
The 6th World Multiconference
on Systemics, ,C·ybemetics

and Informatics

July 14-18,2002
Orlando, Florida, USA

P~OCEEDINGS
Volume VII

Information Systems Development II

Organized by IIIS
International
Institute of
Informatics and
Systemics

Member of
International Federation of
Systems Research IFSR

EDITED BY
Nagib Callaos

John Porter
N a ph tali Rishe

Mapping from XML DTD to Semantic Schem~

Naphtali RlSHE, Li YANG, Maxim CHEKMASOV,
Marina CHEKMASOVA, Scott GRAHAM, Alejandro ROQUE

High Performance Database Research Center
School of Computer Science

Florida International University •
Miami, FL 33199, U.S.A.

ABSTRACf

The Extensible Markup Language (XML) is increasingly
becoming a popular data exchange and representation format
because of the need for enhancing data interoperability and
exchangeability over the Web. Different approaches have been
investigated on using database technology to store and access
XML data. In this paper, we explain in detail a unique and
complete mapping scheme to map a DID to a Semantic Schema
in Sem-ODM. The key idea is capturing the meta-schemata of
both the DTD and Semantic Schema, and then mapping the
basic constructs of DTD to their counterparts in the semantic
schema, while preserving the structure and semantic
information of the DTD. We were able to easily and naturally
capture complex semantic information with the Semantic
Schema, thus smoothing the mapping process.

Keywords: XMUDTD, Semantic Schema, Meta-schema,
Structure Mapping, Semantic Mapping.

1. INTRODUCfiON

As the World Wide Web is gradually becoming one of the most
important communication media, the importance of improving
the interoperability, easing the access to heterogeneous data
sources and integrating data from different applications has
been brought to light. As a result, the World-Wide-Web
Consortium (W3C) [18] has defined a language called
Extensible Markup Language (XML) [20]. XML is a subset of
SGML (Standard Generalized Markup Language), which was
originally designed for the purpose of large-scale electronic
publishing and is now becoming a popular data exchange and
representation format [18].

One of the issues that a lot of researchers and software vendors
have been focusing on is XML storage. To date, three different
repositories have been used. They are relational databases [9,
16, 7], object-oriented databases [2, 19] and semi-structured
databases [8, 17]. Among this work, a great deal of effort has
been put on using relational databases because of its mature
technology. The general approach of using a relational database
as an XML repository is first mapping a DTD/XML-Schema to
a relational schema and then loading XML data into relational
databases (RDBMS) for further querying. However, no matter
what mapping techniques are used, it has proved to be very hard
to avoid the common problem of fragmentation when using
RDBMS. This is because relational data model is a two-

dimensional table and column-based structure, whereas the
XML data model is a graph-based structure. In order to fit the
graph-based XML data into the table based relational model and
keep the mapped relational database in a certain normalized
form, fragmentation is inevitable.

In this paper, we describe an alternative approach for storing
XML, which uses Semantic Binary Object-Oriented Database
System (Sem-ODB) as the underlying XML repository. Sem
ODB was developed at the High-Performance Database
Research Center (HPDRC) [14] and is based on a conceptual
data model, the Semantic Binary Object-Oriented Data Model
(Sem-ODM [13]). It has been successfully deployed for highly
complex applications such as applications intended for storage
and processing of large amounts of earth science observations
and the TerraFiy Geographic Information System (GIS) [3].

Sem-ODM has features of Object-Oriented data models (such
as inheritance, oid, explicit description of relationships, and a
high-level data model) while maintaining the simplicity of
relational data models in the sense of using simple constructs. It
is more natural to preserve structure as well as semantic
information using Sem-ODM than the relational mode~ as
illustrated in section 4. In addition, set-valued attributes and
nested structures of XML can be easily represented using
relations (like associations in 00 model) in Sem-ODM, thus
avoiding the common problem of fragmentation when using
RDBMS to store XML. Furthermore, by using relation and user
defined oid (surrogate) concepts in Sem-ODM, semantic
information such as element and document order in XML is
more suitable to representation in a semantic schema than in a
relational schema.

