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Abstract: The main objective of a Query Distribution Algorithm is to find efficient ways to 
evaluate global queries.  In traditional distributed database systems based on proprietary WAN 
infrastructures, efficiency of query processing is typically measured by query response time: the 
time it takes to finish a query.  The monetary cost of network usage is not explicitly considered in 
the cost model since the overall dollar cost of maintaining the proprietary network is a fixed 
figure.  This has placed the focus on how to reduce necessary data transfer across the network as 
much as possible for each query (and thus reduce transfer time), in order to maximize the 
effective use of the available network bandwidth.  The adoption of intelligent networks in a 
distributed database system reveals two fundamental changes from a traditional one based on 
proprietary networks.  First, the connections among the distributed sites are dynamic rather than 
static.  In other words, the network links are established (through call setup) only when needed 
and the bandwidth can be allocated/de-allocated on-demand.  Second, the dollar cost of the 
connections is charged on a per-connection basis.  These new factors make the direct adoption 
of traditional distributed query processing and optimization techniques unsuitable as they do not 
consider network dollar cost (which can vary between any two sites) and query response time in 
an integral manner. This paper presents a Query Distribution Algorithm that takes these factors 
into consideration. 
 
KEYWORDS: Distributed Databases, Intelligent Networks, Query Distribution 
 
 
INTRODUCTION 
 
The problem of query processing and optimization in a distributed database environment has 
attracted much attention from the database research community, and numerous publications have 
been devoted to this subject.  The most expensive database operation is the join operation. 
Considerable research effort has been applied to minimize the cost of join queries.  A common 
technique to reduce the communication cost in a distributed join is to use semi-join.  The 



 

 

semijoin strategy was justified by the assumption that network transmission cost is the dominant 
component in overall query processing cost.   
 
There have been many theoretical studies in database integration. [1], [2], [3], and a number of 
prototype systems such as Information Manifold [4], Multibase [5], MRDSM [6], Pegasus [7], 
Carnot [8], SIMS [9], TSIMMIS [10,11], and SEMHDB [13,14] each represent a different 
methodology. One common assumption in the previous research work is that the 
‘‘communication cost rates are constant and equal to transmission rate’’ [12] and thus the 
monetary cost of network usage is usually not explicitly considered.  This greatly simplifies the 
problem of distributed query optimization as there is only one optimization metric: time.  This 
assumption and therefore the various techniques developed based on it do not apply to our 
proposed distributed database environment using intelligent networks.  First, it is clear that 
constant inter-node bandwidth cannot be assumed in networks made up of, for example, ISDN 
links, where a varying number of ISDN links may be established between two nodes.  Second, 
with ISDN being charged based on usage, we now have two objectives for minimization: query 
response time and ISDN cost (in real dollars).  Our proposed Query Distribution Algorithm 
(QDA) aims to close this gap and advance the query processing and optimization technologies to 
the new horizon of intelligent networks. 
 
 
1. SYSTEM OVERVIEW 
 
Our research is based on a heterogeneous distributed database system interconnected via 
an ISDN network. The techniques are applicable to other intelligent network topologies. 
We adopt the concentrated management mode. AMIP, the Application Management 
Interface Program, is the concentrated manager server of whole system. LIP, the Local 
Interface Program, is the client program offering a user interface. The heterogeneous 
DBMS at each local site communicates with AMIP and LIP through ODBC. Figure 1.1 
depicts the system’s physical architecture. Further details on both AMIP and LIP can be 
found in [15]. 
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Fig 1.1 - Physical Architecture of QDA 
 

 
The user queries the global schema using standard SQL statements. To reduce 
communication cost, the SQL parser module resides in AMIP. LIP only sends the user’s 
input query to AMIP. It is up to AMIP to parse the queries based on SQL syntax, 
generating a query tree. If the syntax generates a parser error, AMIP will notify LIP to 
ask the user to check the query syntax and reenter the query. AMIP then produces an 



 

