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We are derelrlfilll g (I nw.uil ·ell· parallel semamic darabase machine. Our hasic .,ema/1/tc Horage srnwrure l'IISUrf'S !>a/anced load .Jfn· most 
parts of rhe dawl}(lse. The load ro rhe other parts of the database is ke1il balanced hr a heuristic al~orithm u·hich ref'artitions data e1mr>n~ 
processors in our da ralw .l'l' machine as necessan· ro f'roduce a more •••·enh halanced lnad. We presenr our inexf>ensin•. dmamic load halww­
inR method ro~erher •.-irh a fa ult- roleran r dar a transfer poliCI' rhat •rill he ust•d to trwu(er rhe rt'l>artitioned data in a u ·e~r rmnxl"ll'l'llf to 1lw 
11sers of the daralwse. 

Keyll'ords: /JHMS. nut.un·e parallelism. semanllc dara models. load lwlcmcin~. datalwse mac/lint• 

1. INTRODUCTION 

Database management systems are emergi ng as prime ta rgets 
for en hancement through paralle li sm. In orde r for parallel 
database machines to be efl'ic ient. the processors in the sys­
tem must have comparable load . A massive ly parallel 
database machine wh ich uses thousands of processors wi ll 
all ow ror massive throughput of transac tions and queries if 
no processors become a bottleneck. This paper proposes a 
load ba lancing me thod for a massivel y parallel se mantic 
database . 

Much work on load balanci ng fo r relational databases and 
fi le sys tems has been done and can be ut ili zed in our 
research . For example. Si taram et a/. 1 propose several 
dy namic loatl halanc111g poli cies fo r multi -server fi le sys­
tems . A dynam ic load balancing algorith m for large . shared­
not hin g. hypercube database computers which makes usc of 
relational join s tra teg i c~ is presented in Hua and Su 2. Lee 
and Hua-1 present a se lf-adjustin g data distribut ion sc heme 
which balances computer workload in a multiprocessor 
database system at a cell level during query processing. A 
run-time reorga ni zation sc heme fo r rule based process ing in 
large databases is discussed in Stolfo er a/.4. 

Our database co mputer wil l make usc of a shared-nothin g 
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architecture . The computati onal load on each processor nr 
our database computer wi ll vary directl y wi th the dcmantl for 
data on that processor. Im balances in the number of data 
accesses among notles can he rectified by repartitioning the 
database. much as imbalances in computationa l demands in 
process sc heduling can he rectified by moving processes 
from one machine to another. When a range of fact s in our 
database is moved from one processor's control to anot her 
processor' s control. the load on the fi rst processor will go 
down . The methods for determi ning imhalances in ou r sy'­
tem. and the methods to relieve these imhalanccs in our sys­
tem. are very si mi lar to the methods used for computati onal 
dy namic load balancing in shared-nothing com puters. /\n 
adapti ve. heuristic method fo r dyn amic load balancing in a 
message-passi ng multicomputer is presented in Xu and 
Hwang-1. A se mi-distributed approach to load ba lancing in 
mass ive ly para lle l multicom puter systems is prcscntctl in 
Ahmad and Ghafoor6. 

Our massive ly parallel database machine architecture nnkcs 
usc of a distributed system of many processors. each with its 
own permanent storage tlcvice. This shared-nothing approach 
requires that any load balancing operations he performed by 
message passing. The data distribution scheme that is uscd in 
oui""datahase-\ystcm ·allows load balancing to he achie ved hy 
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data rcpanitioning among the nodes or our ~ystem. 
/ 

t 

Thi~ paper rdine~ the result~ reported in Rishie el af.7 and 
extends them by adding a raul! tolerant data transfer policy 
ror data rcranitioning. 

2. SEMANTIC BINARY DATABASE 
MODEL 

The semantic database models in general. and the Semantic 
Binary Mlldel SBM (R ishieN and others) in particular. repre­
sent the inl"onnation or an arrlication ·s world as a collection 
llr elementary !"acts categorizing objects or establishing rela­
tionships ol" 1·arious kinds between pairs of objects. The ce n­
tral notion or ~cmantie models is the concept of an ahsrmcr 
ohjecr. which is any real world entity that we wish to store 
information about in the dataha~e. The object~ are eatego­
rit.cd in1o classes according to their comtnon properties. 
These cla~'L' ~. called C'lilegorie.l. need not he di~joinl - that 
IS. one object may belong to several classes. Further. an arbi­
trary structure ol" sub-categories and super-categories ca n be 
Jel"ined. The rcrresentation or the objects in the computer is 
inl'isihle to the user. who rerccive~ the objects as real-world 
cn!ll les. will:! her tangible. such as persons or car~. or intangi­
ble. such a' observations . meetings. or desires. The dataha~e 
is perceived by its user as a set or facts about objects. These 
facts nrc lll" three types: !"act~ stating that an object belong~ ltl 
a category : .rC: facts slating that there is a relationshir 
hc1wcen objects : .IR.Y: and facts relating objects to data. such 
a~ numbers. text~. date~. image~. tabulated or analytical 
functions. etc : 1/h . The relationships can he or arbitrary 
l-1nd~: >ta11ng. lor examrlc. that there is a many-tn-many 
relation oddrl'.\'1' between the category of rcrsons and texts 
means !hat one person may have an addre~s. several address­
c~. or no adJrc>S at all. 