In this paper, we describe in detail our approach of mapping
DTDs to Sem-ODM semantic schemas. The basic idea is
capturing the meta-schema of both DTD and the semantic
schema, and then mapping the basic constructs of a DTD to
their counterparts in a semantic schema, while preserving the
structure and semantic information of the DTD. The mapping
information is not hard-coded; rather it is generated
dynamically during the mapping process and kept in a Sem
ODB for future query translation and reconstruction phases. The
approach of capturing the meta-schemas of different data
sources and storing the mapping information for future
processing has been applied successfully in our Sem Wrapper
project [12] and SemAccess project [15].

• This research was supported in part by NASA (under grants NAGS-9478, NAGW-4080, NAGS-5095, NAS5-97222, and NAGS-6830),
NSF (CDA-9711582,IRI-9409661, HRD-9707076, and ANI-9876409), ONR (N00014-99-l-0952), and the FSGC.

450

The rest of the paper is organized as follows. Section 2 gives a
brief overview of DTD, its basic constructs and its meta-schema
represented in the form of Sem-ODM concepts. The meta
schema of a semantic schema is presented in Section 3. The
structure mapping and semantic mapping are explained in
Section 4 with examples. Section 5 presents some related work.
Conclusions and future work are presented in section 6.

2. OVERVIEW OF DTD AND ITS MET A
SCHEMA

2.1 XML and DTD
XML is a subset of the Standard Generalized Mark-up
Language (SGML). It is a tag language, but users have the
freedom of customizing the tags. Thus it can be used to define
other languages. An XML document is composed of a stream
of text nested within pairs of matching open and close tags. The
tags are called Elements. Each element may have attributes
describing the element and contain sub-elements in its body.
Each sub-element can have cardinality of only one, at most one
(?), at least one (+), or many (*) to describe how many times
that sub-element can appear within the body of its parent
element. In addition, it can be specified whether the sub
elements should appear in some order (denoted by a"," between
sub-elements) or not (denoted by "1"). In this way, an ordered,
nested and hierarchical document can be formed.

The structure and constraints of XML documents are described
by a Document Type Definition (DTD) [6]/XML Schema [21].
Figure I is a DTD example that was extracted from [16) and is
used as a running example in this paper. The basic components
of a DTD are elements and attributes. They are declared in the
following form, respectively.

<!ELEMENT element_ name element_ content_ type>
<!A TILIST element_name attribute_name attribute_type
default>.

<!ELEMENT book (booktitle, author)>
<I ELEMENT booktitle (#PCDA TA)>
<!ELEMENT article (title, author•, contactauthor)>
<!ELEMENT title (#PCDATA)>
<I ELEMENT contactauthor EMPTY>
<lA TTLIST contactauthor authoriD IDREF #IMPLIED>
<!ELEMENT monograph (title, author, editor)>
<!ELEMENT editor (monograph•)>
<!A TTLIST editor name CDA T A #REQUIRED>
<!ELEMENT author (name, addr)>
<lA TTLIST author id ID #REQUIRED>
<I ELEMENT name (first?, last)>
<I ELEMENT first (#PCDA TA)>
<!ELEMENT last (#PCDA TA)>
<!ELEMENT addr ANY>

Figure I DTD Running Example

DTD Simplification Assumption To ease the mapping process,
we transform complex DTDs to simpler, but equivalent ones
before performing the real mapping. In the subsequent sections,
we will assume DTDs have been simplified by rules in [16, 5].
In the following section, we will review the components of
DTD and present the meta-schema that we have devised to
describe a DTD.

2.2 DTD Constructs
Note that notations of the Sem-ODM are used to illustrate DTD
and Semantic Schema components throughout the rest of the

451

paper tsee section 3 for basic Sem-ODM concepts).
Graphically, the rectangles r~resent categories. The dashed
arrow represents /SA links (inheritance/super-category
subcategory relationships). The dashed-arrows point from sub
category to super-category. The attributes of a particular
category are placed in the respective category rectangle with
ranges placed after the ":" (semi-colon). The thick arrows (i.e.
non-dashed) represent relations between categories. The
cardinalities and constraints of relations are represented inside
parentheses.

