll'ords: /JHMS. nut.un·e parallelism. semanllc dara models. load lwlcmcin~. datalwse mac/lint•

1. INTRODUCTION

Database management systems are emergi ng as prime ta rgets
for en hancement through paralle li sm. In orde r for parallel
database machines to be efl'ic ient. the processors in the sys­
tem must have comparable load . A massive ly parallel
database machine wh ich uses thousands of processors wi ll
all ow ror massive throughput of transac tions and queries if
no processors become a bottleneck. This paper proposes a
load ba lancing me thod for a massivel y parallel se mantic
database .

Much work on load balanci ng fo r relational databases and
fi le sys tems has been done and can be ut ili zed in our
research . For example. Si taram et a/. 1 propose several
dy namic loatl halanc111g poli cies fo r multi -server fi le sys­
tems . A dynam ic load balancing algorith m for large . shared­
not hin g. hypercube database computers which makes usc of
relational join s tra teg i c~ is presented in Hua and Su 2. Lee
and Hua-1 present a se lf-adjustin g data distribut ion sc heme
which balances computer workload in a multiprocessor
database system at a cell level during query processing. A
run-time reorga ni zation sc heme fo r rule based process ing in
large databases is discussed in Stolfo er a/.4.

Our database co mputer wil l make usc of a shared-nothin g

vol II no 4 july 1\1\lll

architecture . The computati onal load on each processor nr
our database computer wi ll vary directl y wi th the dcmantl for
data on that processor. Im balances in the number of data
accesses among notles can he rectified by repartitioning the
database. much as imbalances in computationa l demands in
process sc heduling can he rectified by moving processes
from one machine to another. When a range of fact s in our
database is moved from one processor's control to anot her
processor' s control. the load on the fi rst processor will go
down . The methods for determi ning imhalances in ou r sy'­
tem. and the methods to relieve these imhalanccs in our sys­
tem. are very si mi lar to the methods used for computati onal
dy namic load balancing in shared-nothing com puters. /\n
adapti ve. heuristic method fo r dyn amic load balancing in a
message-passi ng multicomputer is presented in Xu and
Hwang-1. A se mi-distributed approach to load ba lancing in
mass ive ly para lle l multicom puter systems is prcscntctl in
Ahmad and Ghafoor6.

Our massive ly parallel database machine architecture nnkcs
usc of a distributed system of many processors. each with its
own permanent storage tlcvice. This shared-nothing approach
requires that any load balancing operations he performed by
message passing. The data distribution scheme that is uscd in
oui""datahase-\ystcm ·allows load balancing to he achie ved hy

195

N AISHIE ET AL.

data rcpanitioning among the nodes or our ~ystem.
/

t

Thi~ paper rdine~ the result~ reported in Rishie el af.7 and
extends them by adding a raul! tolerant data transfer policy
ror data rcranitioning.

2. SEMANTIC BINARY DATABASE
MODEL

The semantic database models in general. and the Semantic
Binary Mlldel SBM (R ishieN and others) in particular. repre­
sent the inl"onnation or an arrlication ·s world as a collection
llr elementary !"acts categorizing objects or establishing rela­
tionships ol" 1·arious kinds between pairs of objects. The ce n­
tral notion or ~cmantie models is the concept of an ahsrmcr
ohjecr. which is any real world entity that we wish to store
information about in the dataha~e. The object~ are eatego­
rit.cd in1o classes according to their comtnon properties.
These cla~'L' ~. called C'lilegorie.l. need not he di~joinl - that
IS. one object may belong to several classes. Further. an arbi­
trary structure ol" sub-categories and super-categories ca n be
Jel"ined. The rcrresentation or the objects in the computer is
inl'isihle to the user. who rerccive~ the objects as real-world
cn!ll les. will:! her tangible. such as persons or car~. or intangi­
ble. such a' observations . meetings. or desires. The dataha~e
is perceived by its user as a set or facts about objects. These
facts nrc lll" three types: !"act~ stating that an object belong~ ltl
a category : .rC: facts slating that there is a relationshir
hc1wcen objects : .IR.Y: and facts relating objects to data. such
a~ numbers. text~. date~. image~. tabulated or analytical
functions. etc : 1/h . The relationships can he or arbitrary
l-1nd~: >ta11ng. lor examrlc. that there is a many-tn-many
relation oddrl'.\'1' between the category of rcrsons and texts
means !hat one person may have an addre~s. several address­
c~. or no adJrc>S at all.