3. STORAGE STRUCTURE 

An cl'ficienl storage structure for semantic models has been 
rroroscd in Rishie~· 1o The co llection of facts forming the 
database i~ represented by a !"lie structure wh ich ensures 
aprrox imatcl y I di~k access 10 retri eve queries of any of the 
following forms: 

I. For a given abstrac t object x. verify/fi nd what cate­
gories the object belongs to. 

2. For a given category. find its objects. 
3. For a given abstract object x and relation R. retrieve 

all/certain y such that xRy . 
4. For a given abstract object y and relati on R, retrieve 

all/c.:c rt ain abstract objects x such that xRy. 
5. For a given abstract object x. retrieve (in one 

access) all (or several) of its direct and/or inverse 
relationships. i.e. relations Rand objects y such that 
xRy or yRx. The relation R in xRy may be an 
allrihute, i.e. a relation between abstract objects and 
concrete objects . 

6. For a given relation (att ribute ) R and a given con­
cre te object y, find all abstract objects such that 
xRy. 
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7. .... For a given relation (attribute) R and a given ran ge 
of concrete objects lYt· y2]. find all objects x and y 
such that xRy andy~ y 1 ~ ."2· 

The entire database can be stored in a single file . This file 
contains all of the facts of the database (.rC and xRY) as well 
as additional information called inverted facts : Cx. R1·.r. The 
in verted facts ensure that answers to queries of forms 2. 4. 6 
and 7 arc kept in a contiguous segme nt of data in the 
database which allows them to be answered with one disk 
access. The direct facts xC and xRY allow the database to 
answer queries of forms I . 3. and 5 with one disk access. 
The file is mai ntained as a 8-tree. The variation of the 8-tree 
used all ows both seq uential access accordi ng to the lexico­
graphic order of the items comprising the !"acts and the 
inverted facts. as well as random access hy arhitrary prefixes 
of such facts and inverted facts . Fact~ which are clo~c to 
each other in the lexicographic order reside close to each 
other in the file . (Notice that although technically the 8-trcc­
key is the entire fact. it is of varying length and on the aver­
age is only . everal bytes long. which is the average size of 
the encoded fact xRY.) 

Consider. for example. a database conwini ng information 
regarding products manufactured hy different comranies. 
The following set of facts can be a ran of a logical instanta­
neous database: 

I. object ! COMPANY 
2. object! COMPANY-NAME 'IBM' 
3. object I MANUFACTURED ohJCcl2 
4. object! MANUFACTURED ohject3 
5. objcct2 PRODUCT 
6. ohject2 COST 3600 
7. ohject2 DESCRIPTION 'Thinkpad' 
R. ohject3 PRODUCT 
9. object3 COST I 00 
I 0. ohject3 DESCRIPTION 'TrackPoint' 

The additional inverted facts stored in the database are : 

I. COMPANY object! 
2. COMPANY-NAME 'IBM' object! 
3. object2 MANUFACTURED-BY object! 
4. object3 MANUFACTURED-BY object I 
5. COST 3600 object2 
6. COST I 00 object3 
7. DESCRIPTION 'Thinkpad' object2 
8. DESCRIPTION 'TrackPoi nt" object3 
9. PRODUCT object2 
I 0. PRODUCT object3 

To answer the elementary query "Find all objects manufac­
tured by object!'·. we find all the facts whose prefix is 
objecti_MANUFACTURED. ('_' denotes concatenation .) 
These entries are clustered together in the sorted order of 
direct facts. 

To answer the elementary query "Find all products cost­
ing between $0 and $800'' . we find all the facts whose prefix 
is in the range from COST _0 to COST _800. These entries 
are clustered together in the sorted order of inverted facts. 

In the massively parallel version that we are developing. 
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the B-tree is partitioned into many small fragments. each 
residing on a separate storage unit (e.g. a disk or non-volatile 
memory) that is associated with a fairly powerful processor. 
This disk-processo r pair is ca ll ed a node. Each node can 
retrieve information from the disk. perform the necessary 
processing on the data and deliver the result to the user. or to 
the other nodes. For updates the node verifies all of the relc­
nwt integrity constraints and then stores the updated infor­
mation on the disk . Many database fragments can be queried 
or updated concurrently. 

