

Computers in Engineering- 1994
Volume 2

ASME 1994

STORAGE OF SPATIAL DATA IN SEMANTIC DATABASES

Naphtali Rishe
School of Computer Science

Florida International University
Miami, Florida

Oiang Li
Dept, of Computer Engineering

Santa Clara University
Santa Cla ra, California

ABSTRACT. This paper describes
how the semantic binary database model
[Rishe-92-DDS] and its implementation
[Rishc-91-FS] are extended to represent
spatial data: functions over multi
dimensional space, e.g. the ocean tempera
ture as a function of the four-dimensional
space-time. The implementation, utilizing
extended linear quad-trees , is compact in
storage and allows efficient resolution of
quenes.

Semantic data models

The central notion of semantic models
is the concept of object, which is any real
world entity that we wish to store informa
tion about in the database. The objects are
categorized into classes according to their
common properties. These classes, called
categories, need not be disjoint - that is,
one object may belong to several of them.
Further, an arbitrary structure of sub
categories and supercategories can be
defined. The representation of the objects
in the computer is invisible to the user, who
perceives the objects as real-world entities,
whether tangible, such as persons or cars,
or intangible, such as observations, meet-

This work is sponsored in part by grants from
US DOD/BMDO & ARO, NATO, and Enter
prise Rorida.

793

ings, or desires. The database is perceived
by its user as a set of facts about objects.
These facts are of three types: facts stating
that an object belongs to a category; facts
stating that there is a relationship between
objects; and facts relating objects to data,
such as numbers, texts, dates, images, tabu
lated or analytical functions, etc. The rela
tionships can be of arbitrary kinds; for
example, stating that there is a many-to
many relation address between the
category of persons and texts means that
one person may have an address, several
addresses, or no address at all. [Rishe-92-
DDS]

The relational database model, pro
posed by E. Codd in 1971, has become the
state of the art of commercial database
management. This model has, in a
mathematically elegant way, presented the
database user with an abstraction of data,
isolating the user from the physical
representation of data in computer storage.
The data is presented to the user as a col
lection of tables. Each table is a set of
rows. There are two- types of tables: tables
representing the application's objects
(object tables) and tables representing rela
tionships between objects (relationship
tables). The object tables roughly
correspond to categories in the semantic
models. Each object table consists of one
or more columns Gointly called the key)

:

f.
I

that identify the objects, and several other
columns that display data about the objects
such as numbers or character strings.
Every object must have a unique key value,
such as a social security number for a per
son, or a street name plus a house number
for a home. The key must be known at all
times and may never change (or the data
base will be corrupted). Along with the
key, an object table 's row contains data
about the object, such as the person's
address, and some relationships to other
objects. The latter relationships are
represented by the keys of the related
objects - for example, the social security
number of the person 's spouse. This does
not work for many-to-many relations, for
which the other type of tables must be
used: the relationships tables. As far as the
system is concerned, the sets of objects of
different tables are disjoint (although, the
user can de-facto link between rows of
different tables by using identical key
values, but this causes immense problems
in updating and querying the database).
The relationships tables consist of rows
cross-referencing the keys of related
objects.

The mathematical abstraction of the
relational model has allowed the introduc
tion of powerful and easy-to-use user
languages for retrieval and updates of data
bases. It has also allowed the recent
development of efficient implementations.
The latter were facilitated by the invisibil
ity to the user of the computer processing,
which permits optimization without
affecting the user. The semantic models
offer a higher degree of abstraction. This
results in much more concise user pro
grams, as well as speedier processing due
to optimization and other factors . Beyond
that, the semantic models offer a plethora
of other features.

The relational databases have pro
vided a good service in many conventional

794

database applications. However, in situa
tions where the structure of info rmation is
complex, or where greater flexibility is
required (objects with unknown identifiers,
or objects moving from one category to
another, etc.), or where non-conventional
data is involved (long texts, images, etc.),
other approaches need to be considered:
semantic and/or object-oriented databases.

Akin to semantic models are object
oriented database models. They offer, to
various degrees, many of the features of the
semantic models, in the sense of abstracting
information, and, in addition, formalize
some behavioral properties of the data. We
have shown that the latter behavioral pro
perties can be easily added to semantic
models when necessary , th us unifying the
semantic and object-oriented approaches to
databases. Our algorithms for efficient
implementation of semantic databases
models are applicable to objec t- oriented
databases as well.

Storage of spatial data

As an example of a characteristic
problem and an approach to its solution, let
us consider observations of temperatures of
the ocean. The ocean can be regarded as a
four-dimensional Euclidean space of longi
tude, latitude, depth, and time. Thus, tem
perature T is a function T (x ,y ,z ,t). Addi
tionally, there is a discrete dimension of
observation sources, which may disagree
between them. Thus, the temperature func-
tion may have five arguments:
T(x ,y ,z ,t ,s). A characteristic simple
query, Q 1, to the system is to find the tem
perature for a given 5-dimensional point. A
more complex query, Q 2, is to find the tem
perature of a four-dimensional space-time
point independent of the observation
source, obtained by weighing the different
sources according to their known reliabil
ity, etc. Another complex query, Q 3, is to

find the average temperature of a given
arbitrary space-time body. Another query,
Q 4, interpolates data for unreported points.