The basic constructs of a DTD are elements and attributes,
which are depicted in Figure 2 in the form of a Sem-ODM
Semantic Schema. Therefore, mapping can be considered from
these two perspectives, element-related and attribute-related
mapping.

, ,
is_part_of

Attribuu
El~meot

/
(total , key/2)

name: String
name: String (total, key/2)

(J : I,total)

Figure 2 Sub-schema Representing DTD Construct

2.2.1 Meta-schema of Element According to the content
type of elements, elements can be classified into EmptyContent,
AnyContent, PCDataElement, Mixed, and Sequence, as
illustrated in Figure 3. Recall that we simplify a DTD so that it
does not contain choice content elemen;:t=s::... -------.

order_in (1: m)

AoyContcot

PCDataElcmcot

El~m~otOrdu

parent~ Parent Element
(m:m)

order : Integer
cardinality: String

Sequence

Figure 3 Sub-schema Representing DTD Element
Meta-Schema

An EmptyContent element does not have any text between its
start-tag and end-tag. An example of such an element is
contactauthor in the running example. Elements of AnyContent
may contain any content, which might be an element. For
instance, element addr is declared as ANY content in Figure 1.
Thus in the XML document, addr can have arbitrary XML
fragments. In our classification, we use PCDataEiement to
differentiate elements declared as #PCDA T A type and
#PCDA T A in a mixed content declaration. Elements first and
last in our DTD are examples of PCDataEiement. Category
PCDA T A in Figure 3 is used to represent the character data in a
mixed content. Mixed content elements may contain character
data as well as elements. For instance, the following example
declares a mixed content element paragraph.

<! ELEMENT paragraph (#PCDATA • I figure•) >
<!ELEMENT figure (#PCDATA) >

By our definition, element figure will be regarded as
PCDA T AElement and #PCDA T A within element paragraph is
an object of PCDATA category. They will be treated differently
in the following mapping process.

A Sequence element is an element which contains child
elements and an ordering among the sub-elements. For
example, element book in the ab«Jve DTD example consists of
booktitle and author. Booktitle must appear in front of author in
any XML document that conforms to this DTD. Because mixed
content and sequence elements may have sub-elements, we call
them ParentElements in our categorization.

Category ElementOrder in Figure 3 is used to capture the
ordering and cardinality of an element in its parent elements.
Attribute parent keeps the inforniation about the parent element,
thus has the range ofParentElement.

2.2.2 Meta-schema of Attribute An element may have a
set of attributes associated with it. According to their types and
defaults, attributes in DTDs can be further refined, as shown in
Figure 4. An attribute can be of type CDATA, Tokenized, or
Enumerate. Attributes can have REQUIRED, IMPLIED,
DEFAULT, or FIXED declared as a default value.

Attribute
name: String

(m:J ,total,key/2)

Figure 4. Sub-schema Representing DID Attribute Meta-
Schema

CDA T A stands for character data, which is a string type. The
REQUIRED option means that a value must be provided for the
attribute for each element that this attribute belongs to.
IMPLIED means no default value should be provided for this
attribute. An attribute may have a default value in its
declaration, which means if no value is provided for that
attribute in the XML document, the default value will be
assumed as its value. The FIXED option determines that the
corresponding attribute can only have a fixed value when it
appears in XML documents.

Two special attribute types worth mentioning are ID and
IDREF(s). The former is used to uniquely identify each
element. It is much like the key concept in the relational model,
except that each element can only have one ID attribute and no
multiple attributes are used to identify one element. An example
is attribute id in element author. Each value of id can uniquely
identify an author. An attribute of IDREF must have a value

452

'
matching the value of some ID attribute. The attribute authoriD
of element contactauthor is ofiDREF type.

