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ABSTRACT 

3D GIS generally have very complex data models. In 
adapting these systems to the Internet, one has to take into 
account the limited computational power of the typical 
personal computer and the limited network bandwidth 
available to casual Internet users. For quality of service 
management of interactive 3D GIS presentations, feature 
preserving data reduction techniques are of critical 
importance. The technique discussed in this paper deals 
with terrain modeling. The terrain surface usually exhibits 
significant spatial coherence. Such data coherence can be 
found in grid meshes regardless of their resolutions. The 
mesh simplification algorithm proposed here reduces the 
geometric complexity in grid meshes by taking advantage 
of this coherence. 

Keywords: Geographic information system, terrain 
modeling, three-dimensional visualization. 

1. INTRODUCTION 

3D (three-dimensional) GIS (geographic information 
systems) generally have very complex data models. While 
two-dimensional online GIS have been successfully 
implemented (we refer to [1] as an example), said 
complexity greatly limits wide adoption of 3D GIS 
applications for the Internet. We believe that employing 
feature preserving data reduction techniques allows the 
complexity of the 3D GIS data models to be reduced 
while presenting to the user a real-time realistic three­
dimensional animation. For this . reason we have 
developed the mesh simplification algontlinf discussed in 
this paper. 

For our purposes, mesh data is stored and retrieved in a 
grid format Grid meshes are obtained by scanning the 
terrain surface at constant intervals. Some of the sample 
vertices may be unnecessary or redundant in representing 
the actual terrain geometry. For example, to represent the 
geometry of a large rectangular plane field. the four 
corner vertices of the plane field are sufficient. For a 
400 x 200 meter' playground, a 20 x 20 meter grid mesh 
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contains 200 fac~ts and a 40 x 40 meter grid mesh 
contains only 50 facets. Eliminating these unnecessary 
sample vertices in a grid mesh is an effective approach to 
reducing the rendering complexity. Moreover, when 
viewing some near-flat areas at a distance, very small 
height variations in terrain may not be detectable by 
human perceptions. Ignoring those insignificant terrain 
height variances can also reduce the geometric 
complexity without impairing the rendering quality. Since 
mesh servers can provide mesh data of different 
resolutions in multiple LOD (level of detail) rendering, 
the goal for a mesh simplification algorithm is to 
eliminate those redundant or insignificant vertices in a 
grid mesh in order to reduce the facets of the terrain 
surface. The efficiency of the algorithm is very important, 
since it is used in real time for 3D animation. The mesh 
simplification algorithm is d~signed as a !lybrid method of 
mesh decimation and compression. It can directly process 
rectangular meshes to avoid mesh triangulation overhead. 
The redundant or insignificant vertices are removed by 
edge straightening and adjacent rectangles are merged 
according to error metrics via quad-tree compression. The 
algorithm· allows ~esh data to be processed locally on the 
user's computer and the entire terrain mesh to be 
simplified in parallel. We refer to [2] for a detailed 
discussion of the data reduction techniques for online 3D 
GIS. 

2. DESIGN CONSIDERATIONS AND 
REQUIREMENTS 

Most feature-preserving mesh simplification algorithms 
that have been published are based on triangulw meshes, 
(3, 4, 5, 6]. These algorithms are merited for topology 
preservation and controllability over a number of 
surfaces. They are widely used for obtaining simplified 
versions of various resolutions from excessively detailed 
meshes. On the other hand, their efficiency is not suitable 
for real-time use on the Internet. Moreover, to fit triangle­
based algorithms, a grid mesh has to be transformed into a 
triangular mesh via triangulation algorithms. 



In our model, the mesh data does not contain excessive 
geometry details because it is retrieved with proper 
resolutions from the mesh servers. The simplification 
process aims to smooth the terrain surface and to 
eliminate insignificant and redundant vertices contained 
in grid meshes. Apart from the effectiveness of mesh 
complexity reduction, the run-time efficiency of the 
simplification process is also a major concern. It is 
desirable that the algorithm be able to directly work on 
rectangular mesh to avoid triangulation overhead. A local 
mesh processing strategy is also preferred to allow the 
entire terrain mesh to be efficiently processed 
progressively in parallel. 