3. STORAGE STRUCTURE

An cl'ficienl storage structure for semantic models has been
rroroscd in Rishie~· 1o The co llection of facts forming the
database i~ represented by a !"lie structure wh ich ensures
aprrox imatcl y I di~k access 10 retri eve queries of any of the
following forms:

I. For a given abstrac t object x. verify/fi nd what cate­
gories the object belongs to.

2. For a given category. find its objects.
3. For a given abstract object x and relation R. retrieve

all/certain y such that xRy .
4. For a given abstract object y and relati on R, retrieve

all/c.:c rt ain abstract objects x such that xRy.
5. For a given abstract object x. retrieve (in one

access) all (or several) of its direct and/or inverse
relationships. i.e. relations Rand objects y such that
xRy or yRx. The relation R in xRy may be an
allrihute, i.e. a relation between abstract objects and
concrete objects .

6. For a given relation (att ribute) R and a given con­
cre te object y, find all abstract objects such that
xRy.

196

7. For a given relation (attribute) R and a given ran ge
of concrete objects lYt· y2]. find all objects x and y
such that xRy andy~ y 1 ~ ."2·

The entire database can be stored in a single file . This file
contains all of the facts of the database (.rC and xRY) as well
as additional information called inverted facts : Cx. R1·.r. The
in verted facts ensure that answers to queries of forms 2. 4. 6
and 7 arc kept in a contiguous segme nt of data in the
database which allows them to be answered with one disk
access. The direct facts xC and xRY allow the database to
answer queries of forms I . 3. and 5 with one disk access.
The file is mai ntained as a 8-tree. The variation of the 8-tree
used all ows both seq uential access accordi ng to the lexico­
graphic order of the items comprising the !"acts and the
inverted facts. as well as random access hy arhitrary prefixes
of such facts and inverted facts . Fact~ which are clo~c to
each other in the lexicographic order reside close to each
other in the file . (Notice that although technically the 8-trcc­
key is the entire fact. it is of varying length and on the aver­
age is only . everal bytes long. which is the average size of
the encoded fact xRY.)

Consider. for example. a database conwini ng information
regarding products manufactured hy different comranies.
The following set of facts can be a ran of a logical instanta­
neous database:

I. object ! COMPANY
2. object! COMPANY-NAME 'IBM'
3. object I MANUFACTURED ohJCcl2
4. object! MANUFACTURED ohject3
5. objcct2 PRODUCT
6. ohject2 COST 3600
7. ohject2 DESCRIPTION 'Thinkpad'
R. ohject3 PRODUCT
9. object3 COST I 00
I 0. ohject3 DESCRIPTION 'TrackPoint'

The additional inverted facts stored in the database are :

I. COMPANY object!
2. COMPANY-NAME 'IBM' object!
3. object2 MANUFACTURED-BY object!
4. object3 MANUFACTURED-BY object I
5. COST 3600 object2
6. COST I 00 object3
7. DESCRIPTION 'Thinkpad' object2
8. DESCRIPTION 'TrackPoi nt" object3
9. PRODUCT object2
I 0. PRODUCT object3

To answer the elementary query "Find all objects manufac­
tured by object!'·. we find all the facts whose prefix is
objecti_MANUFACTURED. ('_' denotes concatenation .)
These entries are clustered together in the sorted order of
direct facts.

To answer the elementary query "Find all products cost­
ing between $0 and $800'' . we find all the facts whose prefix
is in the range from COST _0 to COST _800. These entries
are clustered together in the sorted order of inverted facts.