 

execution plan for the query, based on the global schema. This procedure is the focus of 
this paper. AMIP then executes the EP, transferring the resulting table to a dedicated LIP 
site if necessary and notifies the originating LIP to display it. According to the execution 
plan, the coordinator module will control LIPs to execute sub-queries and synchronize 
the data transfer from LIP to LIP. This query processing model is depicted in Figure 1.2. 
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Fig1.2 - Query processing  
 
 
2. QUERY EXECUTION PLAN 
 
A query execution plan is a sequence of operations that retrieves data from databases and 
composes the answer set for a query.  In our distributed database system, which provides access 
to heterogeneous data sources, an execution plan is a sequence of mixed sub-query executions 
and table transfer operations.  A sub-query is a query that is to be executed against a certain data 
source at a certain LIP site; a table transfer operation sends a table from one LIP site to another.   
The goal of the Query Distribution Algorithm is to construct a cost-effective execution plan for a 
distributed query.  A widely adopted rule of thumb when constructing an execution plan is to 
perform selections and projections as early as possible.  This is usually referred to as the “push-
down” strategy for selections and projections.  Reflected in our system, we should perform the 
query’s selections and projections present for the involved tables at their local sites before 
sending them over the network for more processing.  The rationale behind this is to reduce the 
size of the tables in order to save communication cost. 
 
We now look into the issues pertinent to finding a cost-effective execution plan for a query.  We 
divide the discussion into two types of queries: (1) selection queries - which access only one 
table, and (2) join queries - which combine tuples from more than one table.  For a selection 
query, the selection must be performed at the local site first (according to the push down rule).  
The only communication cost incurred is for sending the restricted table to the destination site 
where the result of the query is to be placed.  To minimize the cost, we need to find the least-cost 
ISDN call path to transfer the data.  We maintain an up-to-date graph of the network topology 



 

 

and potential network topology with costs for each link. The problem of finding the least-cost 
path can be formulated as the classic “Shortest Path Problem” for which an efficient algorithm is 
well known.  In addition to minimizing communication cost for selection queries, the shortest 
path algorithm is also useful in constructing execution plans of low communication costs for join 
queries, which will be discussed next. 
 
The execution plan for a distributed join query comprises a sequence of two-way (2-way) joins, 
each of which joins two tables from different sites.  Several decisions need to be made to select 
appropriate strategies while constructing the execution plan.   
• join method:  Two join methods, pure join and semi-join, are widely adopted in traditional 

distributed database systems. A pure join between tables A and B is performed by sending 
one of the tables (subject to restriction by selections and projections) to the other site for a 
regular join.  We use A ||X| B to denote a pure join where B is the table being sent. Notation A 
|X|| B can be understood similarly.  A semi-join, denoted A |X B, performs the following 
steps sequentially:  (1) send A's join column(s) to B, (2) restrict B by selecting only those 
tuples whose join attribute values have a match in the join columns received from A, (3) send 
the restricted table of B back to A's site and perform a regular join with A.  Semi-join A |x B 
requires less data transferred than a pure join when the size of the projected join column(s) of 
A consists of only a small portion of the total data transferred and table B is highly restricted 
by A's join column(s).    

• join order: When joining two tables (either by pure join or semi-join), there are two 
directions to perform the join (A ||X| B or A |X|| B, A |X B or A X| B).  When joining more 
than two tables, the order of performing the individual 2-way joins also has an impact on the 
final communication cost.  For example, to perform a three-way join (A join B join C), we 
can do either ((A join B) join C) or (A join (B join C)), with each two-way join subject to the 
options of pure join or semi-join. 

• data transfer paths:  There could be multiple paths to transfer a table from one site to 
another.  The least expensive one must be sought in order to save communication cost.  Note 
that the least cost path between two sites need not to be the direct connection (namely the 
edge connecting the two nodes).  It could be an indirect path which travels through other 
node(s) to relay the data (namely, a path that consists of more than one edge). For example, if 
a semi-join A |x B is to be performed, the least cost paths to send data from A to B and from B 
to A must be found.  And the paths can go through a third site C. 

• assembly sites: Assembly sites are the places where the intermediate or final query results are 
assembled.  Some algorithms only allow one assembly site, i.e., the destination site, and defer 
the assembly until the last stage.  In those strategies, no intermediate join results, except for 
semi-join restricted tables, are allowed to be generated. Some allow more flexible choices on 
the sites to place intermediate join tables.  

