
World Multi:onferenCP on 
Sy~1£s.Cy~netics 

and lnfoltttatrs 

July 22-25, 2001 
Orlando, Florida, USA 

PROCEEDINEiS 
Volume I 

Information Systems Development 

Organized by IllS 
International 
Institute of 
Informatics 
and Systemics 

Member of the International 
Federation of Systems Research 

IFSR 
Co-organized by IEEE Computer Society 

(Chapter: Venezuela) 

EDITORS 
N agi b Callaos 

Ivan Nunes da Silva 
Jorge Molero 



MedFerret: Client-Based Semantic Query Integrator• 

Naphtali D. RISHE, Oksana DYGANOV A, Andriy SELIVONENKO, 
Maxim CHEKMASOV, Alejandro MENDOZA 

High Performance Database Research Center 
NASA Regional Applications Center 

Florida International University 
Miami, FL 33199, USA 

ABSTRACT 

MedFerret is a semantic query merging application 
focused on dynamic data retrieval and on merging data 
available from medical sites on the Internet. MedFerret's 
system architecture is based on a heterogeneous database 
approach that utilizes the Semantic Object-oriented Data 
Model. The system is implemented as a Java applet on 
the client's computer and is, in fact, a multi-threaded Java 
web server that runs search queries against medical sites 
on the Internet and that returns results to several users 
simultaneously. 

Keywords: heterogeneous databases, semantic schema, 
dynamic data retrieval, medical databases, Internet 
searching 

1. INTRODUCTION 

As no search service can be universally efficient or 
complete, the appearance of a new type of web-oriented 
software, often called meta-searchers has been triggered. 
A meta-searcher is an information retrieval system that is 
based on several web data sources distributed across the 
Internet. The web data sources are often highly 
autonomous, but provide similar information to the end 
user. An individual database is usually maintained behind 
the front page of the web site presented to the user. A 
web application integrating information from several web 
sites has to deal with the heterogeneity caused by the 
different data models and different query interfaces 
implemented in these underlying databases. We also need 
to take into account that some of web data sources have 
no data models at all but only a loose mapping between a 
web page form, e.g. a post-data input form, and html 
output. 

In order to construct a web application that overcomes 
these obstacles, a global data model is needed to integrate 
the semantics of the data sources available via the 
WWW. One of the models is a heterogeneous database 
(HDB) approach that is under development at the High 
Performance Database Research Center (HPDRC). [1] 

Under this HDB system, users can access a number of 
databases ~th the exte~ded system as if there were only 
one semantic database smce we use the Semantic Object
oriented Data Model to construct a global data schema. 
The query interfaces of the HDB system are exactly the 
same as those provided by the Semantic Object-Oriented 
Database that is under development at HPDRC, see [2] 
for more details. 

MedFerret is an example of an Internet application that 
illustrates some approaches to HDB system 
implementation in the real world. It is a fully functional 
in prototype mode and can be visited on the web. [3] 

2. GENERAL APPROACH 

From the user's perspective, MedFerret is a system that 
consolidates medical information the user is interested in 
into one form convenient for browsing and review. It is 
easy to use and has a number of advantages when 
compared to a conventional search engine. The 
conventional search engine allows· the user to pose a 
simple matching query. It then returns a list of links to 
static web pages, which contain the words entered by the 
user in the search box. In many cases the link is 
accompanied by a portion of the source HTML page, 
which gives the user a flavor of the information she can 
get by visiting the link. On a 'similar request, MedFerret 
returns medical information that is dynamically retrieved 
from the web data sources' databases. The data received 
from the databases is usually better structured, well 
maintained and up-to-date. Eventually this data could 
contain complex data elements like images or other 
binary objects that make the resulting set more 
informative to the user. 

From the HDB system perspective, we can look at 
MedFerret as follows. Consider a set of the Internet web 
sites, which are directly or indirectly related to medicine. 
We can call this set of web sites the 'medical Internet' or 
the 'Internet sub-world related to medical issues.' Of 
course, the medical Internet is not sufficiently structured, 
well-organized, or maintained to be considered as one 

• This research was supported in part by NASA (under grants NAG5-9478, NAGW-4080, NAG5-5095, NAS5-97222, and NAGS-6830) 
and NSF (CDA-9711582, IRI-9409661, HRD-9707076, and ANI-9876409). 

