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Load balancing in a massively
parallel semantic database

Naphtali Rishie, Artyom Shaposhnikov and Scott Graham

School of Computer Science. Florida International University, University Park. Miami. FL 33199, USA. Email: rishen@fiu.cdu

We are developing a massively parallel semantic database machine. Our basic semantic storage structure ensures balanced load for most
parts of the database. The load to the other parts of the database is kept balanced by a heuristic algorithm which repartitions data among
processors in our database machine as necessary 1o produce a more evenly balanced load. We present our inexpensive, dvnamic load balanc-
ing method together with a fault- tolerant data transfer policy that will be used to transfer the repartitioned data in a way transparent 1o the

users of the database.

Kevwords: DBMS. massive parallelism, semantic data models. load balancing. database machine

1. INTRODUCTION

Database management systems are emerging as prime targets
for enhancement through parallelism. In order for parallel
database machines to be efficient. the processors in the sys-
tem must have comparable load. A massively parallel
database machine which uses thousands of processors will
allow for massive throughput of transactions and queries if
no processors become a bottleneck. This paper proposes a
load balancing method for a massively parallel semantic
database.

Much work on load balancing for relational databases and
file systems has been done and can be utilized in our
research. For example. Sitaram et al.! propose several
dynamic load balancing policies for multi-server file sys-
tems. A dynamic load balancing algorithm for large, shared-
nothing. hypercube database computers which makes use of
relational join strategies is presented in Hua and Su2. Lee
and Hua' present a self-adjusting data distribution scheme
which balances computer workload in a multiprocessor
database system at a cell level during query processing. A
run-time reorganization scheme for rule based processing in
large databases is discussed in Stolfo er al.4.

Our database computer will make use of a shared-nothing
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architecture. The computational load on each processor of
our database computer will vary directly with the demand for
data on that processor. Imbalances in the number of data
accesses among nodes can be rectified by repartitioning the
database, much as imbalances in computational demands in
process scheduling can be rectified by moving processes
from one machine to another. When a range of facts in our
database 1s moved from one processor’s control to another
processor’s control, the load on the first processor will go
down. The methods for determining imbalances in our sys-
tem. and the methods to relieve these imbalances in our sys-
tem, are very similar to the methods used for computational
dynamic load balancing in shared-nothing computers. An
adaptive, heuristic method for dynamic load balancing in a
message-passing multicomputer is presented in Xu and
Hwang5. A semi-distributed approach to load balancing in
massively parallel multicomputer systems is presented in
Ahmad and Ghafoor®.

Our massively parallel database machine architecture makes
use of a distributed system of many processors, each with its
own permanent storage device. This shared-nothing approach
requires that any load balancing operations be performed by
message passing. The data distribution scheme that is used in
our"dmuhasc'asys(cm ‘allows load balancing to be achieved by
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data repartitioning among the nodes of our system.
This paper refines the results reported in Rishie er al.” and
extends them by adding a fault tolerant data transfer policy

for data repartitioning.

23 SEMANTIC BINARY DATABASE
MODEL

The semantic database models in general, and the Semantic
Binary Model SBM (Rishie® and others) in particular, repre-
sent the information of an application’s world as a collection
of elementary facts categorizing objects or establishing rela-
tionships of various kinds between pairs of objects. The cen-
tral notion of semantic models is the concept of an abstract
object. which is any real world entity that we wish to store
information about in the database. The objects are catego-
rized into classes according to their common properties.
These classes. called caregories, need not be disjoint — that
1s. one object may belong to several classes. Further. an arbi-
trary structure of sub-categories and super-categories can be
defined. The representation of the objects in the computer is
invisible to the user. who perceives the objects as real-world
entities. whether tangible. such as persons or cars. or intangi-
ble. such as observations. meetings. or desires. The database
is perceived by its user as a set of facts about objects. These
facts are of three types: facts stating that an object belongs to
a category: vC: facts stating that there is a relationship
between objects: vRy: and facts relating objects to data. such
as numbers. texts. dates. images. tabulated or analytical
functions. ete: ¥Ry, The relatonships can be of arbitrary
Kinds: stating. for example, that there is a many-to-many
relation address between the category of persons and texts
means that one person may have an address. several address-
es. or no address at all.

3 STORAGE STRUCTURE

An efficient storage structure for semantic models has been

proposed in Rishie?- 10, The collection of facts forming the

database 1s represented by a file structure which ensures
approximately | disk access to retrieve queries of any of the
following forms:

I For a given abstract object x, verify/find what cate-
gories the object belongs to.