In the massively parallel version that we are developing.

computer systems science & engineering

the B-tree is pa1
residing on a sep;
memory) that is :
Thi s disk-rroccs
retrieve informal
processing on the
the other nodes . l
van! integrity cm
mation on the dis
or updated concu1

The queri es an
through host intc
copy of the Part i
Since the whole t

represented hy a
only a ~mall numt
cally minimal an<
that is swred on 1
databa~e is re-ra1
propose in th1s '
inexpensive. local
the shifting of' da
with the normal OJ

Most of the ph
of a sernnntic h1n
These facts arc '
objects. which a>
each abstract objc
and since the ohjc
that lral"l"ic to eacl
over time . Other
with an invencd c
tion between an a
possible that at ,,
certain allrihutc 01
or categoric~ . The
values of a gi ven ;
licular mvened at
together. this n
processor/disk rai
can occur in some
taining the facts w
file will contain
object. Tht:: secon<
with an inverted at
third subfile conta
which are roi nted
partitioned evenly
~ystem . The first s
thirtl suhl"i Jes ma)
block placement al
ti oned. By rerartit
ly balance the load

4. REQUE

We emrloy a defc
cessing. This mear
formed until thev ,
database manag~m

\'ol 1I no 4 july 1~

R and a given range
d all objects x and y

single file. This file
(xC and xRyl as well
d facts: Cx. R\'X. The
cries of forms 2. 4. 6
nent of data in the
wered with one disk
!low the database to
vith one disk access.
•ariation of the B-tree
ording to the lexicn­
lg the facts and the
. hy arbit rary prefixes
s which are close to
reside close to each
~chnically the B-trce­
ngth and on the aver­
s the average size of

Jn taining informat ion
different companies.
of a logical instanta-

BM '
hjcct2
hjcct3

kPnint'

he dat:.~basc are :

jcctl
1Y object I
1 Y object I

bject2
ohject3

J all objects rnanufac­
facts whose pre ri x is
notes concatenation.)
n the sorted order of

:ind all products cost­
the facts whose prefix
17'_!!00. These en tr ies
rder of inverted f:.~cts.

at we :.~re developing.

riencc & engineering

the B-tree is partitioned into many small fragments. each
residing on a separate storage unit (e.g. a disk or non-volatile
memory) that is associated with a fairly powerful processor.
This disk-processo r pair is ca ll ed a node. Each node can
retrieve information from the disk. perform the necessary
processing on the data and deliver the result to the user. or to
the other nodes. For updates the node verifies all of the relc­
nwt integrity constraints and then stores the updated infor­
mation on the disk . Many database fragments can be queried
or updated concurrently.

The queries and transactions will enter into the network
throul!h host interfaces. Every host in terface maintains a
copy ~of the Partitioning Map (PM) of the entire database.
Since the whole database is a lexicographically ordered file
represented hy a set of B-trees, the map needs to contain
only a smal l number of facts for each node: the lexicographi­
cally minimal and maximal facts for each B-tree fragment
that is stored on that node. The map changes only when the
database is re -partitioncd. The distr ibution policy that we
propose in th1s work provides repartitioning that is rare.
inexpensive. lot:alit.ahle. invisible to the system until all of
the shifting of data is complete. and that does not interfere
with the normal operation of the system .

Most of the physical facts that are in our implementation
of a semantic binary database start with an abstract object.
These facts an: mdered hy tht: encoding of the abstract
objects . which as,igns a unique quasi-random number to
each abstract object. Since there arc so many of these facts.
and since the nhJcct' are randomly ordered. we can assume
that traffic to ~ach partlllon of these facts will be balanced
ovo::r time . Other facts 1n a semantic binary database start
with an inverted catt:gory or <In inverted attribute (i.e. a rela­
tion between an ah,tract object and a prinwble value). It is
possible that at 'nme time there may be a nt:ed to access a
certain attribute or category mnre often than other attnhutcs
or categonc,. The , a me may he true for a speci fie range of
values ol' a giYen attribute. Since all facts that refer to a par·
ticular inwneJ attnhute or 1nvo::rted category are clustered
together. tl11' may cause a h1gher load on some
processor/disk pa1rs than on others . Sin<.:e load imbalances
can occur in some kinds of facts but not others. the file con­
taining the facts will he split 1nto two subliles. The first sub­
fi le wi ll contain all the facts that begin with an ahstrat:t
object. The second 'uhfile will contain the facts that begm
with an inverted attribute or category. Additionally there is a
third suhfilc contain1ng long data items: texts. images. etc ..
which arc pointed to by facts . Each subfile will be initially
partitioned evenly \lver all the processor/disk pairs in the
\ystem. The first suhl'ik is already balanced : the second and
third suhfiles may become unbalanced and will require a
block placement algorithm that allows the data to be reparti­
tioned . By rcpartitioning data. we will be able to more even­
ly balanct: tilt: load to each data partition.

