
XML-BASED SEMANTIC DATABASE DEFINITION LANGUAGE

Naphtali Rishe, Malek Adjouadi, Maxim Chekmasov,
Dmitry Vasilevsky, Scott Graham, Dayanara Hernandez

Florida International University, Miami, FL
{rishen, adjouadi, maximc, dvasil01, grahams, dherna10}@fiu.edu

Ouri Wolfson
University of Illinois at Chicago, Chicago, IL,

wolfson@cs.uic.edu

Keywords: Semantic binary data model, data definition language, extensible markup language.

Abstract: This paper analyzes different options for semantic database schema definition and describes a presentation
format XSDL. Presentation of semantic database in a certain format implies that the format fully preserves
the database content. If the database is exported to this format and then imported back to the database
engine, the resulting database should be equivalent (Rishe, 1992) to the one that was exported. XSDL is
used for information exchange, reviewing data from databases, debugging database applications and for
recovery purposes. Among other requirements that XSDL meets are support of both schema and data,
readability by the user (XSDL is a text format), full preservation of database content, support for simple and
fast export/import algorithms, portability across platforms, and facilitation of data exchange.

1 INTRODUCTION

The Semantic Binary Database is perceived by its
user as a set of facts about objects. These facts are of
three types: facts stating that an object belongs to a
category, facts stating that there is a relationship
between objects, and facts relating objects to data,
such as numbers, texts, dates, images, tabulated or
analytical functions, etc. The database places the
management levels of the end-users in direct control
of the web of information the organization knows,
schematically depicting the database.

A proprietary Schema Definition Language
(SDL) has been developed and used to document
semantic schemas (Rishe, 1994). With time this
language has become less suitable for semantic
database representation for several reasons.
1. SDL is a proprietary language. This negatively

affects exchanging information with other
parties.

2. SDL does not support export of data from the
database; it is only intended for exporting
database schemas.

3. SDL only supports the basic features of the
Semantic Binary Data Model such as defining
categories and relations. None of the extensions
to Semantic Binary Data Model are supported.

For example, category ordering based on object
attributes is not supported.

4. SDL has many limitations and naming
conventions. Databases with names of
categories and relations that do not conform to
SDL standard cannot be preserved on export to
SDL.

5. SDL cannot be extended in a natural way. The
format of commands that describe schema in
SDL is fixed. Although SDL has a special
command .tC to add extra information, it is not
used to support all the extensions presently
implemented in the semantic database engine.
SDL is not structured; instead it is interpreted
line by line. Thus, the only way to refer to an
already specified category or relation is by its
name. This makes it impossible for a database
schema editing tool to rename a category or
relation correctly even if the tool preserves all
the unrecognized lines of the database
description file.

To avoid these drawbacks, a new language,
XSDL (XML-based Semantic Database Definition
Language), is introduced as a representation of
semantic databases (Vasilevsky, 2004). The
language is based on XML (XML, 2004), which is
the de-facto industry standard for exchanging

197

structured information. The proposed XSDL is free
from the abovementioned drawbacks of SDL.
1. XSDL is based on industry-standard XML,

which is widely used for information exchange.
This extends interoperability of the engine over
different types of databases and systems that
support the XML language.

2. XSDL supports export of both database schema
and data.

3. XSDL supports all extensions of the Semantic
Binary Model.

4. XSDL is free of limitations. It supports any
characters in category names and relations by
employing standard XML encoding.

5. XSDL is naturally extensible due to XML’s
containment property.

The structure of data stored in a database is
defined by the database schema. When this data is
exported to XSDL, it is represented in XML. XML
has its own language, XSD (XML Schema
Definition), to define structure. It may seem natural
to use XSD to export the database schema. However,
XSD is not used to represent semantic schemas,
since it does not support several features of the
semantic binary model. Although some features of
the semantic binary model can be represented by
XSD constructs, translation of these constructs back
to semantic schema is hard and may be ambiguous.
Thus, creating XSDL to represent semantic schemas
is a more reasonable solution.

A detailed description of the XSDL format is
given in the following sections. Note that the
database engine supports export and import of
XSDL format which fully preserves the database.

