

∗ This research was supported in part by NASA (under grants NAG5-9478, NAGW-4080, NAG5-5095, NAS5-

97222, and NAG5-6830), NSF (CDA-9711582, IRI-9409661, HRD-9707076, and ANI-9876409), and ONR
(N00014-99-1-0952).

Database Query Distribution over Intelligent Networks∗

Naphtali Rishe, Ouri Wolfson+, Scott Graham, Wei Sun

High Performance Database Research Center
School of Computer Science

Florida International University
11200 SW 8TH ST, Miami, FL 33199 USA

Tel: (305) 348-1706, Fax: (305) 348-1705, E-mail: {rishen, grahams, weisun}@cs.fiu.edu

+Department of Electrical Engineering and Computer Science
University of Illinois at Chicago

851 S. Morgan St., Chicago, IL 60612, USA.
Tel: (312) 996-6770, Fax: (312) 413-0024, E-mail: wolfson@eecs.uid.edu

Abstract: The main objective of a Query Distribution Algorithm is to find efficient ways to
evaluate global queries. In traditional distributed database systems based on proprietary WAN
infrastructures, efficiency of query processing is typically measured by query response time: the
time it takes to finish a query. The monetary cost of network usage is not explicitly considered in
the cost model since the overall dollar cost of maintaining the proprietary network is a fixed
figure. This has placed the focus on how to reduce necessary data transfer across the network as
much as possible for each query (and thus reduce transfer time), in order to maximize the
effective use of the available network bandwidth. The adoption of intelligent networks in a
distributed database system reveals two fundamental changes from a traditional one based on
proprietary networks. First, the connections among the distributed sites are dynamic rather than
static. In other words, the network links are established (through call setup) only when needed
and the bandwidth can be allocated/de-allocated on-demand. Second, the dollar cost of the
connections is charged on a per-connection basis. These new factors make the direct adoption
of traditional distributed query processing and optimization techniques unsuitable as they do not
consider network dollar cost (which can vary between any two sites) and query response time in
an integral manner. This paper presents a Query Distribution Algorithm that takes these factors
into consideration.

KEYWORDS: Distributed Databases, Intelligent Networks, Query Distribution

INTRODUCTION

The problem of query processing and optimization in a distributed database environment has
attracted much attention from the database research community, and numerous publications have
been devoted to this subject. The most expensive database operation is the join operation.
Considerable research effort has been applied to minimize the cost of join queries. A common
technique to reduce the communication cost in a distributed join is to use semi-join. The

semijoin strategy was justified by the assumption that network transmission cost is the dominant
component in overall query processing cost.

There have been many theoretical studies in database integration. [1], [2], [3], and a number of
prototype systems such as Information Manifold [4], Multibase [5], MRDSM [6], Pegasus [7],
Carnot [8], SIMS [9], TSIMMIS [10,11], and SEMHDB [13,14] each represent a different
methodology. One common assumption in the previous research work is that the
‘‘communication cost rates are constant and equal to transmission rate’’ [12] and thus the
monetary cost of network usage is usually not explicitly considered. This greatly simplifies the
problem of distributed query optimization as there is only one optimization metric: time. This
assumption and therefore the various techniques developed based on it do not apply to our
proposed distributed database environment using intelligent networks. First, it is clear that
constant inter-node bandwidth cannot be assumed in networks made up of, for example, ISDN
links, where a varying number of ISDN links may be established between two nodes. Second,
with ISDN being charged based on usage, we now have two objectives for minimization: query
response time and ISDN cost (in real dollars). Our proposed Query Distribution Algorithm
(QDA) aims to close this gap and advance the query processing and optimization technologies to
the new horizon of intelligent networks.

1. SYSTEM OVERVIEW

Our research is based on a heterogeneous distributed database system interconnected via
an ISDN network. The techniques are applicable to other intelligent network topologies.
We adopt the concentrated management mode. AMIP, the Application Management
Interface Program, is the concentrated manager server of whole system. LIP, the Local
Interface Program, is the client program offering a user interface. The heterogeneous
DBMS at each local site communicates with AMIP and LIP through ODBC. Figure 1.1
depicts the system’s physical architecture. Further details on both AMIP and LIP can be
found in [15].