4. REQUEST EXECUTION SCHEME

We employ a dcl'crrcd update scheme for transaction pro­
cessing. This means that transactions are not physica ll y per­
formed until thev arc committed. but are accumulated by the
da t;Jhasc manag~ment system as they are run. Upon comple-

vol II nn -t july I 'JIJo

LOAD BALANCING IN A MASSIVELY PARALLEL SEMANTIC DATABASE

tion of the transaction the DBMS checks its integrity and
then physically performs the update. A completed transac­
tion is composed of a set of facts to be deleted from the
database. a set of facts to be inserted into the database. and
additional information needed to verify that there is no inter­
ference between transactions of conc urrent programs. In our
parallel database. each node is responsible fo r a portion of
the database. When an accum ul ated transaction is performed.
the sets of facts to be ' inserted into. and deleted from. the
database must be broken down into subsets that can be sent
to the processors which are responsible for the relevant
ranges of data.

Each host in the system will have a copy of the Partition­
ing Map (PM). The Partitioning Map is a small semantic
database t:ontai nin g information about data distribution in
the system. Figure I is a semantic schema of the partitioning
map .

The partitioning map contains a set of ranges and their
lexicographical bounds - the low-bound and the ltiglt-bound
values . When a query or transaction arrives. the host will
identify its lexicographical bounds. The host will then use
the partitioning map to determine a set of ranges that needs
to be retrieved or updnted and hence the nodes which wi ll be
involved in the current transaction or query.

The partitioning map will be replicated among hosts.
However. this does not imply that we need a global data
structure: the algonthm described below allows updates or
the partitioning database to be performed gradually . without
locking and interrupting all hosts .

A ran ge can be obtained from the node pointed to hy the
/ocarion reference in the partttioning datahase . This nod.::
should .:ithcr havo:: the range or a reference to another node
which contains the range.

To perform load halancing we will need to move ranges
from nne node to another. A moved range will he accessible
via an indirect reference that is left at its previous location.
Such an indirect access slows down the sy~tcm. especially
when the range is frequently accessed by users. To allow a
direct access to the moved range we need to update the /oca­
rioll reference in the partitioning database . We will not per­
form this update simultaneously for all the host interfaces.
The update will be performed when a host executes the first
query or transaction that refers to the range that was trans­
ferred . The· node that actually holds the range will send the
results to the host along with a request to update the parti­
tioning map. This means that the first transaction will have
to travel a little further than all subseq uent transactions. The
second and future queries or transactions made through this
host will be executed directly by the node pointed to by the
locatio11 reference .

The data structure at each node which supports indirect
referen<.:ing will be exactly the same as the partitioning map
descrihed above. We will ca ll this data structure a local parti­
tioning map.

Each range of facts will be represented as a separate B­
tree structure which will reside on the node pointed to by the
partitioning map. Consider a case where a range has been
moved several times from one node to another. We may have
multiple indirection references to the act ual location of the
range. These indirect references will be changed to direct
references aoo..dcseribs-1!1 above ..

197

N RI SHIE ET AL .