2 XSDL FORMAT DESCRIPTION

The format to be used for export/import operations is
an XML document with the structure of tags defined
below. It is an ASCII or Unicode file and it strictly
adheres to the rules of the XML. This is an example
of the semantic database description:

<Database Name=”Simple Database”>
 <Schema Name=”Simple Schema”>
 <Category Name=”Student”
Type=”Abstract” />
 <Category Name=”Instructor”
Type=”Abstract”>
 <Relation Name=”Teaches”
Range=”Student” Cardinality=”m:m” />
 </Category>
 </Schema>
 <Data>
 <Student>
 <Object ID=”00ADE700FF” />

 <Object ID=”00ADE70100” />
 </Student>
 <Instructor>
 <Object ID=”00AD”>
<Teaches>00ADE700FF</Teaches>
<Teaches>00ADE70100</Teaches>
 </Object>
 </Instructor>
 </Data>
</Database>

The example shows a simple database with two
categories Student and Instructor and a m:m
relation Teaches between them. The database
contains two objects in category Student and one
object in category Instructor that Teaches
both students. Note that some properties of the
schema objects are defined in their XML attributes,
some properties of the schema objects are defined in
their sub-elements, and some elements are empty.

The following sections describe the structure of
an XSDL document. Descriptions of all the nodes
are presented. Since nodes with the same tag may
appear in different contexts, a node tag is shown
with a prefix composed of its parent tag and a
forward slash. This way, all possible combinations
of parent tag/child tag are described. The root node,
Database, is given without any prefix.
<Database> -- Any XSDL document contains

one object <Database> that stores information
about the database. The information may include a
database schema, data, or both. The parameter is
Name – optional, specifies the database name.
<Database/Comment> -- content of

Comment element is a description related to the
database as a whole. This property is made a sub-
element of the database and not an attribute since it
is expected to be a long text. Long texts look better
as values of elements rather than as attributes.

2.1 Schema Format

<Database/Schema> or <Schema/Schema>.
This element contains the semantic schema or sub-
schema of the database. In SDL, the main schema is
composed of a plain set of several sub-schemas. The
XSDL approach allows the sub-schemas to form a
tree hierarchy. Therefore <Schema> elements can
be nested like <Schema/Schema>. The
parameter is
Name -- the name of the schema.

<Schema/Comment> -- value of Comment
contains description of the current sub-schema.
<Schema/Author> -- value of Author contains
the author’s name for the sub-schema.

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

198

<Schema/Category> -- Category has
information regarding one category of the sub-
schema, the parameters are
Name -- the name of the category;
Type -- possible values are ‘Abstract’ and
‘Concrete’, specifies the type of the category;
IsMetacategory -- optional Boolean
attribute, specifies if the category belongs to the
metaschema of the database;
IsPredefined -- optional Boolean attribute,
specifies that this is a predefined schema category
like Integer or a user-defined category.

<Category/Comment> -- the value of Comment
contains a description of the category.

If category is an abstract category <Category>
element contains sub-elements that define relations
having this category as a domain. These sub-
elements are described below. If the category is a
concrete category it belongs to one of the concrete
types defined in the database metaschema. In this
case, the category contains one sub-element with the
name of the corresponding type.

2.2 Sub-elements for Concrete
Categories

<Category/Binary> -- specifies that the
category inherits from the category Binary. The
parameters are
MinimumLength -- minimum possible length
of an attribute;
MaximumLength -- maximum possible length
of an attribute.

<Category/Fixed> -- specifies that the category
inherits from the category Fixed. The parameters
are
UpperBound -- upper bound for valid values;
LowerBound -- lower bound for valid values;
Step -- granularity of scale.

<Category/Integer> -- specifies that the
category inherits from the category Integer. The
parameters are
UpperBound -- upper bound for valid values;
LowerBound -- lower bound on valid values.

<Category/Enum> -- specifies that the category
inherits from the category Enum.
<Enum/EnumItem> -- EnumItem is used to
declare possible values of the category. The
parameters are
Name -- symbolic name for this value;
Number -- optional numeric value, by default
numeric values are assigned automatically.

<Category/UnicodeString> -- specifies that
the category inherits from the category
UnicodeString. The parameters are
ValidCharacters -- a set of valid characters;

Collation – collation;
MaxLength -- maximum length of the string.