ISDN Network LIP LIP

LIP

Primary AMIP
(Coordinator)

LIP

Fig 1.1 - Physical Architecture of QDA

The user queries the global schema using standard SQL statements. To reduce
communication cost, the SQL parser module resides in AMIP. LIP only sends the user’s
input query to AMIP. It is up to AMIP to parse the queries based on SQL syntax,
generating a query tree. If the syntax generates a parser error, AMIP will notify LIP to
ask the user to check the query syntax and reenter the query. AMIP then produces an

execution plan for the query, based on the global schema. This procedure is the focus of
this paper. AMIP then executes the EP, transferring the resulting table to a dedicated LIP
site if necessary and notifies the originating LIP to display it. According to the execution
plan, the coordinator module will control LIPs to execute sub-queries and synchronize
the data transfer from LIP to LIP. This query processing model is depicted in Figure 1.2.

AMIP
QueryOptimization

Global
schema

AMIP
SQL parser

AMIP
Communication
Coordinator

LIP
Sub-query
execution
Module

LIPs
Table
Transfer
Module

User’s Query

Fig1.2 - Query processing

2. QUERY EXECUTION PLAN

A query execution plan is a sequence of operations that retrieves data from databases and
composes the answer set for a query. In our distributed database system, which provides access
to heterogeneous data sources, an execution plan is a sequence of mixed sub-query executions
and table transfer operations. A sub-query is a query that is to be executed against a certain data
source at a certain LIP site; a table transfer operation sends a table from one LIP site to another.
The goal of the Query Distribution Algorithm is to construct a cost-effective execution plan for a
distributed query. A widely adopted rule of thumb when constructing an execution plan is to
perform selections and projections as early as possible. This is usually referred to as the “push-
down” strategy for selections and projections. Reflected in our system, we should perform the
query’s selections and projections present for the involved tables at their local sites before
sending them over the network for more processing. The rationale behind this is to reduce the
size of the tables in order to save communication cost.

We now look into the issues pertinent to finding a cost-effective execution plan for a query. We
divide the discussion into two types of queries: (1) selection queries - which access only one
table, and (2) join queries - which combine tuples from more than one table. For a selection
query, the selection must be performed at the local site first (according to the push down rule).
The only communication cost incurred is for sending the restricted table to the destination site
where the result of the query is to be placed. To minimize the cost, we need to find the least-cost
ISDN call path to transfer the data. We maintain an up-to-date graph of the network topology

and potential network topology with costs for each link. The problem of finding the least-cost
path can be formulated as the classic “Shortest Path Problem” for which an efficient algorithm is
well known. In addition to minimizing communication cost for selection queries, the shortest
path algorithm is also useful in constructing execution plans of low communication costs for join
queries, which will be discussed next.

The execution plan for a distributed join query comprises a sequence of two-way (2-way) joins,
each of which joins two tables from different sites. Several decisions need to be made to select
appropriate strategies while constructing the execution plan.
• join method: Two join methods, pure join and semi-join, are widely adopted in traditional

distributed database systems. A pure join between tables A and B is performed by sending
one of the tables (subject to restriction by selections and projections) to the other site for a
regular join. We use A ||X| B to denote a pure join where B is the table being sent. Notation A
|X|| B can be understood similarly. A semi-join, denoted A |X B, performs the following
steps sequentially: (1) send A's join column(s) to B, (2) restrict B by selecting only those
tuples whose join attribute values have a match in the join columns received from A, (3) send
the restricted table of B back to A's site and perform a regular join with A. Semi-join A |x B
requires less data transferred than a pure join when the size of the projected join column(s) of
A consists of only a small portion of the total data transferred and table B is highly restricted
by A's join column(s).