3. OVERVIEW OF SEM-ODM CONSTRUCTS

There are two constructs, category and relation, used to
describe a Sem-ODM. The categories and relations in Sem
ODM model tables and the foreign key relationship between
tables in relational databases, respectively. Categories are like
Entities in the Entity Relationship (ER) model, except that the
Allributes in the ER model are represented as relations in Sem
ODM. A Category can either be a Concrete Category or an
Abstract Category. Concrete Categories are categories like
String, Number, and Boolean, etc. Abstract Categories are
categories composed of abstract objects; an example of an
sbstract category is person or book. There can be binary
relations from an abstract category, which is called the Domain
of the relation, to another category, which is called the Range of
the relation, in a Semantic Schema. Relations from an abstract
category to a concrete category in Sem-ODM are called
attributes in ER model. Relations from an abstract category to
an abstract category are just like associations in 00 model. The
constructs and relations between the constructs of a Sem-ODM
can be illustrated in Figure 5.

--- -- 'II ' "!'
I ' ' ' ' : N.-rJWoc• Slrioa Rue• I

•llflllfllllf:NJMifb~r ollli'IH-tl-dtorot-kts:Sirlnt

~~~I ..a:ti,..,:Nu..J:Hr rrpl~#hM:SirHtg 
tMscnt~..st~p :N,.,Mr lltaX~tffJIII :Siriltt TYPE 

•IIM~:S/rint /HI'MIIIuJ.WJ/w:Sirlng 

Fig.m S. Subschema Representing Sem-ODM Meta-Schema 

With the help of relations in Sem-ODM, the nested structure of 
XML can be represented in a Semantic Schema. Sem-ODM 
also has the concept of Cardinality of relations, which can be 
used to capture the same concept in DTDs. There is no ordering 
concept in Sem-ODM. We would have to extend the relations in 
Sem-ODM with ordering to support this feature of XML. This 
is illustrated in the Relation category in the above figure in 
which an order attribute is added. In addition, an XML Type 
category is added as a Concrete Category in the above figure. 
This category is used to represent ANY Content in DTDs. 

4. STRUCTURE AND SEMANTIC MAPPING 

In order to store XML in Sem-ODB, we need to map the 
constructs of a DTD to their counterparts in a Semantic Schema. 
During the mapping process, we preserve the structure and 
semantic information defined in the DTD for future query 
translation and result construction. By doing structure mapping, 
the elements and attributes are mapped to categories ~d 
relations in Sem-ODB. Performing the semantic mappmg 
ensures that the mapping process is complete, i.e., all th~ 
semantic information such as cardinality, nullable, an 
reference is set in the Sem-ODB. 



4.1 Structure Mapping 
Three kinds of structure mapping are performed: element, 
relationship, and attribute. To make the algorithm easier to 
understand, we introduce the following naming conventions: 
(I) Each element E in the DTD is represented by its name (e.g. 

element "book" is represented by book). 
(2) The category, which corresponds to element E in the DTD 

is represented as E in the Semantic Schema.: (e.g. the 
category that's mapped from element "book" is 
represented as book,:). .,-

(3) Relations which are mapped from some attributes or 
elements E in the DTD are represented as ER in the 
corresponding Semantic Schema. 

In addition, for simplicity, we use the following notation to 
represent a relation r with domain category D, range R, 
cardinality c and totality t: r:D-7 R (c,t). 

4.1.1 Element Mapping An element of the DTD will be 
mapped to a category or inlined as an attribute of a category 
according to its content type and whether or not it is a child 
element. The following is the detailed description. 
(I) For every Element E of Sequence, EmptyContent, and 

Mixed type is mapped to a Category Ec in the Semantic 
Schema. For example, book in Figure I, which is a 
sequence element, is mapped to a category called book., in 
the semantic schema. 

(2) For every Element E of AnyContent type, 
a. If E has only one parent element P and the cardinality 

of E in P is not • or +, then E is mapped to a relation 
ER from the category Ep, which is the category 
corresponding to the element P in the Semantic 
Schema, to XML Type, i.e., ER: Ep -7 XML Type. 
