Naphtali David Rishe Director, High Performance Database Research Center Director, NSF Industry-University Cooperative Research Center http://HPDRC.FIU.edu http://TerraFly.FIU.edu

Indexing Geospatial Data with MapReduce

Naphtali Rishe⁺, Vagelis Hristidis⁺, Raju Rangaswami⁺, Ouri Wolfson^{*}, Howard Ho^{**}, Ariel Cary⁺, Zhengguo Sun⁺, Lester Melendes⁺

*School of Computing and Information Sciences, Florida International University
*University of Illinois at Chicago
** IBM Almaden Research Center

Sponsored by: NSF Cluster Exploratory (CluE)

Content

- 1. Introduction
- 2. TerraFly
- 3. Solving Spatial Problems in MapReduce
 - R-Tree Index Construction
 - Aerial Image Processing
 - Midas Government Domain Application
- 4. Experimental Results
- 5. Conclusion

Introduction

- Spatial databases mainly store:
 - Raster data (satellite/aerial digital images), and
 - Vector data (points, lines, polygons).
- Traditional sequential computing models may take excessive time to process large and complex spatial repositories.
- Emerging parallel computing models, such as MapReduce, provide a potential for scaling data processing in spatial applications.

Introduction (cont.)

- MapReduce is an emerging massively parallel computing model (Google) composed of two functions:
 - Map: takes a key/value pair, executes some computation, and emits a set of intermediate key/value pairs as output.
 - Reduce: merges its intermediate values, executes some computation on them, and emits the final output.
- Here we present our experiences in applying the MapReduce model to:
 - Bulk-construct R-Trees (vector)
 - Compute aerial image quality (raster)
 - Extract United States Governmental Organizational Hierarchies

2. TerraFly

Geospatial Applications Suite Developed and Maintained by The High Performance Database Research Center (HPDRC) Florida International University (FIU)

FIU-HPDRC Expertise

TerraFly

• Database aspects:

- Data visualization
- Spatial databases
- Internet-distributed heterogeneous databases
- Database design methodologies
- Information analysis

TerraFly

TerraFly

- Geospatial mapping solution
- Web-Based
- Customized to Industry needs
- Drill down to local information

TerraFly

TerraFly

GIS Solutions Based on New Generation Technology

- Platform
 - GIS-like Internet visualization
 - Open architecture, GIS-oriented API provider
 - 40 TB database of aerial imagery and spatial data
 - NSF and NASA funded technology
- Service
 - Professionally customized to domain requirements
 - Comprehensive and expert service

Mapping Solutions

Customized to industry needs. Sample applications:

• The **Hydrology** application shows the mean water level over time over water bodies

Terra

• The **Real Estate** application facilitates visua;ization of listings and allows complex queries via user-friendly interface.

TerraFly

Hydrology Application

Average of Surrounding Stations' Mean Daily Stage for Selected Water Body.

2. Solving Spatial Problems in MapReduce

- R-Tree Index Construction
- Aerial Image Processing
- Midas Government Domain Application

MapReduce (MR) R-Tree Construction

- R-Tree Bulk-Construction
 - Every object *o* in database *D* has two attributes:
 - *o.id* the object's unique identifier.
 - *o*.*P* the object's location in some spatial domain.
 - The goal is to build an R-Tree index on *D*.
- MapReduce Algorithm
 - 1. Database partitioning function computation (**MR**).
 - 2. A small R-Tree is created for each partition (**MR**).
 - 3. The small R-Trees are merged into the final R-Tree.

Phase 1 – Partitioning Function

- Goal: compute *f* to assign objects of *D* into one of *R* possible partitions s.t.:
 - *R* (ideally) equally-sized partitions are generated (minimal variance is acceptable).
 - Objects close in the spatial domain are placed within the same partition.
- Proposed solution:
 - Use *Z*-order space-filling curve to map spatial coordinate *samples* (3%) into an sorted *sequence*.
 - Collect splitting points that partition the *sequence* in *R* ranges.

Florida International University

Phase 1 – Partitioning Function

Phase 1:Partitioning Function Computation

Map and Reduce inputs/outputs in computing partitioning function f.

Function	Input: (Key, Value)	Output: (Key, Value)
Мар	(o.id, o.P)	(C, U(o.P))
Reduce	$(C, list(u_i, i=1,, L))$	S

Where:

- *o* is an spatial object in the database.
- *C* which is a constant that helps in sending Mappers' outputs to a single Reducer.
- *U* is a space-filling curve, e.g. Z-order value.
- *S*' is an array containing R-1 splitting points.

Phase 2 - R-Tree Construction in MR

MapReduce functions in constructing R-Trees.

Function	Input: (Key, Value)	Output: (Key, Value)	
Мар	(o.id, o.P)	(f(o.P), o)	
Reduce	$(f(o.P), list(o_{i, i=1,, A}))$	tree.root	

Where:

- *o* is an spatial object in the database.
- f is the partitioning function computed in Phase 1.
- *Tree.root* is the R-Tree root node.