,,('

FACT RANGE

low-bound: String 1:1
high-bound: String 1:1

location
(m:m)

NODE

address: String 1:1

Fi J! urc I Partllhllllll !! map

5. OATA TRANSFER POLICY

In order to cn,UIT that the database remains consistent
throughout a load ha lam:ing data transfer. load balanci ng
a..:tion~ arc <:\ecuted as transactions initiated hy the system.
A large rangL' uf fa<.:ts is transferred hy executing a series of
~mall ~ystem transaction:-. that transfer sma ll portions of data
from one parlllion to another. The system transactions arc
:-.uhjcct to thL· ~amc logg1ng and rc..:overy act ions as regular.
u,er lnlti;ltL·d. transactions. Apart from the data transfer. each
sma ll load halanc111g transaction also includes the da ta nec­
essary ro r updating the partitioning map. To ensure th at the
partitioning map remains cnnsistcnt. the partitioning map
update i~ c\ccutcd using a 2-phast: commit protocol.

6. LOAD BALANCING POLICY

When idle. the host interfaces will send data and work load
statistics recently accumulated from the nodes to a Gl obal
Pcrfornwnce Ana lyzer (GPA). The host interfaces acc umu­
late this data as the results of queries and transactions now
through them hack to the user. The GPA is a process that
an a l yze~ the stat ist ica l informati on ob tained and ge nerates
preferable directio ns of data transfer for each node.

The statistics report wi ll contain only the changes since
the previous report:

• Changes in data partitioning
• Number of accesses for each range
• Free space on each node

The GPA will usc a heuristic search algorithm which uses a
choice function to select a small number of possible data
movements for the system. The final state wi ll be estim ated
by a static eval uation function S. The GPA will select the
data movement wi th the lowest value of the resulting stati c
evaluati on S.

The choice function shou ld compl y with the foll owing
strateg ies:

198

I.

2.

3.

Whenever possible load halanci ng should he
achieved by joining ranges together. Joining ranges
will result in faster query execution and sma ll er par­
titi oning maps.
A criterion for de termin ing prefcrahlc destinations
for a range transfer is the desire to move a range to

a destination node which con tai ns the lexicographi­
call y closest range to the transferred range. In other
word s. it is desirab le to locate lexicographically
close ranges on the same node whenever possihlc.
If a range has an exceptionall y high numher of
access or requi res an exceptionally large amoun t of
storage- split the range into several parts and trans­
fer them to other nodes.

Each node will he characterized by two parameters:

I .
")

The amount of free disk space on th e node. F
The percentage of idle time I . In other words the I
is: I = ldle/T. where Tis a given time interval and
hiiP is the node ·s idle time durin g the tim e T.

The resulting state will he estimated hy the following param­
eters:

I. A- the total amou nt of data that will he necessary to
transfer in the system

2. IJr- the mean square deviation ofF
.' . n,- the mean sq uare deviat ion of I
4. M- total number of ranges in the system

The stat ic evaluation function can he represented as :

where C1. C2. c, and C4 are constants.

7. CONCLUSION

Our load balancing algor ithm will provide our massivel y
parallel semanti c database machine with a method to reparti ­
tion data to evenl y di strihute work among its processors. The
algorithm has very littl e overhead, as its statistics are accu­
mulated during the norm al processin g of transactions. The
load halanci ng is accompli shed by repartitioning parts of the
database over the nodes of the database machine. The repar­
titi oning will be transparent to the users and will not
adverse ly affect the perfo rmance of the system . Our fault­
tolerant data transfer policy will ensure that the database and
its partitioning maps remain consistent during repartitioning.

We are currentl y deve loping a prototype parallel semantic
database on a network of workstations. We will evaluate our
load balancing algorithm on th is prototype system and
experimen t with ways to optimize our heuri stic search algo­
rithm.

ACKNOWLEDGEMENTS

This research was supported in part by NASA (under grant

computer systems science & engineering

NAGW--10!!0
NATO (under
CDA-931362,

REFEREN

Sitar:
t'- lulti­
Proce
Pam/,

Diego
Pre~s.

2 Hua.

3

4

Lar!!C
lEI:£
her IY
Lee. (
Mech;
Multq
Sr.HI'/1

Stolfo
Para II•
Procc ~

Enu'r\t

vol 11 no 4 jul

alanci ng should be
ge ther. Jo inin g ranges
ution and smaller par-

>refe rable destinati ons
tre to move a range to
ains the lc xicographi­
;ferred range. In other
;ate lexicog raphi call y
wheneve r possible .

ta ll y high number of
mall y large amount of
everal parts and tran s-

> paramete rs:

on the node. F
'. In o ther words the I
iven time interval and
ring the time T.