3. MESH SIMPLIFICATION ALGORITHM 

The mesh simplification algorithm is a hybrid algorithm 
that combines quad-tree compression and edge 
straightening. It works directly on the grid mesh tiles and 
can be performed in parallel. Mesh data is smoothed by 
error metrics and a controlled edge straightening method. 
The geometry elements are compressed by merging 
rectangles to reduce the number of facets in mesh data. 

3.1. Per-Tile Processing 
When a given mesh tile is retrieved from the mesh server 
in grid format, the algorithm recursively divides the mesh 
tile into 2 x 2 sub-regions until the bottom level grid cells 
are reached (in which case a sub-region contains a single 
rectangular facet). Then the algorithm recursively merges 
those 2 x 2 sub-regions into larger regions in a bottom-up 
fashion. The simplification occurs during the sub-region 
combination processes. When combining the 2 x 2 sub­
regions, the algorithm examines all adjacent rectangular 
facets in different sub-regions along ·the sub-region 
borders. For two rectangular facets sharing a common 
edge, if their connecting vertices can be removed by the 
edge straightening process, then they are merged into a 
larger rectangle. The pseudo code for the simplification 
process is shown on Figure 1. 

The edge straightening is controlled by edge linearity 
error metrics. Given two edges AB and BC in same 
orientation (either x(A)=x(B)=x(C) or y(A)=y(B)=y(C), 
where x(V), y(V) and h(V) denote the x, y; and z values · 
of vertex V), the edge linearity error metric of vertex B 
(denoted as e(B)) is calculated as follows: 

• When y(A) = y(C): 

e(B). = I h(C)- h(A) X (x(B)- x(A)) + h(A)- h(B) I 
x(C)-x(A) 

• · When ·x(A) = x(C): 

e(B) =I h(C)-h(A) x(y(C)- y(A))+h(A)-h(B) I 
y(C)- y(A) 
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A small e(B) value indicates that AB and BC are close to 
a straight line and a zero e(B) means they are exactly a 
straight line. If e(B) is less than the error metric threshold 
at vertex B (denoted as T(B)), then AB and BC can be 
straightened into a straight line AC and vertex B can be 
removed. 

I" p,..a, code for moth rimplificotion proc<durc •1 

simplifyMosb( Rc!Pon•pJ\esioa, doubleOO mesh, double res, 
int XI, int Yl, int X2, int Y2) 

int MidX. (XI+X2) /2; 
int MidY. (YI+Y2) /2; 

if(Xl-Xla:&Yl-Y2)( 
Rcctongle • ret • new Rectangle; 
ret->x • X I; ret->y • Yl; 
rot ->width • rot ->width • I;; 
pRoaion->add(rot); 

J 
elseif(XI-X2){ 

I 
else 

I 
elae 

1 I 

R.ecion 1op, bottom; 
1/tplltttng along y 
limpli.fyMesh(hlp, mesh, res, XI, Yl, X I , MiciY); 
oimpli.fyMesh(&bounm, mesh, res, XI, MidY+I, XI, Y2); 

/1-rging sub-ngiOM 
merpRegion(pRqpoa, .blp, &boaom, mesh, res, TOP _BOTIOM); 

if(Yl-Y2) ( 
R.ecion left, rial>~ 

1/tplltttng aloltg x 
limplifyMesh(.tleft, mesh, res, XI , Y l, MidX, Yl); 
aimplifyMesh(.triglrt, mesh, ,.._ MidX+I , Yl, X2, Yl); 

ltw..rging ~-
meraoRegion(pRegioa, Aloft. .trisb~ mesh....., LEFr_RIGHI); 

( 
Region top _left, q>_rigb~ boaom_left, boaom_rigbt; 
Region lop. bottQm; 

/llx1 tplttring 
simplifyMoob(&:topJetl. mesh, res, XI , Y l, MidX, MiciY); 
limplifyMooh(&:top_riah~ meoh, res, MidX+I, Yl, X2, MidY); 
oimpli.fyMosh(&bottam_left, mesh, RIS, XI, MidY+l , MidX, Y2); 
limpli.fyMoob(&botlom_riglrt, mesh, res, MiciX+I, MidY+I, X2, Y2); 

1/m<rging 111b-ngiON 
meraeRellion(4:1op, bp_left, bp_ri&h~ mooh, ns, 

LEFr_RIGHI); 
~on(&boaom, &bottom _left, &boaom_riglrt, mesh,...., 

U!FI' _RIGHI'); 
merJeResion(pReaica; bp, &boltom. mesh, res, TOP _BOlTOM); 

Figure 1. Pseudo code for mesh simplification procedure. 