66 



lar~e medic~ ?atabase. ~e intend to focus on a set ?f 
web sites Witlnn the med1cal Internet chosen by certam 
criteria like medical topics covered, volumes of medical 
data, quality of medical reviews, etc. 

We thoroughly study tlle semantics of each chosen web 
site. By doing so, we get a formal description of all tlJe 
data elements available from the web site and tlJe 
relationships between tlJe data elements. This formal 
description can be expressed in a semantic schema [2], 
which we will call a semantic schema of the web data 
source. We describe tlJe semantics of tlJe web site in 
terms of the HDB system and tlJe HDB system can tlJen 
treat a set of medical web sites as a collection of 
heterogeneous distributed data sources. 

The HDB system supporting MedFerret is based on a set 
of medical web sites. These data sources are well 
structured and organized and can be accessed by tlJe user 
through the formal query mechanisms of tlJe HDB 
system. In our current prototype version, however, 
MedFerret does not exploit all tlJe functions of tlJe HDB 
system. For example, tlJe user is not allowed to send 
arbitrary ad-hoc queries to the' data sources based on their 
semantic schemas. At tllis time tlJe user is only allowed to 
enter search keywords to get tlle desired results. 

3. MEDFERRET FEATURES 

We are now ready to review the features of Medferret. 
When the user visits tlJe MedFerret web site, tlJe system 
tries to establish a web service on tlJe user's computer. 
The web service is implemented as a Java applet. Before 
sending the Java applet to the user's side, the MedFerret 
server needs to check the user's autllorization to run tlJe 
web service. This is done by checking a username and 
password entered by tlJe user. If tlJe autlJorization process 
fails, the system is unable to establish the web service on 
the user's side. The MedFerret system also checks tlJe 
current browser settings on tlle user's computer. The. 
permissions should be set to allow a Java applet to be 
executed on tlJe user's computer. If tlJe browser security 
settings related to Java applets are not set appropriately, 
the MedFerret system is unable to start tlJe web service. 

When both steps of authorization and Java applet launch 
are successful, tlle web service capable of executing 
queries against the medical web sites is established on the 
user's computer. The web service will be active and 
listening for requests until the user closes the browser or 
leaves the MedFerret web page. 

An important detail of this technique is that when tlJe web 
service is active on the user's computer, it can be 
accessed by oilier external users to receive MedFerret 
information retrieval services. Applications are also able 
to use and retrieve medical data through the MedFerret 
Web service. A typical example is when tlJe user sends a 

67 

request from Microsoft Excel to tlle MedFerret web 
service and the results are automatically downloaded into 
the Excel spreadsheet. Another example is when the 
user's program sends a request through a URL to tlle web 
service, which executes the query and sends tlJe results 
back to tlJe user's program. Thus tlJe MedFerret web 
service on tlJe client side emulates tlJe MedFerret server 
on tlJe user's computer. 

The search capabilities are limited in tlle prototype 
version of MedFerret. Currently tlJe user or her 
applications are able to submit only a set of keywords and 
retrieve data in a standard format. In tlJe next versions, a 
number of additional parameters will be introduced to tlJe 
search function, giving tlJe user more freedom to specify 
queries to tlJe medical web sites. 

When tlJe input parameters (keywords in tlJe first version) 
are supplied, tlJe MedFerret web service invokes a set of 
agent programs (agents) tlJat collect data from tlJe 
Internet. The agents are run in parallel to increase tlJe 
performance of tlJe system. Each agent has knowledge of 
tlJe semantic schema of tlJe data elements and tlJeir 
relationships for one particular medical web site. Thus 
tlJe number of agents launched equals tlJe number of 
medical databases queried via tlJe Internet. 