For example, element addr is mapped to addr: 
author-7 XML Type. 

b. Otherwise, E is mapped to a Category Ec with a 
relation R from Ec to XML Type, i.e., R: 
Ec-7 XML Type 
For example, element test declared in <!ELEMENT 
test ANY> will be mapped to a category called test 
with relation data: test-7 XML Type. 

(3) Similar to (2), for every Element E of PCDATAElement 
type, 
a. If E has only one parent element P and the cardinality 

of E in P is not • or+, then E is mapped to a relation 
ER from the category Ep, which is the category 
corresponding to the element P in the Semantic 
Schema, to String, i.e., ER: Ep -?String. 
For example, element first is mapped to an attribute of 
category name (first: name-7String). 

b. Otherwise, E is mapped to Category Ec with a relation 
R from Ec to String, i.e., R: Ec-7String. 
For example, element title is shared by element article 
and monograph; therefore, it is mapped to a category 
called title with relation data: title-7 String. 

The idea behind (2) and (3) is if E is shared by many 
elements, or it may appear in its only parent more than 
once, it should be mapped to a category and let all the 
parents set up a relation with it. Otherwise, let it be an 
attribute of its parent category. 

(4) For each PCDATA, map it as a relation from the category 
corresponding to the mixed element to String. For 
example, the #PCDA T A in <! ELEMENT paragraph 
(#PCDATAI figure) •> will be mapped to data: 
paragraph-7String(m:m). 

453 

4.1.2 Relationship Mappi&lg Some important structure 
information in a DTD lies in the implicit relationships between 
elements and their sub-elements and between elements and their 
attributes. Unlike DTD to relational schema mapping, in which 
this kind of information is implicitly expressed by the key and 
foreign key relationship or table-column relationship, a 
semantic schema explicitly represents them as a relation. 

The mapping is described in the following. 
(I) If any of the abi>ve rules can be applied, then skip the 

following . For example, booktitle is a sub-element of 
element book. Since it's a PCDATAEiement, it is mapped 
as an attribute of category book according to rule (3) in 
section 4.1.1. The following two rules are not applicable. 

(2) Every sub-element E; of element E of Sequence type is 
mapped into a relation from E, to E;" where E, is the 
category corresponding to E and E;, is the category 
corresponding to E;. For example, the relationship between 
elements book and author is mapped as a relation called 
book_author (see Figure 6) 

(3) Similarly, every sub-element E; of element E of Mixed 
type is mapped into a relation from E, to E;,, where E, is 
the category corresponding to E and Eic is the category 
corresponding to E;. 

Note that in the above sections 4.1.1 and 4.1.2, if a relation is 
created in the Semantic Schema, its cardinality and totality have 
to be decided according to the rules in section 4.2.1. 

4.1.3 Attribute Mapping Attributes in DTDs are 
mapped to relations, whose domain is the category 
corresponding to the element that this attribute belongs to and 
whose range is a Concrete Category. The mapping rules are 
generalized as follows. 
(I) For<! ATTLIST E att CDATA>, where E is an element 

and att is its attribute of type CDA T A. Attribute att is 
mapped to a relation attR: Ec -7 String(m:l) (e.g. attribute 
name of element editor, see Figure 6). 

(2) For <! A TTLIST E att evall I eval2 I eval3 >, where E is 
an element and att is its attribute of type Enumerate. 
Attribute att is mapped to a relation att: Ec -7 
Enumerate(m: I). 

(3) For <! A TTLIST E att ID>, where E is an element and att 
is its attribute of type ID. Attribute att is mapped to a user 
defined oid of category Ec when we don't consider the 
document order of XML. However, if we want to consider 
that order, we have to map it to a relation att: Ec -7 String 
(m: I). (e.g. attribute id in element author, see Figure 6) 

(4) For<! A TTLIST E att IDREF>, where E is an element and 
att is its attribute of type IDREF. Attribute att is mapped 
to a relation att: Ec -7 E;d (m:l), where E;d is coresponding 
to the element that att is pointing to in the DTD. For 