• join order: When joining two tables (either by pure join or semi-join), there are two
directions to perform the join (A ||X| B or A |X|| B, A |X B or A X| B). When joining more
than two tables, the order of performing the individual 2-way joins also has an impact on the
final communication cost. For example, to perform a three-way join (A join B join C), we
can do either ((A join B) join C) or (A join (B join C)), with each two-way join subject to the
options of pure join or semi-join.

• data transfer paths: There could be multiple paths to transfer a table from one site to
another. The least expensive one must be sought in order to save communication cost. Note
that the least cost path between two sites need not to be the direct connection (namely the
edge connecting the two nodes). It could be an indirect path which travels through other
node(s) to relay the data (namely, a path that consists of more than one edge). For example, if
a semi-join A |x B is to be performed, the least cost paths to send data from A to B and from B
to A must be found. And the paths can go through a third site C.

• assembly sites: Assembly sites are the places where the intermediate or final query results are
assembled. Some algorithms only allow one assembly site, i.e., the destination site, and defer
the assembly until the last stage. In those strategies, no intermediate join results, except for
semi-join restricted tables, are allowed to be generated. Some allow more flexible choices on
the sites to place intermediate join tables.

Given all the options in constructing execution plans, the number of possible execution plans for
a join query increases exponentially with the number of involved tables. Thus, it is cost-
prohibitive to perform an enumerated search on the entire space of execution plans to find the
optimal one. In the next section, we describe an algorithm that finds an efficient execution plan
from a selected subset of the search space.

3. QUERY DISTRIBUTION ALGORITHM (QDA)

3.1 Description

QDA is the kernel part of the AMIP. As shown in Figure 3.1, it consists of two parts: pre-order
traverse and post-order traverse. The former receives the SQL objects (a data structure of query
trees) produced by the AMIP’s SQL parser, which processes SQL syntax, checks it, and
produces SQL objects. Then pre-order traverse processes the query tree, makes a global semantic
check of each table, does some preparation work such as assigning each source table a global
exclusive internal table name and processing horizontally fragmented tables. We call this
procedure “pre-order traverse query tree” or simply “pre-order traverse” because it traverses the
query tree from root to leaves. The second step is post-order traverse, which accepts the result of
pre-order traverse as input: a modified query tree and a global table schema object. Post-order
traverse generates a distributed query Execution Plan (EP) and executes it by sending the
command messages to LIP one by one to control and complete the query process. We call this
procedure “post-order traverse query tree” or simply “post-order traverse” because it traverses
the query tree from leaves to root.

 SQL
Objects

Pre-Order
Traverse

Post-Order
Traverse

Global
Information

Base

Modified
query tree

Query
Result

Global table
schema

Fig 3.1 - QDA Procedure

3.2 QDA Algorithm

The QDA is the central module of the distributed system. The main task of QDA is processing
complicated join queries. QDA decomposes chain queries into sub-queries according to least
weight cost of communication cost and response time. Join decomposition adopts LPT (Linear
Processing Tree) or Bushy Tree. The search space complexity of the former is O(n^3) and the
latter is O(n^5) (where n is number of tables in the join). The dynamic channel allocation of
ISDN is also considered in QDA as an important parameter in the shortest path search. To
compress the search space and decrease the complexity of QDA processing, we adopt LPT
search, and many heuristic rules are also introduced. The dynamic channel allocation of ISDN is
considered as an important parameter in the shortest path search used by QDA. Last, but not
least, the optimizing object function is decided by a weighted total of communication cost and
response time. This weighted cost offers users a simple way to optimize the query processing to
the user’s preference.

When AMIP receives a query statement from LIP, it first calls upon its SQL parser to analyze the
query statement and generate a query tree. The QDA process at the AMIP module performs three
steps:

A. Pre-Order traverse the query tree and perform four tasks:
1. For each node in the query tree, generate the corresponding result table schema and

insert it into EPGblSchema. (EPGblSchema records the schema of all tables
included in a SQL query, depending on a special thread.)