The queries and transactions will enter into the network 
throul!h host interfaces. Every host in terface maintains a 
copy ~of the Partitioning Map (PM) of the entire database. 
Since the whole database is a lexicographically ordered file 
represented hy a set of B-trees, the map needs to contain 
only a smal l number of facts for each node: the lexicographi­
cally minimal and maximal facts for each B-tree fragment 
that is stored on that node. The map changes only when the 
database is re -partitioncd. The distr ibution policy that we 
propose in th1s work provides repartitioning that is rare. 
inexpensive. lot:alit.ahle. invisible to the system until all of 
the shifting of data is complete. and that does not interfere 
with the normal operation of the system . 

Most of the physical facts that are in our implementation 
of a semantic binary database start with an abstract object. 
These facts an: mdered hy tht: encoding of the abstract 
objects . which as,igns a unique quasi-random number to 
each abstract object. Since there arc so many of these facts. 
and since the nhJcct' are randomly ordered. we can assume 
that traffic to ~ach partlllon of these facts will be balanced 
ovo::r time . Other facts 1n a semantic binary database start 
with an inverted catt:gory or <In inverted attribute (i.e. a rela­
tion between an ah,tract object and a prinwble value ). It is 
possible that at 'nme time there may be a nt:ed to access a 
certain attribute or category mnre often than other attnhutcs 
or categonc,. The , a me may he true for a speci fie range of 
values ol' a giYen attribute. Since all facts that refer to a par· 
ticular inwneJ attnhute or 1nvo::rted category are clustered 
together. tl11' may cause a h1gher load on some 
processor/disk pa1rs than on others . Sin<.:e load imbalances 
can occur in some kinds of facts but not others. the file con­
taining the facts will he split 1nto two subliles. The first sub­
fi le wi ll contain all the facts that begin with an ahstrat:t 
object. The second 'uhfile will contain the facts that begm 
with an inverted attribute or category. Additionally there is a 
third suhfilc contain1ng long data items: texts. images. etc .. 
which arc pointed to by facts . Each subfile will be initially 
partitioned evenly \lver all the processor/disk pairs in the 
\ystem. The first suhl'ik is already balanced : the second and 
third suhfiles may become unbalanced and will require a 
block placement algorithm that allows the data to be reparti­
tioned . By rcpartitioning data. we will be able to more even­
ly balanct: tilt: load to each data partition. 

4. REQUEST EXECUTION SCHEME 

We employ a dcl'crrcd update scheme for transaction pro­
cessing. This means that transactions are not physica ll y per­
formed until thev arc committed. but are accumulated by the 
da t;Jhasc manag~ment system as they are run. Upon comple-
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tion of the transaction the DBMS checks its integrity and 
then physically performs the update. A completed transac­
tion is composed of a set of facts to be deleted from the 
database. a set of facts to be inserted into the database. and 
additional information needed to verify that there is no inter­
ference between transactions of conc urrent programs. In our 
parallel database. each node is responsible fo r a portion of 
the database. When an accum ul ated transaction is performed. 
the sets of facts to be ' inserted into. and deleted from. the 
database must be broken down into subsets that can be sent 
to the processors which are responsible for the relevant 
ranges of data. 

Each host in the system will have a copy of the Partition­
ing Map (PM). The Partitioning Map is a small semantic 
database t:ontai nin g information about data distribution in 
the system. Figure I is a semantic schema of the partitioning 
map . 

The partitioning map contains a set of ranges and their 
lexicographical bounds - the low-bound and the ltiglt-bound 
values . When a query or transaction arrives. the host will 
identify its lexicographical bounds. The host will then use 
the partitioning map to determine a set of ranges that needs 
to be retrieved or updnted and hence the nodes which wi ll be 
involved in the current transaction or query. 

The partitioning map will be replicated among hosts. 
However. this does not imply that we need a global data 
structure: the algonthm described below allows updates or 
the partitioning database to be performed gradually . without 
locking and interrupting all hosts . 

A ran ge can be obtained from the node pointed to hy the 
/ocarion reference in the partttioning datahase . This nod.:: 
should .:ithcr havo:: the range or a reference to another node 
which contains the range. 

To perform load halancing we will need to move ranges 
from nne node to another. A moved range will he accessible 
via an indirect reference that is left at its previous location. 
Such an indirect access slows down the sy~tcm. especially 
when the range is frequently accessed by users. To allow a 
direct access to the moved range we need to update the /oca­
rioll reference in the partitioning database . We will not per­
form this update simultaneously for all the host interfaces. 
The update will be performed when a host executes the first 
query or transaction that refers to the range that was trans­
ferred . The· node that actually holds the range will send the 
results to the host along with a request to update the parti­
tioning map. This means that the first transaction will have 
to travel a little further than all subseq uent transactions. The 
second and future queries or transactions made through this 
host will be executed directly by the node pointed to by the 
locatio11 reference . 