example, attribute authoriD of element contactauthor is of 
IDREF type and is mapped to a relation between 
contactauthor and author, i.e., authoriD: contactauthor -7 
author (m: 1). Note that since IDREF(s) is untyped, the 
program could not tell which element that this IDREF 
attribute is pointing to. We have to explicitly set up the 
above relation. 

(5) For <! A TTLIST E att IDREFS>, where E is an element 
and att is its attribute of type IDREFS. Attribute att is 
mapped to a relation att: Ec -7 E;d (m:m), where Eid is 
coresponding to the Element that att is pointing to in the 
DTD. 

-----------------------------



Furthennore, if the default type of the attribute is #REQUIRED, 
the totality of the relation is total. 

4.2 Semantic Mapping 
4.2.1 Cardinality Constraints The cardinality of a sub

element in a DTD represents the occurrence of the sub-element 
within its parent element. To our knowledge, most known DTD
relational mapping algorithms either did not explicitly explain 
the mapping of cardinality or did so rather complicatedly as in 
[10]. It is rather easy in DTD ~ Sem-ODM mapping, since 
there is the cardinality concept, such as m:1, 1:m, m:m, 1:1, 
defined in the Sem-ODM. For only one and at least one 
semantics in a DTD, we use total concept to represent the 
semantics. 

The mapping of sub-elements cardinality is as follows: 
{I) Cardinality "only one" is mapped as a relation with m:1 , 

total (e.g. element last) 
(2) Cardinality? is mapped to m:l (e.g. element first in Figure 

1 has ? cardinality within its parent element name, thus it is 
mapped to first: name~String (m:1)} 

(3) Cardinality • is mapped to m:m except when there is a 
cycle between two elements that have the parent and child 
relationship and the cardinality in one of them is only one 
or at most one. In the latter case it is mapped to I :m. For 
example, suppose we have <!ELEMENT A (B*) > and 
<!ELEMENT B(A) > in a DTD. In this situation, we will 
have 

(4) 

m·J total)' 
B A 

l:m 

The reason that we map • to I :m in this case is as follows. 
When only one or at most one semantics appears, we 
would derive a conflict if we still mapped • to m:m. For 
instance, suppose we map the above DTD to A~B (m:m) 
and B~A (m:l, total), then by B~A (m:1), we derive 
B~A is 1:1, however A~B (m:m) tells us that it is m:l 
instead. An example shows this mapping in Figure I is 
between element editor and monograph (see Figure 6) 
Cadinality + is mapped to m: m (total) 

4.2.2 Inclusion constraints The IDREF and IDREFS in 
DTDs actually represent the foreign key relationship, which is a 
kind of inclusion constraint, in relational database systems. In 
Sem-ODB, we do not have this concept, but we can map this 
constraint to a relation that points to the category which has the 
ID attribute, as we explained earlier in section 4.1.3. This 
mapping is more accurate than key and foreign key mapping as 
seen in the relational model, because a key could be a 
composite key. However, in XML ID by itself uniquely defines 
an element. For example, the id of element author is of ID type, 
it is mapped to a uid of author, if we do not consider document 
order. The author!D in element contactauthor is of IDREF type. 
It is mapped to a relation which points to author. 

4.2.3 NULL and not NULL As discussed previously, 
Attributes in DTDs may have default options. We map the 
#REQUIRED and #IMPLIED concept to total or not total and 
#FIXED and #DEFAULT to default value in Sem-ODM. The 
mapping rules about the default options are generalized as 
follows: 
(I) Attribute A with #REQUIRED default option: the 

corresponding relation is total (i.e., not null) 
(2) Attribute A with #IMPLIED default option: the 

corresponding relation is nonnal (i.e., nullable) 

454 

(3) Attribute A with #FIXED default option: set the fixed 
value as default for this rllation in Sem-ODB 

(4) Attribute A with #DEFAULT default option: set default 
value for this relation in Sem-ODB 

4.2.4 Document Order and Element Order One 
important feature of XML is that it may be viewed as an 
ordered document, i.e., a document order exists among the 
elements of an XML document. In addition, there's an element 
order concept in XML, which is captured in the DTD/XML
