
I

i
f
i

I
1•

The 2nd International Conference on
Cybernetics and Information Technologies,

Systems and Applications

ISAS

CIT SA
2005

11th International Conference on
Information Systems Analysis and Synthesis

July 14-17, 2005 Orlando, Florida- USA

.PROCEEDINGS

Volume II

Edited by

Jose Aguilar
Hsing-Wei Chu
Elena D. Gugiu
llka Miloucheva
Naphtali Rishe

Mesh Simplification Algorithm for Op.}ine 3D GIS

Naphtali D. RJSHE, Ouri WOLFSON, Yanli SUN, Maxim CHEKMASOV,
Andriy SELIVONENKO, Scott GRAH,AM

School of Computer Science, Florida International University
Miami, Florida 33199, USA

and

Ben WONGSAROJ, Keith MORREN, Royel HAYNES, Kiesha PIERRE, Asha BRITO
Division of Computer Sciences and Mathematics, Florida Memorial University

15800 NW 42nd Ave Miami Gardens, FL 33054, USA

ABSTRACT

3D GIS generally have very complex data models. In
adapting these systems to the Internet, one has to take into
account the limited computational power of the typical
personal computer and the limited network bandwidth
available to casual Internet users. For quality of service
management of interactive 3D GIS presentations, feature
preserving data reduction techniques are of critical
importance. The technique discussed in this paper deals
with terrain modeling. The terrain surface usually exhibits
significant spatial coherence. Such data coherence can be
found in grid meshes regardless of their resolutions. The
mesh simplification algorithm proposed here reduces the
geometric complexity in grid meshes by taking advantage
of this coherence.

Keywords: Geographic information system, terrain
modeling, three-dimensional visualization.

1. INTRODUCTION

3D (three-dimensional) GIS (geographic information
systems) generally have very complex data models. While
two-dimensional online GIS have been successfully
implemented (we refer to [1] as an example), said
complexity greatly limits wide adoption of 3D GIS
applications for the Internet. We believe that employing
feature preserving data reduction techniques allows the
complexity of the 3D GIS data models to be reduced
while presenting to the user a real-time realistic three­
dimensional animation. For this . reason we have
developed the mesh simplification algontlinf discussed in
this paper.

For our purposes, mesh data is stored and retrieved in a
grid format Grid meshes are obtained by scanning the
terrain surface at constant intervals. Some of the sample
vertices may be unnecessary or redundant in representing
the actual terrain geometry. For example, to represent the
geometry of a large rectangular plane field. the four
corner vertices of the plane field are sufficient. For a
400 x 200 meter' playground, a 20 x 20 meter grid mesh

84

contains 200 fac~ts and a 40 x 40 meter grid mesh
contains only 50 facets. Eliminating these unnecessary
sample vertices in a grid mesh is an effective approach to
reducing the rendering complexity. Moreover, when
viewing some near-flat areas at a distance, very small
height variations in terrain may not be detectable by
human perceptions. Ignoring those insignificant terrain
height variances can also reduce the geometric
complexity without impairing the rendering quality. Since
mesh servers can provide mesh data of different
resolutions in multiple LOD (level of detail) rendering,
the goal for a mesh simplification algorithm is to
eliminate those redundant or insignificant vertices in a
grid mesh in order to reduce the facets of the terrain
surface. The efficiency of the algorithm is very important,
since it is used in real time for 3D animation. The mesh
simplification algorithm is d~signed as a !lybrid method of
mesh decimation and compression. It can directly process
rectangular meshes to avoid mesh triangulation overhead.
The redundant or insignificant vertices are removed by
edge straightening and adjacent rectangles are merged
according to error metrics via quad-tree compression. The
algorithm· allows ~esh data to be processed locally on the
user's computer and the entire terrain mesh to be
simplified in parallel. We refer to [2] for a detailed
discussion of the data reduction techniques for online 3D
GIS.

2. DESIGN CONSIDERATIONS AND
REQUIREMENTS

Most feature-preserving mesh simplification algorithms
that have been published are based on triangulw meshes,
(3, 4, 5, 6]. These algorithms are merited for topology
preservation and controllability over a number of
surfaces. They are widely used for obtaining simplified
versions of various resolutions from excessively detailed
meshes. On the other hand, their efficiency is not suitable
for real-time use on the Internet. Moreover, to fit triangle­
based algorithms, a grid mesh has to be transformed into a
triangular mesh via triangulation algorithms.

In our model, the mesh data does not contain excessive
geometry details because it is retrieved with proper
resolutions from the mesh servers. The simplification
process aims to smooth the terrain surface and to
eliminate insignificant and redundant vertices contained
in grid meshes. Apart from the effectiveness of mesh
complexity reduction, the run-time efficiency of the
simplification process is also a major concern. It is
desirable that the algorithm be able to directly work on
rectangular mesh to avoid triangulation overhead. A local
mesh processing strategy is also preferred to allow the
entire terrain mesh to be efficiently processed
progressively in parallel.