<Category/ASCIIString> -- specifies that the
category inherits from the category ASCIIString,
where
MaxLength -- maximum length of the string.

<Category/DateTimeStamp> -- specifies that
the category inherits from the category
DateTimeStamp. The parameters are
LowerBound -- lower bound on values;
UpperBound -- upper bound on values;
LowestPrecision -- lowest precision
allowed for the values;
HighestPrecision -- highest precision
allowed for the values.

<Category/Float> -- specifies that the category
inherits from the category Float. The parameters
are
MantissaSize -- the size of mantissa;
ExponentSize -- the size of exponent.

<Category/PlainString> -- specifies that the
category inherits from the category PlainString. The
parameter is
MaxLength -- maximum length of string.

<Category/Integer32> -- specifies that the
category inherits from the category Integer32.
The parameters are
UpperBound -- upper bound for the values;
LowerBound -- lower bound for the values.

<Category/Natural32> -- specifies that the
category inherits from the category Natural32.
The parameters are
UpperBound -- upper bound for the values;
LowerBound -- lower bound for the values.

2.3 Sub-elements for Abstract
Categories

<Category/Display> -- contains information
on how the category should be displayed by the
graphical tools displaying semantic database
schemas, and represented on the printouts of said
schemas. By default, the graphical tool should
automatically place the category to achieve the best
quality of display or printout. The parameters are
X -- X position of a category;
Y -- Y position of a category.

Both X and Y are coordinates in Cartesian coordinate
system with horizontal axis X going from left to
right and axis Y going from bottom to top. The
aspect ratio of the coordinate system is 1. All
coordinates of the categories are presented in the
same coordinate system on the sub-schema level.
When the sub-schema is displayed it is up to the
graphical tool to position and scale the coordinate

XML-BASED SEMANTIC DATABASE DEFINITION LANGUAGE

199

system so that the sub-schema fits well within the
display/printout boundaries.
<Category/RecordPlacement> -- informa-
tion on the category is placed as a record in the
database metaschema. The parameter is
Length -- optional length of a record, no read or
write operation should be attempted beyond this
size, by default, the size is the maximum of
(Attribute/Offset + Attribute/
Length) for every concrete relation in the
category.

<Category/Attribute> -- information on a
concrete relation for the category. The parameters
are
Name -- short name of the concrete relation;
Range -- name of the range of the concrete
relation;
IsTotal -- optional, specifies whether the
concrete relation is total or not, possible values
are True and False (default).

<Attribute/RecordPlacement> --
information on how the concrete relation,
represented by the parent node, should be placed in a
record. The parameters are
Number -- optionally specifies the order number
of the concrete relation in a record;
Length -- the size in bytes allocated for the field
in the record, no read or write operation should be
attempted beyond this size;
Count -- the number of times the concrete
relation should be repeated. If count is greater
than 1, then an array of fields should be stored;
Offset -- optional, distance in bytes from the
beginning of the record for the category to the
place where the value for the concrete relation
should be written. By default, this offset is
determined automatically as the sum of all
lengths of all attributes that come before the
current one in the record. Typically, this XML
attribute is omitted, but it can be specified if full
control over record placement is desired.

<Category/SortKey> -- information on how
the category is sorted; it is also the semantic key of
the category. The parameter is
Mode -- optionally specifies how duplicates
(objects with the same values of all sort key
items) should be treated. Possible values are
NoDuplicates (default), FIFO, LIFO and
Manual.

<SortKey/KeyItem> -- category sort key
contains several items, representing relations of the
category. The functionality of semantic key is
achieved when only Name of relations is given. The
parameters are
Number – The significance number of this
KeyItem in the sort key. If the sort key contains
several items, the objects are first ordered by the

value of the first item, then those that have the
same value of the first item are ordered by the
second item, etc.;
Name -- the short name of the relation of the
domain category. The value of this attribute is
used to form the sort key;
Order -- optional, specifies direct or reverse
ordering on the item, valid values are Direct
(default) and Reverse.