Schema. XML documents can root at any element as long as the 
relationship between elements and sub-elements is kept valid. 
To our knowledge, most of the papers on XML mapping 
schemes either did not consider the ordering issue or simply 
mentioned that it is easy to enhance their scheme with ordering 
concept. However, in most DTD~relational schema mapping 
approaches, in order to keep such infonnation, at least two more 
columns need to be created in the relational tables to represent 
the parent-child relationship (element order) and ordering 
among tuples (document order) in each table representing an 
element, as in [II, 16]. In Sem-ODB, these concepts are much 
easier to capture. The element order is first kept in the 
ElementOrder Category in the meta-schema in Figure 3, and is 
later mapped as an attribute of each relation in Sem-ODM. As 
for the document order, since in Sem-ODB we can provide a 
uid to each abstract or binary object, it can be represented by the 
ordering of such uids, as long as we relax the mapping of 
attributes of!D type as mentioned in Section 4.1.3. 

Based on the above mapping rules, we can transfonn the DTD 
in Figure I into the Semantic Schema shown in Figure 6. Note 
that in Figure 6, the relations are enhanced with ordering which 
is denoted by an ordering number along with the relation name. 
And the default cardinality in Sem-ODM is m: I . 

book 
book title: String, ( I), IOial 

book_author (2), 
total 

author_name(l~ 

lOla I 

Figure 6. Semantic Schema Representation 
of the DTD Example 

Through the transfonnation, the structure and semantic 
infonnation of a DTD are more vividly represented in the 
Semantic Schema. Nested structures are split and distributed 
into categories and relations. Relationships between elements 
and sub-elements are expressed explicitly. ID and !DREF 
concepts are seamlessly integrated into Sem-ODM. Semantic 
infonnation such as cardinality and default value are mapped to 
corresponding concepts in Sem-ODM. We were able to easi~y 
capture complex semantic infonnation with the semantiC 
schema. 



S. RELATED WORK 

Many XML to relational mod~! mapping schemes have tx:en 
posed in recent research proJects [7, 16, 9, 10, II] or apphed 

~rocommercial products [ 4, I]. [7] viewed XML as an ordered 
:d labeled graph and derived relational ta~les according to the 
edges between nodes in the XML graph. !hiS approach d~es not 

ed a pre-existing DTD to help w1th the generation of 
~:lational tables. However, because we believe it is beneficial to 
have a DTD to describe XML documents, and many 
applications which use XML doc~ent as exchange format 
equire the presence of a DTD, our approach assumed the 

:xistence of DTDs for XML documents as did the approaches 
used in [16, 10]. However, [16, 10] generated relational tables 
according to the description of the DTD and the normalization 
requirement of the relational model. Our approach first captured 
the meta-schema of a DTD and a semantic schema, which is 
similar to the approaches used in [II , 9], and then performed 
the actual mapping and stored the mapping information in a 
Sem-ODB. [II] proposed a generic relational schema to store 
the structure information about any XML document so that 
relational data sources can be described as views over the 
generic schema. X-RAY in [9] introduced meta schemas for 
both DTD and relational schemas, defined the mapping between 
them and stored the mapping information for resolving schema 
heter~geneity . Most of work, except [10], only explained the 
mapping from a structural point of view, not the semantics of 
the mapping. 

Similar to that taken in [10], our approach described the 
semantic mapping as well as structural mapping in detail. 
However, since we are using a different and more powerful data 
model, Sem-ODM, the semantics can be more vividly and 
naturally represented in our approach. Our mapping is easier 
compared to the one in [I 0], since some semantic concepts of 
DTD can be found in Sem-ODM. We also provided a complete 
solution for handling document order and element order. In 
addition, by capturing the meta-schemas of both DTD and 
Semantic Schema and storing them as well as mapping 