 
Given all the options in constructing execution plans, the number of possible execution plans for 
a join query increases exponentially with the number of involved tables.  Thus, it is cost-
prohibitive to perform an enumerated search on the entire space of execution plans to find the 
optimal one.  In the next section, we describe an algorithm that finds an efficient execution plan 
from a selected subset of the search space.  
 
 



 

 

3. QUERY DISTRIBUTION ALGORITHM (QDA) 
 
3.1 Description 
 
QDA is the kernel part of the AMIP. As shown in Figure 3.1, it consists of two parts: pre-order 
traverse and post-order traverse. The former receives the SQL objects (a data structure of query 
trees) produced by the AMIP’s SQL parser, which processes SQL syntax, checks it, and 
produces SQL objects. Then pre-order traverse processes the query tree, makes a global semantic 
check of each table, does some preparation work such as assigning each source table a global 
exclusive internal table name and processing horizontally fragmented tables. We call this 
procedure “pre-order traverse query tree” or simply “pre-order traverse” because it traverses the 
query tree from root to leaves. The second step is post-order traverse, which accepts the result of 
pre-order traverse as input: a modified query tree and a global table schema object. Post-order 
traverse generates a distributed query Execution Plan (EP) and executes it by sending the 
command messages to LIP one by one to control and complete the query process. We call this 
procedure “post-order traverse query tree” or simply “post-order traverse” because it traverses 
the query tree from leaves to root. 
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Fig 3.1 - QDA Procedure 
 

 
3.2 QDA Algorithm 
 
The QDA is the central module of the distributed system. The main task of QDA is processing 
complicated join queries. QDA decomposes chain queries into sub-queries according to least 
weight cost of communication cost and response time. Join decomposition adopts LPT (Linear 
Processing Tree) or Bushy Tree. The search space complexity of the former is O(n^3) and the 
latter is O(n^5) (where n is number of tables in the join). The dynamic channel allocation of 
ISDN is also considered in QDA as an important parameter in the shortest path search. To 
compress the search space and decrease the complexity of QDA processing, we adopt LPT 
search, and many heuristic rules are also introduced. The dynamic channel allocation of ISDN is 
considered as an important parameter in the shortest path search used by QDA. Last, but not 
least, the optimizing object function is decided by a weighted total of communication cost and 
response time. This weighted cost offers users a simple way to optimize the query processing to 
the user’s preference. 
 
When AMIP receives a query statement from LIP, it first calls upon its SQL parser to analyze the 
query statement and generate a query tree. The QDA process at the AMIP module performs three 
steps: 

A. Pre-Order traverse the query tree and perform four tasks: 
1. For each node in the query tree, generate the corresponding result table schema and 

insert it into EPGblSchema. (EPGblSchema records the schema of all tables 
included in a SQL query, depending on a special thread.) 



 

 

2. For each SELECT node of the query tree, perform a semantic check on the tables and 
their related attributes according to the information stored in the knowledge base. 

3. For each SELECT node of the query tree, if there is an OR operator in the WHERE 
list, convert OR to UNION ALL and modify the query tree accordingly. 

4. For each table in the FROM list of a SELECT node, generate the corresponding 
table and insert its schema into EPGblSchema. 

B. Post-Order traverse the query tree and perform nine tasks: 
1. For each UNION, UNION ALL, and BRACKET node of the query tree, generate 

the result table according to the EPGblSchema. 
2. For each local query of a SELECT node, process the query locally then transfer the 

results to the destination site. 
3. For each distributed query of a SELECT node, shrink each table in the FROM list by 

executing another query that is relatively simpler and that is only related to the local 
table itself and the projections. 

4. For the tables generated in step 3, produce new SELECT nodes with only 
GlobalName tables. 

5. From the new SELECT nodes, generate a new Join Graph. 
6. From the new Join Graph, call the QDA kernel algorithm and generate a new 

Execution Plan (EP). 
7. For the new EP, call EPInterpreter to execute the EP and produce the resultant table 

on the destination site. 
8. With the resultant table and the queries of the original SELECT node, make a new 

query with all operations at the local site. 
9. Evaluate the new local query, generate the final result table, and insert the result 

table’s schema into EPGblSchema. 
C. After the Post-Order traverse, we can produce the final result table with the query tree 

and EPGblSchema. We then delete all temporary tables on each local site. 
 