For two rectangles ABCD and CDEF shown on Figure 2, 
the rectangles can ·be merged into. a larger rectangle 
ABFE if and only if both vertices C and D can be 
removed. For a rectangular mesh, since the four comer 
vertices of a rectangle may not be coplanar, removing a 
vertex of a rectangle may cause a topological 
inconsistency (crack) in the mesh without cascading 
adjustment of other neighboring vertices. ·Except for the 
linearity error metrics, the topology of neighboring 
rectangles must also be considered at the same time when 
straightening edges and merging rectangles. 
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Figure 2. Illustration of Merging Two Rectangles. 

For two rectangles ABCD and CDEF, based on the edge 
linearity error metrics values e(C) and e(D} of vertices C 
and D, the simplification algorithm works as follows: 

1. If e(C) and e(D) are all zeros then merge the two rectangles 
into 
ABFE 

2 Else incase ofe(C) ~ T(C) and e(D) :S T(D) 

I. If ABCD and CDEF are all grid cells 

(at the lo~t level), then merge them. 

2. Otherwise check the neighboring rectangles and 
merge them only when merging edges ADE and 

BCF is safe. 

In case 2.2 above, if AD and DE are not edges of grid 
cells, they can only be safely straightened into AE if and 
only if there exist two other rectangles ADVU and 
DEWY,. see Figure 3; otherwise straightening ADE 
without adjusting h(V) accordingly may result in a 
triangular hole near vertex V, see Figure 4. 
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Figure 3. Example of Safe Edge Straightening. 

86 

i' ...... ·-.. ·----~ -----------~ . --.. --------------.. ~-.-. ---.---~. 
! -1 iu u 

1· ··:~:;;.~::::·;···. ·.~-. ./-:-::-::-~~-~""~+:·-:~-:-,:-~-ltl 
t ........... ----- ....... ----- .. ------- ............... ...... ..!. ............... - ............ -- .. - .. ------- --- ........... ... 

r-- D 

B 

Figure 4. Mesh Crack Resulting from Improper Edge 
Straightening. 

Since merging of rectangles occurs only along the borders 
of adjacent sub-regions, in each sub-region, the rectangles 
along the borders are separately indexed with respect to 
the four borders (top, left, right, and bottom) to accelerate 
the rectangle search and comparison. 

3.2. Edge Straightening Threshold 
The straightening error metrics threshold T controls the 
simplifiCation result.. Generally, a large threshold results 
in a coarse mesh and -a small threshold results in a fme 
mesh. Therefore, a large threshold should be used for 
simplifying low-resolution meshes and a small threshold 
should be used for simplifying high-resolution meshes. 
The threshold T for a mesh tile is determined· by view 
height and the mesh resolution. Experimentally, the value 
of the threshoid was calculated to be: 

H · Res ·· 
T(V}= min( 800 ' 25 ) 

Where Res is the coarse mesh resolution and H is the 
viewing height. 

3.3. Parallel Processing 
Since the terrain mesh is simplified tile by tile, the entire 
simplified terrain surface composed of independently 
simplified mesh tiles should remain spatially continuous. 
In the multi-resolution terrain model;· meshes in different 
LOD sub-regions have different resolutions and their 
simp1ificatioii processes are controlled: using different 
eiror Itletrics thresholds. When tWo adjacent mesh tiles. of 
different resolutions are processed separately with 
different error metrics thresholds, the simplified tiles may 
not match each other and cracks may appear · at the 
connecting borders . 

In the multi-LOD rendering model construction process, 
mesh tiles across sub-region borders are treated specially. 
For two adjacent mesh tiles A and B, where A has higher 
resolution than B, the border of A that connects with B 
has to be adjusted with B 's resolution to prevent cracks. 
In the simplification process, the adjusted border of A is 
simplified using an error metrics threshold derived from 
B's resolution instead of A's own resolution. The 



threshold for edge straightening for a vertex V in mesh 
tile A is defined as: 

T(V)= 

H ResB 
min( 800 '2s) 

H ResA 
min( goo·~) 

For vertex V in the 
border area with 
adjusted resolution 

For other vertices in 
mesh tile A 

Where: ResA is the coarse resolution of the mesh tile A. 