<Category/Relation> -- information
regarding a relation having the current category as
its domain. The parameters are
Name -- short name of the relation;
Range -- range of the relation;
IsTotal -- optionally specifies whether the
relation is total or not. Possible values are True
and False (default).
IsPersistent -- optionally specifies whether
the relation is persistent. Possible values are
True and False (default).
InKey -- optionally specifies whether the
relation is part of the semantic key for the
category. Possible values are: False (default,
means that the relation is not in the semantic key
for the category), True (means that the relation
is part of the semantic key of the category).

<Relation/Comment> -- value of the Comment
contains a description of the relation.
<Relation/DomainSortKey> -- information
on how the relation is sorted on the domain side. If
several objects in the domain category are connected
by this relation to the same object in the range
category, those objects in the domain category will
be retrieved in the order determined by this node.
The parameter is
Mode - optionally specifies how duplicates
(objects with the same values of all sort key
items) should be treated. Possible values are
NoDuplicates (default), FIFO, LIFO and
Manual.

<DomainSortKey/KeyItem> -- relation sort
key contains the items representing attributes of the
domain category. The parameters are
Number -- significance number of this
KeyItem in the sort key. If the sort key contains
several items, then the objects are first ordered by
the value of the first item, then those that have the
same value of the first item are ordered by the
second item, etc.;
Name -- the short name of the attribute of the
domain category. The value of this attribute is
used to form the sort key;
Order -- direct or reverse ordering on the item,
valid values are Direct and Reverse.

<Relation/RangeSortKey> - information on
how the relation is sorted on its range side. If several
objects in the range category are connected by this

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

200

relation to the same object in the domain category,
those objects in the range category are retrieved in
the order determined by this node. The parameter is
Mode -- optionally specifies how duplicates
(objects with the same values of all sort key
items) should be treated. Possible values are
NoDuplicates (default), FIFO, LIFO and
Manual.

<RangeSortKey/KeyItem> -- relation sort key
contains several items, representing the attributes of
the range category, the parameters are
Number -- significance number of this
KeyItem in the sort key. If the sort key contains
several items, the objects are first ordered by the
value of the first item, then those that have the
same value of the first item are ordered by the
second item, etc.;
Name -- the short name of the attribute of the
range category. The values of the attribute are
used to form the sort key;
Order -- direct or reverse ordering on this item,
valid values are Direct and Reverse.

<Category/Subcategory> -- specifies one of
the subcategories of the category. The parameter is
Name -- the name of the subcategory.

<Subcategory/Comment> -- contains a
comment about this inheritance.
<Category/CoveringGroup> -- specifies the
covering group for the category. If the object
belongs to the category it should belong to one of the
categories in the covering group. Typically it is used
to specify ‘No Other’ property, which declares
that there are no objects that belong to this category
but not to any of it’s subcategories. The parameter is
Name -- the name of the covering group.

<CoveringGroup/Comment> -- the description
of the covering group.
<CoveringGroup/CoveringItem> --
contains one item of the covering group. The
parameter is
Name -- The name of the category belonging to
the covering group.

<Schema/DisjointGroup> -- the categories in
the disjoint group should be disjoint from each other.
<DisjointGroup/Comment> -- description of
the disjoint group.
<DisjointGroup/DisjointItem> --
specifies the categories in the disjoint group. The
parameter is
Name -- the name of the category belonging to
the disjoint group.

2.4 Data Format

It is possible to represent data in two ways.
ObjectsFirst is the format when every object in

the database is represented by exactly one XML
node. For each object, the information about its
categories and relations is contained within the
object definition. This format is natural semantically.

The other way is to group objects by category.
The CategoriesFirst format addresses this by
having all the objects grouped by categories. Nodes
that represent categories are higher in the
containment hierarchy than the object nodes. Within
the category node, the object node corresponds to
the object belonging to this category. If an object
belongs to more than one category, there are several
nodes corresponding to the object in every category
it belongs to. All these nodes have the same ID and,
therefore, represent the same object.
<Database/Data> -- contains all the data
unloaded from the database, the parameter is
Format -- the format in which the data is
presented. The valid values are ObjectsFirst
and CategoriesFirst.

The format for ObjectsFirst is described as
follows.
<Data/Object> -- object node. The node is
created for each object in the database; it contains
the information about the object. The parameter is
ID -- the unique ID of an object. If the object has
a reference to another object, the reference is
established by ID. For implementation purposes it
will be a hexadecimal internal object ID.