2. For a given category. find its objects.

3 For a given abstract object x and relation R, retrieve
all/certain y such that xRy.

4. For a given abstract object y and relation R, retrieve
all/certain abstract objects x such that xRy.

3 For a given abstract object x, retrieve (in one
access) all (or several) of its direct and/or inverse
relationships, i.e. relations R and objects y such that
xRy or yRx. The relation R in xRy may be an
attribute, i.e. a relation between abstract objects and
concrete objects.

6. For a given relation (attribute) R and a given con-
crete object y, find all abstract objects such that
xRy.
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7. For a given relation (attribute) R and a given range
of concrete objects [v,. ¥;]. find all objects x and y
such that xRy and y £ v, < v,.

The entire database can be stored in a single file. This file
contains all of the facts of the database (xC and xRyv) as well
as additional information called inverted facts: Cx. Ryx. The
inverted facts ensure that answers to queries of forms 2. 4. 6
and 7 are kept in a contiguous segment of data in the
database which allows them to be answered with one disk
access. The direct facts xC and xRy allow the database to
answer queries of forms 1. 3, and 5 with one disk access.
The file is maintained as a B-tree. The variation of the B-tree
used allows both sequential access according to the lexico-
graphic order of the items comprising the facts and the
inverted facts, as well as random access by arbitrary prefixes
of such facts and inverted facts. Facts which are close to
cach other in the lexicographic order reside close to each
other in the file. (Notice that although technically the B-tree-
key is the entire fact. it is of varying length and on the aver-
age is only several bytes long, which is the average size of
the encoded fact xRv.)

Consider, for example. a database containing information
regarding products manufactured by different companies.
The following set of facts can be a part of a logical instanta-
ncous database:

| object] COMPANY

2 object] COMPANY-NAME ‘1BM’
3. object] MANUFACTURED object2
4. object] MANUFACTURED object3
J. object2 PRODUCT

6. object2 COST 3600

7. object2 DESCRIPTION *Thinkpad®
8. object3 PRODUCT

9 object3 COST 100

10. object3 DESCRIPTION *TrackPoint’

The additional inverted facts stored in the database are:

l. COMPANY obhject]

2. COMPANY-NAME ‘IBM’ object|

3 object2 MANUFACTURED-BY object]
4. object3 MANUFACTURED-BY object|
b ) COST 3600 object2

6. COST 100 object3

7 DESCRIPTION ‘Thinkpad’ object2

8. DESCRIPTION ‘TrackPoint" object3
9. PRODUCT object2

10. PRODUCT object3

To answer the elementary query “Find all objects manufac-
tured by object]™”, we find all the facts whose prefix is
objectl_ MANUFACTURED. (‘_" denotes concatenation.)
These entries are clustered together in the sorted order of
direct facts.

To answer the elementary query “Find all products cost-
ing between $0 and $800™, we find all the facts whose prefix
is in the range from COST_0 to COST_800. These entries
are clustered together in the sorted order of inverted facts.

In the massively parallel version that we are developing.

computer systems science & engineering

S——

the B-tree is pa
residing on a sep:
memory) that is :
This disk-proces
retrieve informat
processing on the
the other nodes. |
vant integrity cor
mation on the dis
or updated concur
The queries ar
through host int
copy of the Parti
Since the whole «
represented by a
only a small numt
cally minimal an
that is stored on t
database is re-pa
propose in this
inexpensive. local
the shifting of da
with the normal oj
Most of the ph
of a semantic bin
These facts are «
objects. which as
each abstract obje
and since the objc
that traffic to eacl
over time. Other
with an inverted ¢
tion between an a
possible that at s
certain attribute o1
or categories. The
values of a given :
ticular inverted at
together, this n
processor/disk pai
can occur in some
taining the facts w
file will contain .
object. The secon
with an inverted a
third subfile conta
which are pointed
partitioned evenly
System. The first s
third subfiles may
bk)ck placement al
lioned. By repartit
ly balance the load

4. REQUE

We employ a defi
cessing. This mear
formed umj) they ¢

alabase mzmugém

Yol 11 no 4 july 1¢




PP 1

R and a given range
d all objects x and y

single file. This file
(xC and xRy) as well
d facts: Cx. Rvx. The
eries of forms 2. 4, 6
nent of data in the
wered with one disk
llow the database to
vith one disk access.
rariation of the B-tree
ording to the lexico-
ig the facts and the
. by arbitrary prefixes
s which are close to
reside close to each
echnically the B-tree-
ngth and on the aver-
s the average size of

bntaining information
different companies.
of a logical instanta-

BM’
bject2
bject3

kpad’

kPoint’

he database are:

jectl
3Y objectl
3Y objectl

bject2
object3

1 all objects manufac-
lacts whose prefix is
notes concatenation.)