ResB is the coarse resolution ofthe mesh tile B. 

Therefore in the rendering model, a mesh tile always 
seamlessly connects with its neighboring mesh tiles and 
their border edges are always simplified in the same 
manner even if they are of different resolutions. This 
scheme ensures that the entire simplified terrain surface is 
spatially ·continuous and crack-free. 

4. ANALYSIS AND EXPERIMENT RESULT OF 
MESH SIMPLIFICATION ALGORimM 

The result of using the mesh simplification algorithm is a 
bounded .error while preserving the mesh geometric 
topology. Figure 5 shows a comparison of originil.l ·and 
·simplified surfaces of the same area of terrain. 

Figure 5. Comparison of the Original and Sunplified 
Surfaces. 

The goal of the mesh simplification algorithm is to ·­
efficiently reduce the mesh complexity and thus to speed 
up the terrain rendering process. According to · 
experimental results, the algorithm can reduce the number 
of facets by 40 to 85 percent compared to the original 
mesh. An example of mesh tile simplification comparison 
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is shown in Figure 6. The 32-meter resolution mesh tile is 
taken from the South Florida area and the simplification 
result is obtained using a 700-meter viewing height. The 
64 x 64 original mesh is shown in part (A) and simplified 
mesh of 1137 facets is shown in part (B). The facet 
reduction rate in this example is about 72 percent. 

Figure 6. Example of Mesh Tile Complexity Reduction. 

Although the present algorithm is far from optimal in 
terins ofgeometric element reduction rate when compared 
to well-known triangle-based mesh simplification 
algorithms (e.g. incremental edge collapsing), it is 
suitable for real-time use in the Internet environment due 
to its simplicity and efficiency. There is no need for mesh 
triangulation in this algorithm. It does not need to 
maintain extra data structures (such as a priority queue) 
and no iterative error metrics computation or priority re­
calculation is required. 
Since the simplification procedure is designed on a per­
tile processing basis, the local simplification strategy 
brings about a significant performance enhancement: 
• the entire terrain surface can be simplified in 
parallel. 
• the result of simplification of an individual tile 
can be cached as long as its error threshold remains the 
same. This means that only a small portion of mesh data 
in the rendering model has to be processed for each 

. frame. 

To evaluate the performance improvement resulting from 
the mesh simplification algorithm, we experimentally 
compared the execution times of the rendering process 
directly over the original grid mesh (scheme A) with the 
execution times oLsimplifying the mesh plus rendering 
over the simplified mesh (scheme B). In the experiment, 
the two rendering schemes were implemented with two 

. programs A and B that are almost identical apart from the 
mesh processing strategies. The two programs were 
implemented in a single-threaded manner to prevent the 
results from being compromised by multithreading 
initiation and synchronization overhead. All texture and 
mesh data was pre-downloaded to the local drive of the 



computer and the time for data reading and decoding is 
excluded from execution time measuring. Since the mesh 
simplification results differ with the roughness of the 
underlying terrain, two datasets were used in the 
experiment: 
• Dataset# I: 40 texture/mesh tiles over the South 
Florida area. 
• Dataset#2: 40 texture/mesh tiles over the 
Northwest California area. 
For the two datasets, all mesh tiles are 64 x 64 grids at 32-
meter resolution and all texture images are 512x 512 
pixels in size with a resolution of 4 meters/pixel. The two 
testing programs simulate viewing at an altitude of 1,000 
meters with a 40 degree fovy angle and zero viewing 
rotation angles (the field of view (fovy) specifies the 
angle of the view volume). 

The test was performed on a Microsoft Windows 2000 
workstation with a single Intel Pentium 4 Processor 
(2.8GHz) and 512 Megabytes of memory without an 
advanced graphics card. The experimental result is shown 
in Table 1. 

Table 1. Comparison of Rendering Performance 
Experiment. 

The results of the experiment show that simplification can 
effectively reduce the execution time of the overall 
rendering process by about 15 percent in these cases. 
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