3. MESH SIMPLIFICATION ALGORITHM

The mesh simplification algorithm is a hybrid algorithm
that combines quad-tree compression and edge
straightening. It works directly on the grid mesh tiles and
can be performed in parallel. Mesh data is smoothed by
error metrics and a controlled edge straightening method.
The geometry elements are compressed by merging
rectangles to reduce the number of facets in mesh data.

3.1. Per-Tile Processing
When a given mesh tile is retrieved from the mesh server
in grid format, the algorithm recursively divides the mesh
tile into 2 x 2 sub-regions until the bottom level grid cells
are reached (in which case a sub-region contains a single
rectangular facet). Then the algorithm recursively merges
those 2 x 2 sub-regions into larger regions in a bottom-up
fashion. The simplification occurs during the sub-region
combination processes. When combining the 2 x 2 sub­
regions, the algorithm examines all adjacent rectangular
facets in different sub-regions along ·the sub-region
borders. For two rectangular facets sharing a common
edge, if their connecting vertices can be removed by the
edge straightening process, then they are merged into a
larger rectangle. The pseudo code for the simplification
process is shown on Figure 1.

The edge straightening is controlled by edge linearity
error metrics. Given two edges AB and BC in same
orientation (either x(A)=x(B)=x(C) or y(A)=y(B)=y(C),
where x(V), y(V) and h(V) denote the x, y; and z values ·
of vertex V), the edge linearity error metric of vertex B
(denoted as e(B)) is calculated as follows:

• When y(A) = y(C):

e(B). = I h(C)- h(A) X (x(B)- x(A)) + h(A)- h(B) I
x(C)-x(A)

• · When ·x(A) = x(C):

e(B) =I h(C)-h(A) x(y(C)- y(A))+h(A)-h(B) I
y(C)- y(A)

85

A small e(B) value indicates that AB and BC are close to
a straight line and a zero e(B) means they are exactly a
straight line. If e(B) is less than the error metric threshold
at vertex B (denoted as T(B)), then AB and BC can be
straightened into a straight line AC and vertex B can be
removed.

I" p,..a, code for moth rimplificotion proc<durc •1

simplifyMosb(Rc!Pon•pJ\esioa, doubleOO mesh, double res,
int XI, int Yl, int X2, int Y2)

int MidX. (XI+X2) /2;
int MidY. (YI+Y2) /2;

if(Xl-Xla:&Yl-Y2)(
Rcctongle • ret • new Rectangle;
ret->x • X I; ret->y • Yl;
rot ->width • rot ->width • I;;
pRoaion->add(rot);

J
elseif(XI-X2){

I
else

I
elae

1 I

R.ecion 1op, bottom;
1/tplltttng along y
limpli.fyMesh(hlp, mesh, res, XI, Yl, X I , MiciY);
oimpli.fyMesh(&bounm, mesh, res, XI, MidY+I, XI, Y2);

/1-rging sub-ngiOM
merpRegion(pRqpoa, .blp, &boaom, mesh, res, TOP _BOTIOM);

if(Yl-Y2) (
R.ecion left, rial>~

1/tplltttng aloltg x
limplifyMesh(.tleft, mesh, res, XI , Y l, MidX, Yl);
aimplifyMesh(.triglrt, mesh, ,.._ MidX+I , Yl, X2, Yl);

ltw..rging ~-
meraoRegion(pRegioa, Aloft. .trisb~ mesh....., LEFr_RIGHI);

(
Region top _left, q>_rigb~ boaom_left, boaom_rigbt;
Region lop. bottQm;

/llx1 tplttring
simplifyMoob(&:topJetl. mesh, res, XI , Y l, MidX, MiciY);
limplifyMooh(&:top_riah~ meoh, res, MidX+I, Yl, X2, MidY);
oimpli.fyMosh(&bottam_left, mesh, RIS, XI, MidY+l , MidX, Y2);
limpli.fyMoob(&botlom_riglrt, mesh, res, MiciX+I, MidY+I, X2, Y2);

1/m<rging 111b-ngiON
meraeRellion(4:1op, bp_left, bp_ri&h~ mooh, ns,

LEFr_RIGHI);
~on(&boaom, &bottom _left, &boaom_riglrt, mesh,....,

U!FI' _RIGHI');
merJeResion(pReaica; bp, &boltom. mesh, res, TOP _BOlTOM);

Figure 1. Pseudo code for mesh simplification procedure.