The following provides further detail on how an Execution Plan is generated from a Join Graph. 
 
For optimization, a Shrink Table procedure is introduced to do some simple condition query and 
projection operations to minimize the size of tables to be joined. Meanwhile some accessory 
work is done for the upcoming processing of the distributed join query. With the pre-processed 
simplified internal table produced above, we can focus on processing the join operation 
(including Cartesian product) and producing a Join Graph, each node of which indicates the 
internal tables taking part in join operation and each edges of which indicate join relations 
between two tables. 
 
The next step is to produce a linear tree that can be turned into an execution plan. We can get a 
great number of linear trees from a Join Graph. If we consider the Cartesian product as a join 
relation between two vertices of the Join Graph, the number of linear trees produced is 
C(n,2)*(n-2)!=n!/2. When n is not a small number, the search space is very large. To compress 
the search space, we use some heuristic rules, which are described below: 

• Select the minimal size table as the first table in Linear Tree. 
• The priority of join is greater than Cartesian product. 
• When there exists more than one join relation table (Adjacent Vertex list has more than 

one element) or Cartesian product table, select the table that has minimal size. 
 
From a Linear Tree we get to know the order of tables in a join sequence and the operations 
between two tables: join( |X| ) or Cartesian product( X ). Now we have to decide the join method 



 

 

(semi-join or pure join) and the result table location in each join operation step. Since the search 
space is still very large (2^(n-1) if there are n source tables and we do not consider the join 
method), we must introduce some heuristic rules to optimize the whole search process. The first 
rule is called destination pruning, and the other is called of k-stage decision.  
 
The destination pruning technique is a pre-processing step toward the production of an execution 
plan. The pruning technique is based on the fact that in each join step we can decide the result 
table location immediately if the location of one of the operand table is equivalent to the 
destination site. Another aspect is that we also do not have to search the intermediate result table 
location, since we always put the intermediate table on the destination site.  
 
K-stage decision is introduced to offer users the option to limit the depth of the binary search tree 
according to practical conditions, such as computer’s processing ability or a user’s need for 
optimization accuracy, to compress the searching space from 2^(n-1) to 2^k. When variable 
parameter k (k<n) is set, the searching space is compressed to 2^k. At the end of the kth-stage, we 
can get a partial optimal conclusion to decide the intermediate table location and join method of 
each join step in the stage. When k>=n-1 we scan the whole searching space and can acquire the 
optimal EP. 
 
The introduction of the k-stage decision method compresses the search space greatly when n is 
not a small number. But under a multi-query concurrent environment the search space can still be 
excessive and very difficult to compute even if n is not too large. In practice we adopt the “k=1 
local optimal” rule to achieve the trade-off. When processing one distributed query we have to 
predict the variation of the ISDN Network Topology Graph (NTG) to get the k-stage optimal 
cost. When there exist multiple concurrent distributed query requests, a simple solution is to set 
the current real NTG as the reference NTG and to not generate any predicted NTG to estimate 
local optimal cost. To acquire a k-stage optimal cost with concurrent query requests, we must 
adopt a dynamic prediction method to predict the real variations of the NTG in a multi-threaded 
environment.  
 
 
4. CONCLUSION 
 
We have presented the outline of a Query Distribution Algorithm that is optimized for databases 
distributed across intelligent networks. Traditional query distribution algorithms do not take the 
costs associated with setting up and maintaining network connections into account. Since these 
costs were typically fixed on a monthly or yearly fee schedule, instead of a per-minute or per-
second schedule, they did not need to. With today’s intelligent networks, these issues do become 
factors in any optimization method for query distribution. Our Query Distribution Algorithm has 
been implemented in a prototype system and has proven to be effective, allowing optimizations 
to be made for both response time and communication cost. Future work along these lines 
includes optimizations for hybrid networks, and for varying Quality of Service levels. 
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