The agents return data to tlJe MedFerret web service on 
tlJe user's computer, which tlJen merges tlJese datasets 
into one large dataset and returns tlJe resulting dataset to 
tlJe user or her application. At present, tlJe web sites 
chosen as data providers for tlJe MedFerret service return 
data in a similar format tlJat allows simple merging of tlJe 
results. Witll an increased number of medical data 
sources, tlJe results will become more diverse and tlle 
merging capability of the web service will need to be 
adjusted accordingly. 

Diagram 1 portrays a case study of tlJe described 
processes. 

4. REQUESTS AND DATA FLOW IN THE 
MEDFERRET SYSTEM 

Several key elements are involved in tlJe processing of a 
user's request by tlle MedFerret system: · 

• Browser: The browser is installed and running to 
access tlJe MedFerret web site. 

• Web Service: The MedFerret web service is 
delivered and launched in tlJe user's browser as a 
Java applet upon successful autlJorization and 
witlJ appropriate Java applet support from tlJe 
browser. 

• Agents: The agents are run to access medical 
web sites, to send tlJe requests to tlJe web sites' 
medical databases, and to deliver tlJe results. 



Diagram!: Med.Ferret Use Case Diagram 

--
---:-elude::>::> .c::.c::1n 

User 

• External Web Server CGI: This program usually 
serves as an intermediary between user requests 
and the medical database on each data source 
web site. 

• Database: Each medical database is maintained 
and supported by an information service 
provider. 

The process of sending queries and receiving results can 
be described as follows. The user types in and sends a set 
of keywords to the Browser, which will be used as search 
criteria. The Browser transforms the user's request into a 
URL and sends the URL to the Web Service. Requests to 
the Web Service may also come directly from external 
users or processes in URL form, thus avoiding the 
Browser. The Web Service launches a set of Agents. 
Each Agent adjusts the user's query semantics to the 
needs of its particular web site and sends requests to the 
External Web Server CGI of its assigned web site in URI.. 
form. The External Web server CGI transforms the input 
URL into a query that is sent to its site's Database for 
execution. The result returned by the database is often 
post-processed by the External Web server CGI, which 
formats the result into HTML and then returns the HTML 
page to the Agent, which, in tum, parses the HTML and 
adjusts its semantics to fit into the aggregated result that 
is to be returned to the user. It then returns the adjusted 
result to the Web Service, which compiles the aggregate 
result from all of the results returned by the Agents. 
Finally, the Web Service sorts the aggregated result set, 
formats it into HTML, and streams it back to the Browser 
or directly to external the user as HTML. Diagram 2 

68 

External User or Process 

depicts the Med.Ferret collaboration process. 

5. IMPLEMENTATION AND RESULTS 

The prototype version of Med.Ferret was created using a 
Java 1.1 compatible applet and JavaScript. When a user 
comes to the MedFerret.com site, the user's browser loads 
an HTML frameset. This frameset consists of an upper 
narrow frame and a lower frame. JavaScript in the upper 
frame detects the version and brand of browser (Netscape 
or Microsoft IE) and loads the appropriate Java archive. 
The lower frame shows a "Please wait while application 
loading" message while this process takes place. When 
the Java archive is loaded into the upper frame, the 
browser verifies the archive's integrity and checks the 
validity of the digital signature. Inside the Java archive 
there are statements that request additional security 
clearances: "Writing data from a network connection," 
"Reading data from a network connection," and 
"Contacting with other computer over a network." The 
user is asked to grant these clearances based on the fact 
that the digital certificate indicates that a valid digital 
certificate, which was granted to Florida International 
University, was used to sign this application. 

If the user does not grant such privileges, the MedFerret 
applet cannot connect to external web sites and cannot 
execute queries against them. If such privileges are 
granted, the Java applet starts its execution and calls 
JavaScript functions inside the HTML frameset via 
LiveConnect technology. This JavaScript function 

_________________ J 



Diagram2: MedFerret Collaboration Diagram 

1 : sendKeywordQuery() -+ 

9:streamingHtml(page) 

User • 2:sendUr1Query() 

:Web Service 

.._ 1.1 :sendUriOuery() A 
9:streamingHtrnl(page) _.. ) 

t 8.1 :mergeSort(result) 
8.2:htm1Fonnating() 

• 3:1aunchAgents() 

t 

• 4.1 :adjustQuerySemantics() 