2. For each SELECT node of the query tree, perform a semantic check on the tables and
their related attributes according to the information stored in the knowledge base.

3. For each SELECT node of the query tree, if there is an OR operator in the WHERE
list, convert OR to UNION ALL and modify the query tree accordingly.

4. For each table in the FROM list of a SELECT node, generate the corresponding
table and insert its schema into EPGblSchema.

B. Post-Order traverse the query tree and perform nine tasks:
1. For each UNION, UNION ALL, and BRACKET node of the query tree, generate

the result table according to the EPGblSchema.
2. For each local query of a SELECT node, process the query locally then transfer the

results to the destination site.
3. For each distributed query of a SELECT node, shrink each table in the FROM list by

executing another query that is relatively simpler and that is only related to the local
table itself and the projections.

4. For the tables generated in step 3, produce new SELECT nodes with only
GlobalName tables.

5. From the new SELECT nodes, generate a new Join Graph.
6. From the new Join Graph, call the QDA kernel algorithm and generate a new

Execution Plan (EP).
7. For the new EP, call EPInterpreter to execute the EP and produce the resultant table

on the destination site.
8. With the resultant table and the queries of the original SELECT node, make a new

query with all operations at the local site.
9. Evaluate the new local query, generate the final result table, and insert the result

table’s schema into EPGblSchema.
C. After the Post-Order traverse, we can produce the final result table with the query tree

and EPGblSchema. We then delete all temporary tables on each local site.

The following provides further detail on how an Execution Plan is generated from a Join Graph.

For optimization, a Shrink Table procedure is introduced to do some simple condition query and
projection operations to minimize the size of tables to be joined. Meanwhile some accessory
work is done for the upcoming processing of the distributed join query. With the pre-processed
simplified internal table produced above, we can focus on processing the join operation
(including Cartesian product) and producing a Join Graph, each node of which indicates the
internal tables taking part in join operation and each edges of which indicate join relations
between two tables.

The next step is to produce a linear tree that can be turned into an execution plan. We can get a
great number of linear trees from a Join Graph. If we consider the Cartesian product as a join
relation between two vertices of the Join Graph, the number of linear trees produced is
C(n,2)*(n-2)!=n!/2. When n is not a small number, the search space is very large. To compress
the search space, we use some heuristic rules, which are described below:

• Select the minimal size table as the first table in Linear Tree.
• The priority of join is greater than Cartesian product.
• When there exists more than one join relation table (Adjacent Vertex list has more than

one element) or Cartesian product table, select the table that has minimal size.

From a Linear Tree we get to know the order of tables in a join sequence and the operations
between two tables: join(|X|) or Cartesian product(X). Now we have to decide the join method

(semi-join or pure join) and the result table location in each join operation step. Since the search
space is still very large (2^(n-1) if there are n source tables and we do not consider the join
method), we must introduce some heuristic rules to optimize the whole search process. The first
rule is called destination pruning, and the other is called of k-stage decision.

The destination pruning technique is a pre-processing step toward the production of an execution
plan. The pruning technique is based on the fact that in each join step we can decide the result
table location immediately if the location of one of the operand table is equivalent to the
destination site. Another aspect is that we also do not have to search the intermediate result table
location, since we always put the intermediate table on the destination site.

K-stage decision is introduced to offer users the option to limit the depth of the binary search tree
according to practical conditions, such as computer’s processing ability or a user’s need for
optimization accuracy, to compress the searching space from 2^(n-1) to 2^k. When variable
parameter k (k<n) is set, the searching space is compressed to 2^k. At the end of the kth-stage, we
can get a partial optimal conclusion to decide the intermediate table location and join method of
each join step in the stage. When k>=n-1 we scan the whole searching space and can acquire the
optimal EP.