information in Sem-ODB, the autonomy of both data sources is 
preserved. 

6. CONCLUSIONS AND FUTURE WORK 

In this paper, we explained in detail a unique and complete 
mapping scheme to map a DTD to a Semantic Schema in Sem
ODM. The mapping scheme is complete in the sense that both 
structure and semantic information is mapped. The mapping is 
natural because Sem-ODM has very similar concepts to XML. 

As an extension to the current work, we plan to implement the 
above mapping scheme to further evaluate its efficiency in 
generating the meta-schema, storing mapping information, and 
loading XML document into Sem-ODB. In addition, we are 
interested in translating XML queries into SQL and evaluating 
the mapping through query translation and optimization. 

7. REFERENCES: 

[I] Sandeepan Banerjee, Vishu Krishnamurthy, Muralidhar 
Krishnaprasad, Ravi Murthy, "Oracle8i - The XML 
Enabled Data Management System", ICDE 2000. 

[2] V. Christophides, S. Abiteboul, S. Cluet, M. Scholl, "From 
Structured Documents to Novel Query Facilities", 
Proceedings of the 1994 ACM SIGMOD International 
Conference on Management of Data, Minneapolis, 
Minnesota, May, 1994. 

455 

[3] Naphtali Rishe," TERRAFLY: A High-Performance Web
based Digital Library System for Spatial Data Access", 
ICDE Demo Session, 2001-

[4] Josephine Cheng, Jane Xu, "XML and DB2", ICDE 2000. 
[5] A. Deutsch, M. Fern' ndez, and D. Suciu, "Storing 

Semistructured Data with STORED", Proceedings of the 
ACM SIGMOD International Conference on Management 
ofData, Philadelphia, Pennsylvania, USA, June 1999. 

[6] J. Bosak, T. Bray, et. al., "W3C XML Specification 
DTD",http://www.w3 .org/XMU 1998/06/xmlspec
report.htm I . 

[7] D. Florescu, D.""'Kossmann, "Storing and Querying XML 
Data Using an RDBMS", IEEE Data Engi-neering 
Bulletin, Special Issue on XML, Vol. 22, No. 3, 
September, 1999. 

[8] R. Goldman, J. McHugh, and J. Widom, "From 
Semistructured Data to XML: Migrating the Lore Data 
Model and Query Language", Proceedings of the 2nd 
International Workshop on the Web and Databases 
(WebDB '99), Philadelphia, Pennsylvania, June 1999. 

[9] Gerti Kappel, Elisabeth Kapsammer, S. Rausch-Schott, 
Werner Retschitzegger, "X-Ray -Towards Integrating 
XML and Relational Database Systems", 19th 
International Conference on Conceptual Modeling, Salt 
Lake City, Utah, USA, October, 2000. 

[10] Dongwon Lee, Wesley W. Chu, "Constraints-preseving 
Transformation from XML Document Type Definition to 
Relational Schema", Proc. 19th Int'l Conf. on Conceptual 
Modeling (ER), Salt Lake City, Utah, October, 2000. 

[II] Joana Manolescu, Daniela Florescu, and Donald 
Kossmann, "Pushing XML queries inside relational 
databases", Tech. Report No. 4112, INRIA. 

[12] Napthali Rishe, Jun Yuan, Rukshan Athauda, et al, 
"Sem Wrap: A semantic wrapper over relational databases, 
with substantial size reduction of user's SQL queries", 
International Conference on Extending Database 
Technology (EDBT}, Konstanz ,Germany, March 27-
3I,2000. 

[13] Naphtali Rishe, "Database Design: The Semantic 
Modeling Approach", McGraw-Hill, 1992. 

[14] Rishe N., Sun W., Barton D., Deng Y., Orji C., 
Alexopoulos M., Loureiro L., Ordonez C., Sanchez M., 
Shaposhnikov A., "Florida International University High 
Performance Database Research Center". In SIGMOD 
Record, 24 (1995}, 3, pp. 71-76. 

[15] Naphtali Rishe, Jun Yuan, Rukshan Athauda, et al., 
"SemanticAccess: Semantic Interface for Querying 
Databases", Proceeding of the VLDB conf., Cairo, Egypt, 
2000. 

[16]Jayavel Shanmugasundaram, et al, "Relational Databases 
for Querying XML Documents: Limitations and 
Opportunities", Proceedings of the 25th Int. Conf. On Very 
Large Data Bases (VLDB), Edinburgh, Scotland, UK. 
1999. 

[17] Tamino XML Database Home Page, 
http://www.software ag.com/tamino/. 

[IS] The World Wide Web Consortium, http://www.w3.org. 
[19] Excelon Home Page, http://www.exceloncoro.com/. 
[20] "Extensible Markup Language (XML) 1.0 (Second 

Edition)", W3C Recommendation, October 2000, 
http://www.w3.org/TR/2000/REC-xml-2000I 006, work in 
progress. 

[21] "XML Schema Part 0: Primer", W3C Recommendation, 
May 2 200I, http://www.w3.org/TR/xmlschema-O/. 


