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Introduction

® Spatial databases mainly store:
® Raster data (satellite/aerial digital images), and
® Vector data (points, lines, polygons).

® Traditional sequential computing models may take excessive

time to process large and complex spatial repositories.

® Emerging parallel computing models, such as MapReduce,
provide a potential for scaling data processing in spatial

applications.
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Introduction (cont.)

® MapReduce is an emerging massively parallel computing

model (Google) composed of two functions:

® Map: takes a key/value pair, executes some computation, and

emits a set of intermediate key/value pairs as output.
® Reduce: merges its intermediate values, executes some
computation on them, and emits the final output.
® Here we present our experiences in applying the MapReduce
model to:
® Bulk-construct R-Trees (vector)
* Compute aerial image quality (raster)

® Extract United States Governmental Organizational Hierarchies

Florida International University




2. TerraFly

Geospatial Applications Suite
Developed and Maintained by

The High Performance Database Research Center
(HPDRC)

Florida International University (FIU)




FIU-HPDRC Expertise

® Database aspects:
® Data visualization
® Spatial databases
* Internet-distributed heterogeneous databases
® Database design methodologies

® [nformation analysis

TerraFly
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TerraFly

TerraFly

® Geospatial rnapping solution
® Web-Based
® Customized to Industry needs

® Drill down to local information




TerraFly

GIS Solutions Based on New Generation Technology
e Platform
GIS-like Internet visualization
Open architecture, GIS-oriented API provider

40TB database of aerial imagery and spatial data
NSF and NASA funded technology

® Service
Professionally customized to domain requirements

Comprehensive and expert service
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TerraFly

Mapping Solutions

Customized to industry needs. Sample applications:

® The Hydrology application shows the mean water level

over time over water bodies

® The Real Estate application facilitates visua;ization of
listings and allows complex queries via user-friendly

interface.
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Hydrology Application

Average of Surrounding Stations' Mean Daily Stage for Selected Water Bodly.
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TerraFly

Real Estate
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2. Solving Spatial Problems in

MapReduce

R-Tree Index Construction
Aerial Image Processing

Midas Government Domain Application




MapReduce (MR) R-Tree Construction

e R-Tree Bulk-Construction

® Every object o in database D has two attributes:

o.id - the object’s unique identifier.

0.P - the object’s location in some spatial domain.

® The goal is to build an R-Tree index on D.

® MapReduce Algorithm
1. Database partitioning function computation (MR).
2. A small R-Tree is created for each partition (MR).
3. The small R-Trees are merged into the final R-Tree.
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Phase 1 - Partitioning Function

— Goal: compute f to assign objects of D into one of R
possible partitions s.t.:

— R (ideally) equally-sized partitions are generated
(minimal variance is acceptable).

— Objects close in the spatial domain are placed within
the same partition.

— Proposed solution:

— Use Z-order space—filling curve to map spatial
coordinate samples (3%) into an sorted sequence.

— Collect splitting points that partition the sequence in R
ranges.
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Phase 1 - Partitioning Function

Phase 1:Partitioning Function Computation

key=o.id i_key=C
4> value=o0.P <4 i_value=U(o.P) > S" array of R-1
.'—)@ ;@ > DD splitting points
—— L-sized
Spatial sample Map Reduce
Dataset D

Map and Reduce inputs/outputs in computing partitioning function f.

Function | Input: (Key, Value) | Output: (Key, Value)
Map (0.id, 0.P) (C, U(0.P))
Reduce | (C, list(u;, i=1, .., L)) S

Where:
® oisan spatial object in the database.

¢ (C which is a constant that heips in sending Mappers' outputs to a singie
Reducer.

* Uis a space-filling curve, e.g. Z-order value.

e S'isan array containing R-1 spiitting points.
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Phase 2 - R-Tree Construction in MR

Phase 2: R-Tree Construction

key=o0.id i _ key=f(o.P)
% value=o0.P G i value=o . i
Spatial Map Reduce R-Tree i
Dataset D Assigns objects Builds R-Tree o
to partitions via f on input objects

MapReduce functions in constructing R-Trees.

Function Input: (Key, Value) Output: (Key, Value)
Map (o.id, 0.P) (f(o.P), 0)
Reduce (f(0.P), list(0; i=1, .. A)) tree.root
Where:

® oisan spatial object in the database.
J f is the partitioning function computed in Phase 1.

® Tree.root is the R-Tree root node.

Florida International University




Phase 3 - R-Tree Consolidation

° Sequential process

Phase 3: R-Tree Consolidation

So R-Tree single-process
R-Tree 1 ~ R Tree 2 .
________ consolidator
LI 1

i R-Tree of D

5-———’

R-Tree R
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Aerial Image Processing

. R-Tree Index Construction
e Aerial Image Processing

. Midas Government Domain Application




Image Processing in MapReduce

® Aerial Image Quality Computation
® Let d be an orthorectitied aerial photography (DOQQ) file and

t be a tile inside d, d.name is d’s tile name and t.q is the quality
information of tile ¢.