For two rectangles ABCD and CDEF shown on Figure 2,
the rectangles can ·be merged into. a larger rectangle
ABFE if and only if both vertices C and D can be
removed. For a rectangular mesh, since the four comer
vertices of a rectangle may not be coplanar, removing a
vertex of a rectangle may cause a topological
inconsistency (crack) in the mesh without cascading
adjustment of other neighboring vertices. ·Except for the
linearity error metrics, the topology of neighboring
rectangles must also be considered at the same time when
straightening edges and merging rectangles.

D

A,_ ·······················-············-.··········-······································· E

e(D)

c
e(C)

F
B _...,• •••••••••·•• ••••••••••• - ••••·-••••·• - ••:..•oooo.oooooooooo oo oOO ooOnooo oooO oooooooo o•• ••-•••••0•

Figure 2. Illustration of Merging Two Rectangles.

For two rectangles ABCD and CDEF, based on the edge
linearity error metrics values e(C) and e(D} of vertices C
and D, the simplification algorithm works as follows:

1. If e(C) and e(D) are all zeros then merge the two rectangles
into
ABFE

2 Else incase ofe(C) ~ T(C) and e(D) :S T(D)

I. If ABCD and CDEF are all grid cells

(at the lo~t level), then merge them.

2. Otherwise check the neighboring rectangles and
merge them only when merging edges ADE and

BCF is safe.

In case 2.2 above, if AD and DE are not edges of grid
cells, they can only be safely straightened into AE if and
only if there exist two other rectangles ADVU and
DEWY,. see Figure 3; otherwise straightening ADE
without adjusting h(V) accordingly may result in a
triangular hole near vertex V, see Figure 4.

. --- -----------------------------r~---- - -----------------------

ur
Y. v '1'1

!
A D 1: E

'n
A

B c F B c F

... ------ ------- -- -- ------- --- -.............. ~--

Figure 3. Example of Safe Edge Straightening.

86

i' ·-.. ·----~ -----------~ . --.. --------------.. ~-.-. ---.---~.
! -1 iu u

1· ··:~:;;.~::::·;···. ·.~-. ./-:-::-::-~~-~""~+:·-:~-:-,:-~-ltl
t ----- ----- .. -------!. - -- .. - .. ------- ---

r-- D

B

Figure 4. Mesh Crack Resulting from Improper Edge
Straightening.

Since merging of rectangles occurs only along the borders
of adjacent sub-regions, in each sub-region, the rectangles
along the borders are separately indexed with respect to
the four borders (top, left, right, and bottom) to accelerate
the rectangle search and comparison.

3.2. Edge Straightening Threshold
The straightening error metrics threshold T controls the
simplifiCation result.. Generally, a large threshold results
in a coarse mesh and -a small threshold results in a fme
mesh. Therefore, a large threshold should be used for
simplifying low-resolution meshes and a small threshold
should be used for simplifying high-resolution meshes.
The threshold T for a mesh tile is determined· by view
height and the mesh resolution. Experimentally, the value
of the threshoid was calculated to be:

H · Res ··
T(V}= min(800 ' 25)

Where Res is the coarse mesh resolution and H is the
viewing height.

3.3. Parallel Processing
Since the terrain mesh is simplified tile by tile, the entire
simplified terrain surface composed of independently
simplified mesh tiles should remain spatially continuous.
In the multi-resolution terrain model;· meshes in different
LOD sub-regions have different resolutions and their
simp1ificatioii processes are controlled: using different
eiror Itletrics thresholds. When tWo adjacent mesh tiles. of
different resolutions are processed separately with
different error metrics thresholds, the simplified tiles may
not match each other and cracks may appear · at the
connecting borders .

In the multi-LOD rendering model construction process,
mesh tiles across sub-region borders are treated specially.
For two adjacent mesh tiles A and B, where A has higher
resolution than B, the border of A that connects with B
has to be adjusted with B 's resolution to prevent cracks.
In the simplification process, the adjusted border of A is
simplified using an error metrics threshold derived from
B's resolution instead of A's own resolution. The

threshold for edge straightening for a vertex V in mesh
tile A is defined as:

T(V)=

H ResB
min(800 '2s)

H ResA
min(goo·~)

For vertex V in the
border area with
adjusted resolution

For other vertices in
mesh tile A

Where: ResA is the coarse resolution of the mesh tile A.

ResB is the coarse resolution ofthe mesh tile B.

Therefore in the rendering model, a mesh tile always
seamlessly connects with its neighboring mesh tiles and
their border edges are always simplified in the same
manner even if they are of different resolutions. This
scheme ensures that the entire simplified terrain surface is
spatially ·continuous and crack-free.

4. ANALYSIS AND EXPERIMENT RESULT OF
MESH SIMPLIFICATION ALGORimM

The result of using the mesh simplification algorithm is a
bounded .error while preserving the mesh geometric
topology. Figure 5 shows a comparison of originil.l ·and
·simplified surfaces of the same area of terrain.