n the sorted order of

‘ind all products cost-
the facts whose prefix
yT'_800. These entries
rder of inverted facts.
at we are developing.

cience & engineering

i

the B-tree is partitioned into many small fragments. ea‘ch
residing on a separate storage unit (e.g. a disk or non-volatile
memory) that is associated with a fairly powerful processor.
This disk-processor pair is called a node. Each node can
retrieve information from the disk. perform the necessary
processing on the data and deliver the result to the user. or to
the other nodes. For updates the node verifies all of the rele-
vant integrity constraints and then stores the updated infor-
mation on the disk. Many database fragments can be queried
or updated concurrently.

The queries and transactions will enter into the network
through host interfaces. Every host interface maintains a
copy of the Partitioning Map (PM) of the entire database.
Since the whole database is a lexicographically ordered file
represented by a set of B-trees, the map needs to contain
only a small number of facts for each node: the lexicographi-
cally minimal and maximal facts for each B-tree fragment
that is stored on that node. The map changes only when the
database is re-partitioned. The distribution policy that we
propose in this work provides repartitioning that is rare.

inexpensive. localizable. invisible to the system until all of

the shifting of data is complete, and that does not interfere
with the normal operation of the system.

Most of the physical facts that are in our implementation
of a semanuc binary database start with an abstract object.
These facts are ordered by the encoding of the abstract
objects. which assigns a unigue quasi-random number o
each abstract object. Since there are so many of these facts.
and since the objects are randomly ordered. we can assume
that traffic to each partition of these facts will be balanced
over time. Other facts 1n a semantic binary database start
with an inverted category or an inverted attribute (i.e. a rela-
tion between an abstract object and a printable value). It is
possible that at some time there may be a need to access a
certain attribute or category more often than other attributes

or categories. The same may be true for a specific range of

values of a given attribute. Since all facts that refer to a par-
ticular inverted attribute or inverted category are clustered
together. this may cause a higher load on some
processor/disk pairs than on others. Since load imbalances
can occur in some Kinds of facts but not others. the file con-
taining the tacts will be split into two sublfiles. The first sub-
file will contain all the facts that begin with an abstract
object. The second subfile will contain the facts that begin
with an inverted attribute or category. Additionally there is a
third subfile containing long data items: texts. images. etc..
which are pointed to by facts. Each subfile will be initially
partitioned c¢venly over all the processor/disk pairs in the
system. The first subfile is already balanced: the second and
third subfiles may become unbalanced and will require a
block placement algorithm that allows the data to be reparti-
tioned. By repartitioning data. we will be able to more even-
ly balance the load to each data partition.

4. REQUEST EXECUTION SCHEME

We employ a deferred update scheme for transaction pro-
cessing. This means that transactions are not physically per-
formed until they are committed. but are accumulated by the
database management system as they are run. Upon comple-
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tion of the transaction the DBMS checks its integrity and
then physically performs the update. A completed transac-
tion is composed of a set of facts to be deleted from the
database, a set of facts to be inserted into the database, and
additional information needed to verify that there is no inter-
ference between transactions of concurrent programs. In our
parallel database, each node is responsible for a portion of
the database. When an accumulated transaction is performed,
the sets of facts to be ‘inserted into. and deleted from, the
database must be broken down into subsets that can be sent
to the processors which are responsible for the relevant
ranges of data.

Each host in the system will have a copy of the Partition-
ing Map (PM). The Partitioning Map is a small semantic
database containing information about data distribution in
the system. Figure | is a semantic schema of the partitioning
map.

The partitioning map contains a set of ranges and their
lexicographical bounds — the low-bound and the high-bound
values. When a query or transaction arrives. the host will
identify its lexicographical bounds. The host will then use
the partitioning map to determine a set of ranges that needs
to be retrieved or updated and hence the nodes which will be
involved in the current transaction or query.

The partitioning map will be replicated among hosts.
However. this does not imply that we need a global data
structure: the algorithm described below allows updates of
the partitioning database to be performed gradually. without
locking and interrupting all hosts.

A range can be obtained from the node pointed to by the
location reference in the partitioning database. This node
should either have the range or a reference to another node
which contains the range.