Phase 3 - R-Tree Consolidation

• Sequential process

Phase 3: R-Tree Consolidation

17

Aerial Image Processing

- R-Tree Index Construction
- Aerial Image Processing
- Midas Government Domain Application

Image Processing in MapReduce

- Aerial Image Quality Computation
 - Let *d* be an orthorectified aerial photography (DOQQ) file and *t* be a tile inside *d*, *d.name* is *d*'s file name and *t.q* is the quality information of tile *t*.
 - The goal is to compute a quality bitmap for *d*.
- MapReduce Algorithm
 - A customized *InputFormatter* partitions each DOQQ file *d* into several splits containing multiple tiles.
 - The Mappers compute the quality bitmap for each tile inside a split.
 - The Reducers merge all the bitmaps that belongs to a file *d* and write them to an output file.

Image Processing in MapReduce

DOQQ input file d

Input and output of map and reduce functions

Function	Input: (Key, Value)	Output: (Key, Value)		
Мар	(d.name+t.id, t)	(<i>d.name</i> , (<i>t.id</i> , <i>t.q</i>))		
Reduce	(d.name, list(t.id,t.q))	Quality-bitmap of d		

Where:

- *d* is a DOQQ file.
- t is a tile in d.
- *t.q* is the quality bitmap of *t*.

Florida International University

20

Midas Government Domain Application

- R-Tree Index Construction
- Aerial Image Processing
- Midas Government Domain Application

Linking USASpending.gov with OMB Earmarks

- Organizational/agency hierarchy must be established in order to properly attribute spending and earmark appropriation
- Midas Earmark records do not contain explicit agency information but, web records do.

Agency

- Midas Earmark records contain a 6 digit TAS Treasury Account Symbol
 - First 2 digits = Agency
 - Last 4 digits = Account Account 35-6173

Linking USASpending.gov with OMBEarmarks

- Common attributes for linking:
 - Congressional Districts
 - Treasury Account Symbols (TAS)
- We were able to extract semantic agency information from OMB Earmarks we can facilitate linkage.
- This allowed us to obtain finer grained results and use FPDS codes and hierarchical information found in NIST SP 800-87.

Example Queries:

- What percentage of Defense Department spending comes from Earmarks?
- What type of account does the Department of Agriculture spend the least from?
- Are there any vendors who do the majority of their work outside of their own congressional district?
- What percentage of the Department of the Interior's spending goes towards food and food services?
- Is there a congressman who sponsors bills that lead to a particular kind of spending?
 - I.e. Congressman Smith sponsored 100 million in earmarks, of which 90% went to agencies who's primary function is related to national defense.

3. Experimental Results

Experimental Results: Setting

• Data Set

Table 4. Spatial data sets used in experiments*.

Problem	Data set	Objects	Data size (GB)	Description	
R-Tree	FLD	11.4 M	5	Points of properties in the state of Florida.	
	YPD	37 M	5.3	Yellow pages directory of points of businesses mostly in the United States but also in other countries.	
Image Quality	Miami- Dade	482 files	52	Aerial imagery of Miami-Dade county, FL (3-inch resolution)	

* Data sets supplied by the High Performance Database Research Center at Florida International University

• Environment

- The cluster was provided by the Google and IBM *Academic Cluster Computing Initiative*.
- The cluster contains around 480 computers running Hadoop open source MapReduce.

Experimental Results: R-Tree

• R-Tree Construction Performance Metrics

MapReduce job completion times for various number of reducers in phase-2 (MR2).

Experimental Results: R-Tree

• MapReduce R-Trees vs. Single Process (SP)

		Objects per Reducer		Consolidated R-Tree	
Data set	R	Average	Stdev	Nodes	Height
FLD	2	5,690,419	12,183	172,776	4
	4	2,845,210	6,347	172,624	4
	8	1,422,605	2,235	173,141	4
	16	711,379	2,533	162,518	4
	32	355,651	2,379	173,273	3
	64	177,826	1,816	173,445	3
	SP	11,382,185	0	172,681	4
YPD	4	9,257,188	22,137	568,854	4
	8	4,628,594	9,413	568,716	4
	16	2,314,297	7,634	568,232	4
	32	1,157,149	6,043	567,550	4
	64	578,574	2,982	566,199	4
	SP	37,034,126	0	587,353	5

Florida International University

29

Experimental Results: Imagery

• Tile Quality Computation

(a) Fixed data size, variable Reducers(b) Variable data size, fixed ReducersFig. 9. MapReduce job completion time for tile quality computation

5. Conclusion

Conclusion

- We employed the MapReduce model to solve two spatial problems on the Google&IBM cluster:
 - (a) Bulk-construction of R-Trees and
 - (b) Aerial image quality computation
 - And a document processing for linkage extraction project:
 - (b) MIDAS Government domain application
- MapReduce can dramatically improve task completion times. Our experiments show close to linear scalability.
- Our experience in this work shows MapReduce has the potential to be applicable to more complex spatial problems.