1 the following param-

ta l will be necessary to

>n ofF
n of I
the sys tem

~ prcsen t .:tl as:

'*M.

>rovide our mass ivel y
th a method to reparti­
:mg its processors. The
its statistics are acc u-

g o f transactions. The
>artiti oni ng parts of the
;e machine. The repar-
: users and wi ll not
the system. Our fault-
e that the database and
t during repartitioning .
Jtype parallel semant ic

l

;. We will eva luate our
Jrototype system and •
· heuri sti c search a lgo-

>y NASA (under grant

;cience & engi neering

NAGW-4080). BMDO&ARO (under grant DAAH04-0024).
NATO (unde r grant HTECH.LG-93 1449). NSF (under grant
CDA-931 3624 for CATE Lab) . and the State o f Florida.

REFERENCES

Sitaram. D. Dan, A and Yu, P ·tssues in the Design of
Multi -Server File Systems to Cope with Load Skew·.
Proceedings of the Second lntemational Conference on
Parallel and Distributed Informa tion Srstems CSan
Diego . January 20-22. 1993). IEEE Computer Society
Press. I 'J9J

2 Hua. K and Su. J 'Dynamic Load Balancing in Very
Large Shared-Noth ing Hypercube Database Computers·.
lEFT Transactions nn Computers. Vol 42 No 12 (Decem­
her 199~) pp 1425-1439

3 Lee. C and Hua. K 'A Self-Adjusting Data Distribution
Mechanism for Multidimensional Load Balancing in
Multi proc·cssor- Based Database Systems·. l1 z[ormation
Sr.Helll.l'. Vol 18 No 7 (I 'J'J4) pp 549-567

4 Stolfo. S. Dewan, H, Ohsie, D and Hernandez. M 'A
Parallel and Distributed Environment for Database Rule
Proc-essing : Open Problems and Future Directions ·. in
Emerging Trends in Darahase and Knowledge-Base

vol II no 4 july 1996

5

6

7

8

9

10

LOAD BALANCING IN A MASSIVELY PARALLEL SEMANTIC DATABASE

Machines: The Applicarimz 11(Parallel Archirecturps ro
Smart lnfomrarion S\'Stems. M. Ahdelguerti and S. Lav­
ington. eds. IEEE Computer Society Press. 1995. pp 225-
253
Xu, .J and Hwang, K 'Heuristic Methods for Dynamic
Load Balanc-ing in a Message-Passi ng Multicomputer".
Joumal of Parallel and Distrilmted Compu ting. Vol 18
(199 3) pp 1- 13
Ahmad. I and Ghafoor, A ·semi-Distributed Load Bal­
ancing For Massi ve ly Para llel Multicomputer Systema· .
IEEE Transacrions 011 Sofllmre Engineering. Vol 17 No
10 (October 1991 l pp 987-1004
Rishe, N. Shaposh nikov, A and Sun. W 'Load Balanc­
ing Policy in a Massively Parallel Sc:mantic Database·.
Pmceedin[is of th£' First ln temmi111ral Conference on
MassivelY Parallel Co11111111ing Srstems. IEEE Computer
Socie ty Press. 1994. pp 328-333
Rishe, N fJawlwse DPsign: Till• Semwrric Modeling
Approaclr. McGraw-Hi ll . 1992
Rishe, N 'Efficient Organization \>f Semantic Databases· .
Foundarirms r!f /Jata Organiart1r111 and r\lgorirhms
I FOD0 -89) W. Litwin and H.-J. SdH:k. cds .. Springer­
Verlag Lecture Nmes in Colll fJUt er Sciellcl'. Vol 367. pp
11 4-127 . 1989
Rishe, N 'A File Structure for Semantic Datah;rscs·.
lnjimnation Srstems. Vol 16 No -l (I <J91) pp ~75- .~8 ~

199