• 4.2:sendUriQuery() 

7:retum(adjustedResult) 

t 6.2:htm1Parsing() 
6.3:semanticsAdjustrnent(result) 

External User or Process 

t 6.1 :retumHtrnl(page) 

• 5.1 :rowsetPostprocessing() 

replaces the message "Please wait while application 
loading" in the lower frame with a MedFerret starting 
~uery page. This page has an HTML form for the user to 
type in a keyword query, as well as keyword query help 
md examples of query usage. At this time, MedFerret is 
fully functional · and ready to accept user's queries. 
MedFerret intercepts TCP port 7000 on the user's 
;omputer and waits for queries, which should be sent via 
1ttp protocol. When a user types a keyword query in the 
ower frame and presses the "Go" button, the target of 
TI'ML frame is http://localhost:7000/?search. The 
)rowser then sends out a query against the Web server, 
Nhich is located on IP address localhost and on the port 
7000. Assume that user had typed query: 

Nomen and "chest pain" 

l'he query will be transformed by the browser into the 
JRL: 

•ttJ>:tnocalhost:7000/?search=women+and+%22chest+pain%22 

IVhere spaces were replaced by + signs and quotes by 
f022 expressions according to URL-encoding convention. 
11edFerret is a mutli-threaded Java Web Server, which 

69 

t 5.5:formattingHtrnl() 

launches a query thread on each http request. There could 
be more than one simultaneously running search query, 
since the user can open more than one browser window. 
The user can also launch search queries from other 
applications, such as Microsoft Excel or Microsoft Word. 
Queries can also be launched from other computers. In 
such cases, the URL 
http:/nocalhost:7000/?search=keywords. .. should be 
replaced with the fully qualified domain name or IP 
address of the computer that is presently running an 
instance of MedFerret: 

http://user.domain.com:7000/?search- keywords... or 
http:/118.29.1.34:7000/?search-keywords ... 

MedFerret could thus effectively support external 
queries. 

MedFerret is built using a "client-server" model and pure 
Java. The uniqueness of the MedFerret approach is the 
fact that both the client and the server could reside in the 
same browser. The following are some reasons why this 
approach is beneficial to the MedFerret application: 



• MedFerret can serve queries that come from the 
local computer and from external computers. 

• MedFerret can serve queries that come froin the 
browser and from other applications (Word, 
Excel, database applications, etc.). 

• MedFerret uses native browser code to render 
result text on the screen. In most cases this is 
more effective, precise and readable than such 
text rendered by Java. If MedFerret were to 
write textual output by means of a Java graphic 
library, its rendering speed and quality would 
usually be significantly worse than that of the 
browser using its own code. 

MedFerret supports a direct URL invocation mode even 
if there is no running instance of MedFerret in any 
browser on the user's computer. This would be beneficial 
if MedFerret needs to be spawned from another web site 
with a pre-specified query. MedFerret could also launch a 
query instantly when invoked from a browser's 
bookmark. 

6. CONCLUSION 

We presented MedFerret as a semantic query merging 
application focused on dynamic data retrieval from the 
medical Internet. MedFerret's system architecture is 
based on an HDB approach. The same approach can be 
used to construct web applications related to other subject 
areas. For each potential application, the semantics of the 
corresponding web data sources should be captured and 
implemented in the agents. 

The current implementation of the MedFerret system can 
be enriched by new functions. Additional means for 
specifying more complex queries to the medical Internet 
may be provided to user. The semantic schema of the 
medical Internet visited by the agents may be displayed. 
Other medical web sites may be studied and the 
corresponding agents implemented to broaden the search 
for information. 

7. REFERENCES 

[I] R.Athauda Integration and Querying of 
Heterogeneous, Autonomous, Distributed Database 
Systems, PhD dissertation, Florida International 
University, Miami, July 5, 2000. 

[2) N.Rishe Database Design: The Semantic Modeling 
Approach. McGraw-Hili,Inc. N.Y., N.Y, 1992. 

[3) Simultaneously Search Many Medical Databases: 
http://www.MedFerret.com 

70 



980-07-7541-2 

'Tl 