To perform load balancing we will need to move ranges
from one node to another. A moved range will be accessible
via an indirect reference that is left at its previous location.
Such an indirect access slows down the system. especially
when the range is frequently accessed by users. To allow a
direct access to the moved range we need to update the loca-
tion reference in the partitioning database. We will not per-
form this update simultaneously for all the host interfaces.
The update will be performed when a host executes the first
query or transaction that refers to the range that was trans-
ferred. The node that actually holds the range will send the
results to the host along with a request to update the parti-
tioning map. This means that the first transaction will have
to travel a little further than all subsequent transactions. The
second and future queries or transactions made through this
host will be executed directly by the node pointed to by the
location reference.

The data structure at each node which supports indirect
referencing will be exactly the same as the partitioning map
described above. We will call this data structure a local parti-
tioning map.

Each range of facts will be represented as a separate B-
tree structure which will reside on the node pointed to by the
partitioning map. Consider a case where a range has been
moved several times from one node to another. We may have
multiple indirection references to the actual location of the
range. These indirect references will be changed to direct
references asadescribedl above,
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FACT RANGE

low-bound: String 1:1
high-bound: String 1:1

location
(m:m)

NODE

address: String 1:1

Figure 1 Partioning map

S DATA TRANSFER POLICY

In order to cnsure that the database remains consistent
throughout a load balancing data transfer. load balancing
actions are executed as transactions initiated by the system.

A large range of facts is transferred by executing a series of

small system transactions that transfer small portions of data
from one partition to another. The system transactions are
subject 1o the same loggimg and recovery actions as regular.
user mitiated. transactions. Apart from the data transfer. each
small load balancing transaction also includes the data nec-
essary for updating the partitioning map. To ensure that the
partitioning map remains consistent. the partitioning map
update is executed using a 2-phase commit protocol.

6. LOAD BALANCING POLICY

When idle. the host interfaces will send data and work load
statistics recently accumulated from the nodes to a Global
Performance Analyzer (GPA). The host interfaces accumu-
late this data as the results of queries and transactions flow
through them back to the user. The GPA is a process that
analyzes the statistical information obtained and generates
preferable directions of data transfer for each node.

The statistics report will contain only the changes since
the previous report:

L] Changes in data partitioning
e Number of accesses for each range
® Free space on each node

The GPA will use a heuristic search algorithm which uses a
choice function to select a small number of possible data
movements for the system. The final state will be estimated
by a static evaluation function S. The GPA will select the
data movement with the lowest value of the resulting static
evaluation S.

The choice function should comply with the following
strategies:

198

1. Whenever possible load balancing should be
achieved by joining ranges together. Joining ranges
will result in faster query exccution and smaller par-
tiiloning maps.

2 A criterion for determining preferable destinations
for a range transfer is the desire 1o move a range 10
a destination node which contains the lexicographi-
cally closest range to the transferred range. In other
words, it is desirable to locate lexicographically
close ranges on the same node whenever possible.

3 If a range has an exceptionally high number of
access or requires an exceptionally large amount of
storage — split the range into several parts and trans-
fer them to other nodes.

Each node will be characterized by two parameters:

1. The amount of free disk space on the node. F
The percentage of idle time /. In other words the /
is: [ = Idle/T. where T is a given time interval and
Idle is the node’s idle time during the time 7.

t2

The resulting state will be estimated by the following param-
eters:

) A — the total amount of data that will be necessary to
transfer in the system

2. D — the mean square deviation of F
3. [); — the mean square deviation of /
4. M —1otal number of ranges in the sysiem

The static evaluation function can be represented as:
S=C*A+C*Dp+Cy*Dy+ Cyg* M.

where C,. C,, C; and C, are constants.

g4 CONCLUSION

Our load balancing algorithm will provide our massively
parallel semantic database machine with a method to reparti-
tion data to evenly distribute work among its processors. The
algorithm has very little overhead, as its statistics are accu-
mulated during the normal processing of transactions. The
load balancing is accomplished by repartitioning parts of the
database over the nodes of the database machine. The repar-
titioning will be transparent to the users and will not
adversely affect the performance of the system. Our fault-
tolerant data transfer policy will ensure that the database and
its partitioning maps remain consistent during repartitioning.

We are currently developing a prototype parallel semantic
database on a network of workstations. We will evaluate our
load balancing algorithm on this prototype system and
experiment with ways to optimize our heuristic search algo-
rithm.
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