® The goal is to compute a quality bitmap for d.

* MapReduce Algorithm
® A customized InputFormatter partitions each DOQQ file d into
several splits containing multiple tiles.
® The Mappers compute the quality bitmap for each tile inside a
split.
® The Reducers merge all the bitmaps that belongs to a file d and
write them to an output file.
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Image Processing in MapReduce

key— "d.name-~+t.id" ; ke d.name Compressed Tile I quality
r= [Compressed Tile 2 quality |
Header value=t i value=(t.id, t. q) ------- oo
| Tien ] 1\ Compressed Tile  quality |
___Zil_e_Z____
T 1. Map Reduce [Tt 1
Tile ke — _ =1
“““ -‘--‘""j Computes and compresses Merges computed quality  Quality-bitmap
___________ quality bitmap for t bitmaps of all tiles in d file for d
DOQQ input file d
Input and output of map and reduce functions
Function Input: (Key, Value) Output: (Key, Value)
Map (d.name+t.id, t) (d.name, (t.id,t.q))
Reduce (d.name, list(t.id,t.q)) Quality-bitmap of d
Where:

* disaDOQAQ file.
® tisatileind.

® tqis the quality bitmap of t.
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Midas Government Domain

Application

R-Tree Index Construction
Aerial Image Processing

Midas Government Domain Application




OFFICE OF

lm d 79/ ) MANAGEMENT
I]En 4u \e2% AND BUDGET

Linking USASpendmg gov with OMB
Earmarks

° Organizational/ agency hierarchy must be established in order to properly

attribute spending and earmark appropriation

® Midas Earmark records do not contain explicit agency information but, web
records do.
® Midas Earmark records contain a 6 digit TAS -Treasury Account Symbol

® First 2 digits = Agency

o [ast4 digits = Account Account
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Linking USASpendmg gov W|th
OMBEarmarks

e Common attributes for linking:

o Congressional Districts

® Treasury Account Symbols (TAS)

® We were able to extract semantic agency information from OMB Earmarks we can

facilitate linkage.

® This allowed us to obtain finer grained results and use FPDS codes and hierarchical

information found in NIST SP 800-87.
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Example Queries:

* What percentage of Defense Department spending comes from Earmarks?

* What type of account does the Department of Agriculture spend the least
from?

e Are there any vendors who do the majority of their work outside of their own
congressional district?

* What percentage of the Department of the Interior’s spending goes towards
food and food services?

e Isthere a congressman who sponsors bills that lead to a particular kind of
spending?
e |.e. Congressman Smith sponsored 100 million in earmarks, of which 90%
went to agencies who’s primary function is related to national defense.
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3. Experimental Results




Experimental Results: Setting

® Data Set Table 4. Spatial data sets used in experiments*.
Problem | Data : Data size .
set Objects (GB) Description
R-Tree FLD 11.4M 5 Points of properties in the state of Florida.
Yellow pages directory of points of businesses mostly
YPD STM 53 in the United States but also in other countries.

Image Miami- 487 files 59 Aerial imagery of Miami-Dade county, FL (3-inch
Quality Dade resolution)

* Data sets supplied by the High Performance Database Research Center at Florida International University
¢ Environment
® The cluster was provided by the Google and IBM Academic Cluster
Computing Initiative.
® The cluster contains around 480 computers running Hadoop - open

source MapReduce.
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Experimental Results: R-Tree

® R-Tree Construction Performance Metrics

30.00 60.00
25.00 50.00
OMR2 OMR?2
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Reducers Reducers
(a) FLD data set (b) YPD data set

MapReduce job completion times for various number of reducers in phase-2 (MR2).
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Experimental Results: R-Tree

© MapReduce R-Trees vs. Single Process
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Objects per Reducer | Consolidated R-Tree ol
Data set R Average Stdev Nodes Height 2
FLD 2 5,690,419 12,183 172,776 4 Br
4 2,845,210 6,347 172,624 4 7y
8 1,422,605 2,235 173,141 4 o T
16 711,379 2,533 162,518 4 2l L]
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sp | 11,382,185 0 172681 4 o R
YPD 4 9,257,188 22,137 568,854 4 wl
8 4,628,594 9,413 568,716 4 Wl
16 2,314,297 7,634 568,232 4 ul
32 1,157,149 6,043 567,550 4 a
64 578,574 2,982 566,199 4
sp | 37034126 0 587,353| 5 |
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Experimental Results: Imagery

* Tile Quality Computation
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(b) Variable data size, fixed Reducers
Fig. 9. MapReduce job completion time for tile quality computation
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5. Conclusion




Conclusion

e We employed the MapReduce model to solve two spatial
problems on the Google&IBM cluster:

(a) Bulk-construction of R-Trees and
(b) Aerial image quality computation
And a document processing for linkage extraction project:
(b) MIDAS Government domain application
® MapReduce can dramatically improve task completion times.

Our experiments show close to linear scalability.

® Our experience in this work shows MapReduce has the

potential to be applicable to more complex spatial problems.
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