Figure 5. Comparison of the Original and Sunplified
Surfaces.

The goal of the mesh simplification algorithm is to ·­
efficiently reduce the mesh complexity and thus to speed
up the terrain rendering process. According to ·
experimental results, the algorithm can reduce the number
of facets by 40 to 85 percent compared to the original
mesh. An example of mesh tile simplification comparison

87

is shown in Figure 6. The 32-meter resolution mesh tile is
taken from the South Florida area and the simplification
result is obtained using a 700-meter viewing height. The
64 x 64 original mesh is shown in part (A) and simplified
mesh of 1137 facets is shown in part (B). The facet
reduction rate in this example is about 72 percent.

Figure 6. Example of Mesh Tile Complexity Reduction.

Although the present algorithm is far from optimal in
terins ofgeometric element reduction rate when compared
to well-known triangle-based mesh simplification
algorithms (e.g. incremental edge collapsing), it is
suitable for real-time use in the Internet environment due
to its simplicity and efficiency. There is no need for mesh
triangulation in this algorithm. It does not need to
maintain extra data structures (such as a priority queue)
and no iterative error metrics computation or priority re­
calculation is required.
Since the simplification procedure is designed on a per­
tile processing basis, the local simplification strategy
brings about a significant performance enhancement:
• the entire terrain surface can be simplified in
parallel.
• the result of simplification of an individual tile
can be cached as long as its error threshold remains the
same. This means that only a small portion of mesh data
in the rendering model has to be processed for each

. frame.

To evaluate the performance improvement resulting from
the mesh simplification algorithm, we experimentally
compared the execution times of the rendering process
directly over the original grid mesh (scheme A) with the
execution times oLsimplifying the mesh plus rendering
over the simplified mesh (scheme B). In the experiment,
the two rendering schemes were implemented with two

. programs A and B that are almost identical apart from the
mesh processing strategies. The two programs were
implemented in a single-threaded manner to prevent the
results from being compromised by multithreading
initiation and synchronization overhead. All texture and
mesh data was pre-downloaded to the local drive of the

computer and the time for data reading and decoding is
excluded from execution time measuring. Since the mesh
simplification results differ with the roughness of the
underlying terrain, two datasets were used in the
experiment:
• Dataset# I: 40 texture/mesh tiles over the South
Florida area.
• Dataset#2: 40 texture/mesh tiles over the
Northwest California area.
For the two datasets, all mesh tiles are 64 x 64 grids at 32-
meter resolution and all texture images are 512x 512
pixels in size with a resolution of 4 meters/pixel. The two
testing programs simulate viewing at an altitude of 1,000
meters with a 40 degree fovy angle and zero viewing
rotation angles (the field of view (fovy) specifies the
angle of the view volume).

The test was performed on a Microsoft Windows 2000
workstation with a single Intel Pentium 4 Processor
(2.8GHz) and 512 Megabytes of memory without an
advanced graphics card. The experimental result is shown
in Table 1.

Table 1. Comparison of Rendering Performance
Experiment.

The results of the experiment show that simplification can
effectively reduce the execution time of the overall
rendering process by about 15 percent in these cases.

88

6. ACKNOWLEDGEMENTS

This material is based on work supported by the National
Science Foundation under Grants No HRD-0317692,
EIA-0320956, and EIA-0220562.

5. REFERENCES

[I] TerraFly: A Web-Enabled Application for
Visualization and Manipulation of Remotely Sensed
Data, available at
http://terrafly.fiu.edu/tf-whitepaper.pdf

[2] Y anli Sun, 3D TerraFly- Quality of Service
Management of Online Interactive 3D GIS
Presentation, PhD dissertation, Florida International
University, 74 p., 2004.

(3] Rossignac J. Borrel P., Multi-resolution 3D
approximations for Rendering Complex-scenes, ln­
Falcidieno, B. and Kunii T .L. (Eds), Modeling in
Computer Graphics, Springer-Verlag, pp. 455-465,
1993.

[4] Hugues Hoppe, Tony DeRose, Tom Duchamp, John
McDonald, and Werner Stuetzle, Mesh Optimization.
In SIGGRAPH '93 Conference Proceedings, pp. 19-
26, 1993.

[5] Ronfard R. and Rossignac, J., Full-range
approximation of triangulated polyhedra, Computer
Graphics Forum, Proceedings ofEurographics, 1996.

[6] P. Lindstrom, D. Koller, W. Ribarsky, L. Hodges, N.
Faust, and G. Turner, "Real-time Continuous Level of
Detail Rendering of Height Fields," Proc. ACM
SIGGRAPir96,pp. 109-118,1996.