<Object/Category> -- category node.
Represents the fact that the object belongs to the
category specified by name. The value of this tag is
a list of all attributes and relations having the
category as a domain. The parameter is
Name -- name of the category the object belongs
to.

<Category/Relation> -- relation node. The
value of the node represents the object or value to
which the current object is connected by the relation
specified. If the relation is abstract, the value is the
unique ID of the object to which the current object is
connected. For Integer, the value is a decimal
representation of an integer. String is represented
as appropriate in XML format. Binary data is
represented by XML’s CDATA section. Values of
enumerated type are represented by their string
values. The parameters are
Name -- name of the relation;
Number -- optional attribute for ordered m:m
relations. If the object is connected to several
objects by the relation and it has manual ordering,
this attribute contains the order number.

Example of the database presented in
ObjectsFirst format is below:

<Database>
 <Data>

XML-BASED SEMANTIC DATABASE DEFINITION LANGUAGE

201

 <Object ID=”A00000”>
 <Category Name=”Student”>
 <Grade>3</Grade>
 </Category>
 <Category Name=”Instructor”>
 <Relation Name=”Teaches”
Number=”1”>A00000</Relation>
 <Relation Name=”Teaches”
Number=”2”>A00001</Relation>
 </Category>
 </Object>
 <Object ID=”A00001”>
 <Category Name=”Student”>
 <Relation
Name=”Grade”>5</Relation>
 </Category>
 </Object>
 </Data>
</Database>

The format for CategoriesFirst is described as
follows.
<Data/Category> -- category node. Represents
the information about all objects belonging to the
category specified by name. The parameter is
Name -- the name of the category.

<Category/Object> -- object node. Contains
information about the object, namely the values of
those relations that have the category specified by
name in the parent node as a domain category. The
parameter is
ID - unique object ID. Note that if the object
appears in two or more categories, its ID is the
same in all categories.

<Object/Relation> -- relation node. The value
of the node represents the object or the value to
which the current object is connected by the relation.
The parameter is
Name -- the name of the relation.

An example of the same database presented in
CategoriesFirst format is below:

<Database>
 <Data>
 <Category Name=”Student”>
 <Object ID=”A00000”>
 <Relation
Name=”Grade”>3</Relation>
 </Object>
 <Object ID=”A00001”>
 <Relation
Name=”Grade”>5</Relation>
 </Object>
 </Student>
 <Category Name=”Instructor”>
 <Object ID=”A00000”>
 <Relation Name=”Teaches”
Number=”1”>A00000</Relation>

 <Relation Name=”Teaches”
Number=”2”>A00001</Relation>
 </Object>
 </Category>
 </Data>
</Database>

In addition to the formats of data export described
above, the alternative form of category nodes and
relation nodes can be supported. This form may be
used if category and relation names do not contain
special characters that are not allowed in XML tags.
In this case the category names and relation names
are used as node tags:
<CatName> -- alternative form of category node;
<RelName> - alternative form of relation node.
However, in this case the XML does not have a
fixed schema, thus making validation of the XML a
hard task. XML files without a fixed schema are not
preferable for information exchange.

3 CONCLUSION

We have presented XSDL -- the data definition
language for the semantic binary model. The new
approach is based on XML. XSDL proves to be
more flexible in describing semantic database
schemas than conventional SDL. In particular,
XSDL is used for fast export/import operations of
semantic databases and for efficient data exchange
between the databases.

ACKNOWLEDGEMENTS

This material is based on work supported by the
National Science Foundation under Grants No.
HRD-0317692, EIA-0320956, EIA-0220562, CNS-
0426125, IIS-0326284, CCF-0330342, IIS-0086144,
and IIS-0209190.

REFERENCES

Rishe, N., 1992. Database Design: the semantic modeling
approach, McGraw-Hill. 528 pp.

Rishe, N., 1994. Semantic Schema Design Language,
available at request, http://hpdrc.cs.fiu.edu .

Vasilevsky, D., 2004. Design Principles of Semantic
Binary Database Management Systems, PhD thesis,
Florida International University, 165 p.

XML, 2004. Extensible Markup Language, World Wide
Web Consortium. http://www.w3c.org/XML .

ICEIS 2005 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

202