The introduction of the k-stage decision method compresses the search space greatly when n is
not a small number. But under a multi-query concurrent environment the search space can still be
excessive and very difficult to compute even if n is not too large. In practice we adopt the “k=1
local optimal” rule to achieve the trade-off. When processing one distributed query we have to
predict the variation of the ISDN Network Topology Graph (NTG) to get the k-stage optimal
cost. When there exist multiple concurrent distributed query requests, a simple solution is to set
the current real NTG as the reference NTG and to not generate any predicted NTG to estimate
local optimal cost. To acquire a k-stage optimal cost with concurrent query requests, we must
adopt a dynamic prediction method to predict the real variations of the NTG in a multi-threaded
environment.

4. CONCLUSION

We have presented the outline of a Query Distribution Algorithm that is optimized for databases
distributed across intelligent networks. Traditional query distribution algorithms do not take the
costs associated with setting up and maintaining network connections into account. Since these
costs were typically fixed on a monthly or yearly fee schedule, instead of a per-minute or per-
second schedule, they did not need to. With today’s intelligent networks, these issues do become
factors in any optimization method for query distribution. Our Query Distribution Algorithm has
been implemented in a prototype system and has proven to be effective, allowing optimizations
to be made for both response time and communication cost. Future work along these lines
includes optimizations for hybrid networks, and for varying Quality of Service levels.

REFERENCES

[1] B. E. Reddy, P. G. Reddy, and A. Gupta: “A methodology for integration of heterogeneous

database.” IEEE Transactions on Knowledge and Data Engineering, 6 (6): 920-933,
December 1994.

[2] A. Sheth and V. Kashyap: “So far (schematically) yet so near (semantically).”
Interoperable Database Systems, pages 283--312, Elsevier Science Publishers B. V.
(North-Holland) 1993.

[3] A. Sheth and J. Larson: “Federated Database Systems for Managing Distributed,
Heterogeneous, and Autonomous Database.” ACM Computer Surveys, 22 (3):183-235,
Sept. 1990.

[4] A. Levy, et al: “Querying Heterogeneous Information Sources Using Source Descriptions”
In Proceedings of the 22nd VLDB Conference, 251-262, 1996, Bombay, India.

[5] W. Litwin and A. Abdellatif: “Multidatabase interoperability.” IEEE Computer, pages 10-
18, December 1986

[6] W. Litwin and A. Abdellatif: “An overview of the multi-database manipulation language
MDSL.” Proceedings of the IEEE, 75(5):621-632, May 1987.

[7] R. Ahmed et al: “The Pegasus heterogeneous multidatabase system.” IEEE Computer, 24
(12):19-27, December 1991

[8] C. Collet, M. N. Huhns, and W. Shen: “Resource integration using a large knowledge base
in Carnot.” IEEE Computer, pages 55--62, December 1991.

[9] Y. Arens, C. Chee, C. Hsu, and C. Knoblock: “Retrieving and integrating data from
multiple information sources.” International Journal on Intelligent and Cooperative
Information Systems, 2(2), June 1993.

[10] H. Garcia-Molina et al: “The TSIMMIS approach to mediation: data models and
languages” In Next Generation Information Technologies and Systems, June 1995. Nahria,
Israel.

[11] Y. Papakonstantinou, S. Abiteboul, and H. Garcia-Molina: “Object fusion in mediator
systems” In Proceedings of the 22nd VLDB Conference, 1996, Bombay, India.

[12] A. Segev: “Strategies for distributed query optimization,” Information Sciences, 54 (1-2),
Mar. 1992.

[13] N. Rishe, et al: “Semantic Access: Semantic Interface for Querying Databases,”
Proceedings of the 26th International Conference on Very Large Databases, 2000, pp. 591-
594

[14] N. Rishe, et al: “SemWrap: A Semantic Wrapper over Relational Databases with
Substantial Size Reduction of User’s SQL Queries,” EDBT 2000: Seventh International
Conference on Extending Database Technology, pp. 13-14.

[15] N. Rishe, et al: “On Database Integration over Intelligent Networks,” Proceedings of the
ISCA 2nd International Conference on Information Reuse and Integration (IRI-2000), pp.
70-75.