The data structure at each node which supports indirect 
referen<.:ing will be exactly the same as the partitioning map 
descrihed above. We will ca ll this data structure a local parti­
tioning map. 

Each range of facts will be represented as a separate B­
tree structure which will reside on the node pointed to by the 
partitioning map. Consider a case where a range has been 
moved several times from one node to another. We may have 
multiple indirection references to the act ual location of the 
range. These indirect references will be changed to direct 
references aoo..dcseribs-1!1 above .. 
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,,(' 

FACT RANGE 

low-bound: String 1:1 
high-bound: String 1:1 

location 
(m:m) 

NODE 

address: String 1:1 

Fi J! urc I Partllhllllll !! map 

5. OATA TRANSFER POLICY 

In order to cn,UIT that the database remains consistent 
throughout a load ha lam:ing data transfer. load balanci ng 
a..:tion~ arc <:\ecuted as transactions initiated hy the system. 
A large rangL' uf fa<.:ts is transferred hy executing a series of 
~mall ~ystem transaction:-. that transfer sma ll portions of data 
from one parlllion to another. The system transactions arc 
:-.uhjcct to thL· ~amc logg1ng and rc..:overy act ions as regular. 
u,er lnlti;ltL·d. transactions. Apart from the data transfer. each 
sma ll load halanc111g transaction also includes the da ta nec­
essary ro r updating the partitioning map. To ensure th at the 
partitioning map remains cnnsistcnt. the partitioning map 
update i~ c\ccutcd using a 2-phast: commit protocol. 

6. LOAD BALANCING POLICY 

When idle. the host interfaces will send data and work load 
statistics recently accumulated from the nodes to a Gl obal 
Pcrfornwnce Ana lyzer (GPA). The host interfaces acc umu­
late this data as the results of queries and transactions now 
through them hack to the user. The GPA is a process that 
an a l yze~ the stat ist ica l informati on ob tained and ge nerates 
preferable directio ns of data transfer for each node. 

The statistics report wi ll contain only the changes since 
the previous report: 

• Changes in data partitioning 
• Number of accesses for each range 
• Free space on each node 

The GPA will usc a heuristic search algorithm which uses a 
choice function to select a small number of possible data 
movements for the system. The final state wi ll be estim ated 
by a static eval uation function S. The GPA will select the 
data movement wi th the lowest value of the resulting stati c 
evaluati on S. 

The choice function shou ld compl y with the foll owing 
strateg ies: 
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I. 

2. 

3. 

Whenever possible load halanci ng should he 
achieved by joining ranges together. Joining ranges 
will result in faster query execution and sma ll er par­
titi oning maps. 
A criterion for de termin ing prefcrahlc destinations 
for a range transfer is the desire to move a range to 

a destination node which con tai ns the lexicographi­
call y closest range to the transferred range. In other 
word s. it is desirab le to locate lexicographically 
close ranges on the same node whenever possihlc. 
If a range has an exceptionall y high numher of 
access or requi res an exceptionally large amoun t of 
storage- split the range into several parts and trans­
fer them to other nodes. 

Each node will he characterized by two parameters: 

I . 
") 

The amount of free disk space on th e node. F 
The percentage of idle time I . In other words the I 
is: I = ldle/T. where Tis a given time interval and 
hiiP is the node ·s idle time durin g the tim e T. 

The resulting state will he estimated hy the following param­
eters: 

I. A- the total amou nt of data that will he necessary to 
transfer in the system 

2. IJr- the mean square deviation ofF 
.' . n,- the mean sq uare deviat ion of I 
4. M- total number of ranges in the system 

The stat ic evaluation function can he represented as : 

where C1. C2. c, and C4 are constants. 

7. CONCLUSION 

Our load balancing algor ithm will provide our massivel y 
parallel semanti c database machine with a method to reparti ­
tion data to evenl y di strihute work among its processors. The 
algorithm has very littl e overhead, as its statistics are accu­
mulated during the norm al processin g of transactions. The 
load halanci ng is accompli shed by repartitioning parts of the 
database over the nodes of the database machine. The repar­
titi oning will be transparent to the users and will not 
adverse ly affect the perfo rmance of the system . Our fault­
tolerant data transfer policy will ensure that the database and 
its partitioning maps remain consistent during repartitioning. 

We are currentl y deve loping a prototype parallel semantic 
database on a network of workstations. We will evaluate our 
load balancing algorithm on th is prototype system and 
experimen t with ways to optimize our heuri stic search algo­
rithm. 
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