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Florida International University’s (FIU’s) second-
phase CREST, the Center for Innovative Information 
Systems Engineering is housed in its School of 
Computing and Information Sciences and its 
Department of Electrical and Computer Engineering. 
The Center’s four research thrusts bring together a 
multidisciplinary group of researchers, large-scale 
collaborative relationships, and a broad ecosystem 
of partners to perform research that will lead to 
information technologies that help to solve critical 
societal problems of national priority. 

TerraFly users visualize aerial imagery, precise 
street name overlays, and various other overlays.  
Users virtually "fly" over imagery via a web browser, 
without any software to install or plug in.  Tools 
include user-friendly geospatial querying, data drill-
down, real-time data suppliers, demographic 
analysis, annotation, customizable applications, 
route dissemination via autopilots, production of 
aerial atlases, and application programming 
interface (API) for web sites. 

 
TerraFly has been featured on TV news 

programs (including FOX TV News), worldwide 
press, covered by the New York Times, USA Today, 
NPR, and Science and Nature journals.   

The 40TB TerraFly data collection includes, 
among others, 1-meter aerial photography of almost 
the entire United States and 3-inch to 1-foot full-
color recent imagery of major urban areas.  TerraFly 
vector collection includes 400 million geolocated 
objects, 50 billion data fields, 40 million polylines, 
120 million polygons, including: all US and Canada 
roads, the US Census demographic and 
socioeconomic datasets, 110 million parcels with 
property lines and ownership data, 15 million 
records of businesses with company stats and 

management roles and contacts, 2 million 
physicians with expertise detail, various public place 
databases (including the USGS GNIS and NGA 
GNS), Wikipedia, extensive global environmental 
data (including daily feeds from NASA and NOAA 
satellites and the USGS water gauges), and 
hundreds of other datasets. 

TerraFly’s TimeSeries browser and its Rooftop 
Geocoder are especially important for disaster 
mitigation applications. We are leveraging our NSF 
Cluster Exploratory award to experiment with using 
MapReduce techniques to enhance performance. 
These research areas are detailed below. 

 
The TerraFly TimeSeries application is a web 

browser application with the distinct feature of 
comparing aerial and satellite images of the same 
geographical location, but acquired at different 
times.  TerraFly Timeseries is able to animate the 
display of these images.  We successfully 
implemented TimeSeries as described below. 

First, the TimeSeries application receives the 
Latitude and Longitude of current TerraFly map 
center from the TerraFly API. Timeseries then sends 
the coordinates to the TerraFly imagery source 
service, called "SO".  The SO service then returns 
the available imagery sources, resolutions and 
acquisition dates of these available sources back in 
a customized XML formatted string. TimeSeries 
parses the XML and sorts the sources by their 
acquisition date, counts the days between each 
image acquisition date, recreates the time-line 
panel, and finds the closest resolution to current 
map view for each source. With the source names, 
acquisition date, resolutions and coordinates of the 
visible area, TimeSeries is able to generate the 



URLs needed to request the corresponding imagery.  
The TerraFly API loads the imagery from the 
imagery servers and fits them to the viewing area as 
an overlay. TimeSeries then displays the imagery by 
fading-in and fading-out the imagery sequence.  The 
Fading-in/out effect is achieved by changing the 
transparency parameter of these images from low to 
high (fade-in) or high to low (fade-out), in the 
TerraFly API every 40 millisecond, 25 frames per 
second. 

 
One of the most important TerraFly services, 

and of any mapping system, is the geocoder. There 
are standard methods to geocode street addresses 
and they rely on the accuracy of the underlying data 
and the standardization of the street numbers. In 
particular, Terrafly needs high precision geocoding 
in order to perform most of its different tasks. We 
purchased and are using the First American Parcel 
Point Nationwide Cadastre data set to produce a 
high precision geocoder for TerraFly services.  This 
data set is also used to conduct research, related to 
information retrieval and spatial databases. 

The following is a description of the First 
American Parcel Point dataset and how it is used to 
implement a precise geocoder, referred to as 
Rooftop Geocoder. The data set contains attributes 
that include parcel boundaries, parcel centroid, 
address, Assessor's Parcel Number (APN) and 
ownership information for selected counties. We 
found at least 20 million parcels without address 
information and with incorrect address format so we 
decided to clean the data, to reduce the size of the 
data set and to get more accurate results. Having a 
nationwide parcel data set allowed us to implement 
precise geocoding, using interpolation of street 
addresses and string matching algorithms. 

We built our Rooftop Geocoder using spatial 
indexes and data structures that we already use in 
some of the Terrafly services. To give an example of 
how a query against the Rooftop geocoder works, 
we describe the following procedure: when the 

query comes in, the system geocodes the address 
with the usual interpolation mechanism, which gives 
an approximate location of the object. The system 
then performs a nearest neighbor query using the 
returned coordinates to retrieve the nearby objects. 
The system then performs a local search to look for 
the property. If a record exists in the database, the 
system obtains its coordinates and those 
coordinates are returned to the user. 

The construction of our spatial keyword index 
(SKI) may take a substantial amount of time, 
depending mainly on two factors.  The first factor is 
the size of the database. Let us assume that the 
database contains N objects. Objects' spatial 
attributes are used to construct SKI's R-tree 
modified structure (R). Thus, the number of insert 
operations is O(N).  The second factor is the size of 
the lexicon. We construct a modified inverted file on 
database textual attributes (SIF). The most 
expensive operation involves sorting the lexicon. 
The time to construct SIF is bound by O (N + V 
log(V)), where V is the lexicon size.  

We previously proposed one way to parallelize 
R-tree constructions on MapReduce [2]. This idea is 
leveraged in the construct of SKI's R data structure. 
Following these ideas, SKI's inner structures are 
constructed as a sequence of MapReduce jobs as 
follows. First, on a given spatial database, R 
structure is built with two MapReduce pairs as in [2]. 
The output includes references to R nodes as 
intermediate data used in the next job. Second, a 
MapReduce job builds the modified inverted file 
(SIF) on the database lexicon, considering each 
object as a document. The MapReduce compound 
uses the intermediate data generated in the first 
iteration. 

SKI's data structures built on MapReduce, 
stored remotely in the Cloud, are downloaded to a 
local host, which serves interactive queries. Queries 
are processed with a modified version of the search 
algorithm proposed in [1].  The modification 
accounts for the fact that SKI data structures are 
partitioned as a result of parallel constructions; there 
are as many "smaller" SKI structures as the number 
of Reducers chosen in MapReduce jobs. 
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