
TerraFly Geospatial System for Disaster Mitigation

Naphtali Rishe, Xudong He, Scott Graham, Shu-Ching Chen, Armando Barreto, Malek Adjouadi
Florida International University, 11200 SW 8th ST, ECS 354, Miami, FL 33199

Florida International University’s (FIU’s) second-
phase CREST, the Center for Innovative Information
Systems Engineering is housed in its School of
Computing and Information Sciences and its
Department of Electrical and Computer Engineering.
The Center’s four research thrusts bring together a
multidisciplinary group of researchers, large-scale
collaborative relationships, and a broad ecosystem
of partners to perform research that will lead to
information technologies that help to solve critical
societal problems of national priority.

TerraFly users visualize aerial imagery, precise
street name overlays, and various other overlays.
Users virtually "fly" over imagery via a web browser,
without any software to install or plug in. Tools
include user-friendly geospatial querying, data drill-
down, real-time data suppliers, demographic
analysis, annotation, customizable applications,
route dissemination via autopilots, production of
aerial atlases, and application programming
interface (API) for web sites.

TerraFly has been featured on TV news

programs (including FOX TV News), worldwide
press, covered by the New York Times, USA Today,
NPR, and Science and Nature journals.

The 40TB TerraFly data collection includes,
among others, 1-meter aerial photography of almost
the entire United States and 3-inch to 1-foot full-
color recent imagery of major urban areas. TerraFly
vector collection includes 400 million geolocated
objects, 50 billion data fields, 40 million polylines,
120 million polygons, including: all US and Canada
roads, the US Census demographic and
socioeconomic datasets, 110 million parcels with
property lines and ownership data, 15 million
records of businesses with company stats and

management roles and contacts, 2 million
physicians with expertise detail, various public place
databases (including the USGS GNIS and NGA
GNS), Wikipedia, extensive global environmental
data (including daily feeds from NASA and NOAA
satellites and the USGS water gauges), and
hundreds of other datasets.

TerraFly’s TimeSeries browser and its Rooftop
Geocoder are especially important for disaster
mitigation applications. We are leveraging our NSF
Cluster Exploratory award to experiment with using
MapReduce techniques to enhance performance.
These research areas are detailed below.

The TerraFly TimeSeries application is a web

browser application with the distinct feature of
comparing aerial and satellite images of the same
geographical location, but acquired at different
times. TerraFly Timeseries is able to animate the
display of these images. We successfully
implemented TimeSeries as described below.

First, the TimeSeries application receives the
Latitude and Longitude of current TerraFly map
center from the TerraFly API. Timeseries then sends
the coordinates to the TerraFly imagery source
service, called "SO". The SO service then returns
the available imagery sources, resolutions and
acquisition dates of these available sources back in
a customized XML formatted string. TimeSeries
parses the XML and sorts the sources by their
acquisition date, counts the days between each
image acquisition date, recreates the time-line
panel, and finds the closest resolution to current
map view for each source. With the source names,
acquisition date, resolutions and coordinates of the
visible area, TimeSeries is able to generate the

URLs needed to request the corresponding imagery.
The TerraFly API loads the imagery from the
imagery servers and fits them to the viewing area as
an overlay. TimeSeries then displays the imagery by
fading-in and fading-out the imagery sequence. The
Fading-in/out effect is achieved by changing the
transparency parameter of these images from low to
high (fade-in) or high to low (fade-out), in the
TerraFly API every 40 millisecond, 25 frames per
second.

One of the most important TerraFly services,

and of any mapping system, is the geocoder. There
are standard methods to geocode street addresses
and they rely on the accuracy of the underlying data
and the standardization of the street numbers. In
particular, Terrafly needs high precision geocoding
in order to perform most of its different tasks. We
purchased and are using the First American Parcel
Point Nationwide Cadastre data set to produce a
high precision geocoder for TerraFly services. This
data set is also used to conduct research, related to
information retrieval and spatial databases.

The following is a description of the First
American Parcel Point dataset and how it is used to
implement a precise geocoder, referred to as
Rooftop Geocoder. The data set contains attributes
that include parcel boundaries, parcel centroid,
address, Assessor's Parcel Number (APN) and
ownership information for selected counties. We
found at least 20 million parcels without address
information and with incorrect address format so we
decided to clean the data, to reduce the size of the
data set and to get more accurate results. Having a
nationwide parcel data set allowed us to implement
precise geocoding, using interpolation of street
addresses and string matching algorithms.

We built our Rooftop Geocoder using spatial
indexes and data structures that we already use in
some of the Terrafly services. To give an example of
how a query against the Rooftop geocoder works,
we describe the following procedure: when the

query comes in, the system geocodes the address
with the usual interpolation mechanism, which gives
an approximate location of the object. The system
then performs a nearest neighbor query using the
returned coordinates to retrieve the nearby objects.
The system then performs a local search to look for
the property. If a record exists in the database, the
system obtains its coordinates and those
coordinates are returned to the user.

The construction of our spatial keyword index
(SKI) may take a substantial amount of time,
depending mainly on two factors. The first factor is
the size of the database. Let us assume that the
database contains N objects. Objects' spatial
attributes are used to construct SKI's R-tree
modified structure (R). Thus, the number of insert
operations is O(N). The second factor is the size of
the lexicon. We construct a modified inverted file on
database textual attributes (SIF). The most
expensive operation involves sorting the lexicon.
The time to construct SIF is bound by O (N + V
log(V)), where V is the lexicon size.

We previously proposed one way to parallelize
R-tree constructions on MapReduce [2]. This idea is
leveraged in the construct of SKI's R data structure.
Following these ideas, SKI's inner structures are
constructed as a sequence of MapReduce jobs as
follows. First, on a given spatial database, R
structure is built with two MapReduce pairs as in [2].
The output includes references to R nodes as
intermediate data used in the next job. Second, a
MapReduce job builds the modified inverted file
(SIF) on the database lexicon, considering each
object as a document. The MapReduce compound
uses the intermediate data generated in the first
iteration.

SKI's data structures built on MapReduce,
stored remotely in the Cloud, are downloaded to a
local host, which serves interactive queries. Queries
are processed with a modified version of the search
algorithm proposed in [1]. The modification
accounts for the fact that SKI data structures are
partitioned as a result of parallel constructions; there
are as many "smaller" SKI structures as the number
of Reducers chosen in MapReduce jobs.

[1] Cary, A., Wolfson, O., Rishe, N.: Efficient and
Scalable Method for Processing Top-k Spatial
Boolean Queries. To appear in proceedings of
SSDBM 2010 conference.

[2] Cary, A., Sun, Z., Hristidis, V., Rishe, N.:
Experiences on Processing Spatial Data with
MapReduce. In SSDBM, Vol. 5566, pp. 302–319,
2009.