We notice that the space-time contains
infinitely many logical points. Therefore,
both the observations and their database
storage must represent a finite sampling of
the space. Each measurement gives a tem
perature representing some (normally
small) body of specified geometry (includ
ing location). For example, the geometry
of one very simple body can be described
as a hyper-rectangle of lmx lmx 1mx lhour
whose edges are parallel to the axes and
whose lowest point is
(1 00,100,100,1994: 12:31: 12:00). Our first
approximation of the relevant database
schema fragment is:

MEASURE~T

geometry: String
temperature: Number-dgr-Kelvin

rep rted

(1m)

OBSERVATION
SOURCE

description: String 1:1
reliability-info: String

Figure 1. A simple schema fragment

Now, if we assume that there is a Boolean
function lies - in that takes a point and a
geometry and produces true if the point
lies in the body, then the query Q 1 can be
solved using any regular database language,
for example the predicate calculus language
of [Rishe-88-DDF]:

795

T(x,y,z,t,s)= get m.TEMPERATURE
where

s REPORTED m and lies-
in((x,y,z,t),m.GEOMETRY)

Although this query looks simple, if
there are no restrictions on the kind of
geometrical specifications, the run of this
query will require searching through all the
measurements of the given source and
evaluating the function lies -in for each of
them . This can take hours.

A more efficient solution can be
obtained by representing the geometry as
the smallest set of non-overlapping hyper
rectangles of various sizes. This solution
will also eliminate the unknown function
lies -in , as well as will allow averaging and
other calculations.

Hyper Rectangle

longitude: Number
latitude.time: Number

depth: Number
dx.dy,dz,dt(edge-sizes): Number

MEASUREMENT

remperaJure: Number-dgr-Kelvin

Figure 2. A replacement for the geometry
attribute

For this schema, the query Q 1 becomes:
T(x,y,z,t,s)= get m.TEMPERATURE
where s REPORTED m and exists a
HyperRectangle h such that m COVERS h
and
h.LONGITUDE~x~h.LONGITUDE+h.DX
and h.LA TITUDE::;;y~h.LATITUDE+h.DY

and

h.DEPTH~z$h.DEPTH+h.DZ and
h. TIME~~h.TIME+h.DT

If dx,dy,dz, and dt are known a-priori, then
a database system utilizing the file
management algorithm of [Rishe-89-EO]
will normally solve this query, as well as
the complex query Q 2, in just 5 disk
accesses, i.e. in a tiny fraction of a second.

Another improvement is the
representation of the space-time as a
hexadecimal tree of hyper-quadrants. The
applicability of this method to the storage
of the actual unprocessed measurements is
not fully clear yet, but it is a major
improvement for the storage of
derived/interpolated data which pertains to
large continuous parts of the space-time.
The space-time is bounded and, therefore, it
can be embedded in a huge hyper-rectangle,
S . Now, let us halve all the edges of S,
thus partitioning S into 16 hyper-quadrants
touching each other at the center of gravity
of S. Let us denote them by the 16
hexadecimal digits: 0, 1, 2, 3, 4, 5, 6, 7, 8,
9, a, b, c , d, e, f. Each of them can in tum
be partitioned into 16 smaller hyper
quadrants, denoted by two hexadecimal
digits, e.g. #7 is partitioned into 70, 71, 72,
73, 74, 75, 76, 77, 78 , 79, 7a, 7b, 7c, 7d, 7e,
7f. Each of them can be further partitioned,
and so on. Now, any continuous space
time can be represented, to any desired
degree of precision, as a finite set of non
overlapping hyper-quadrants of various
sizes (normally, various large hyper
quadrants covering the interior of the body,
and small ones covering the boundary
region). Thus, the geometry of a
measurement can be represented by a
multi-valued attribute hyperquadrant. Any
point (x,y,z,t) can be represented by the
smallest pennitted hyper-quadrant,
microhyperquadrant (x ,y ,z ,t). Now, the
query Q 1 becomes:

796

\

T(x,y,z,t,s)= get m.TEMPERATURE
where s REPORTED m and (m has a
hyper-quadrant which is a prefix of the
hexadecimal string
microhyperquadrant (x ,y ,z ,t))

This query can be normally resolved
in just 3 disk accesses without any a-priori
knowledge. The queries Q 2, Q 3 , and Q 4

also become very efficient. The storage
requirements are smalL Still further
reduction in the storage can be obtained if
we sample the space-time not into very
small bodies of approximately constant
temperature but into larger bodies whose
temperature can be represented by an
analytical function. For such bodies we
will store the average temperature as well
as a character string describing the offset in
tenns of the points ' coordinates:

MEASUREMENT

hyper-quadrant: HexadcmlString many-to-many
average-temperature: Number-dgr-Kelvin

offset-function: Algebraic-expression

rep< rted

(1m)

OBSERVATION
SOURCE

description: String 1:1
reliability-info: String

Figure 3. One measurement has several
hyper-quadrants and a possible offset

Now, the query Q 1 becomes:
T(x,y,z,t,s)= get m.AVERAGE
TEMPERATURE+ (m.OFFSET
FUNCTION)(x,y,z,t) where s REPORTED
m and m has a hyper-quadrant which is a
prefix of the hexadecimal string
microhyperquadrant (x ,y ,z ,t).

i ..

Our idea of hyper-quadrants is derived
from the quadrants used in GIS (geographic
information systems), although there the
quadrants are two-dimensional (longitude
and latitude) and do not fully participate in
a database schema. In the development of
an ocean-geographic information system,
one can use many existing results in GIS.
A GIS is an automated system for the input,
editing, management, display, and analysis
of geographically referenced spatial data,
along with associated non-spatial attribute
data. For example, a GIS might contain
map data of all real estate parcels in an area
(spatial data) along with the address, the
owner' s name, and the tax rate (non-spatial
attribute data) for each parcel.
[Dangerrnond&Freedman-86] list a number
of examples of GIS applications for
municipal governments, such as making
facility location decisions and performing
vehicle routing, traffic analysis , land use
planning, and facilities management. The
U. S. Federal government agencies use
GISs for a variety of purposes including
maintaining census data and tracking the
geographical distribution of disease
statistics.

The geographic data which is stored in
a GIS can be represented in the computer in
two different ways: vector or raster (cell
based). The decision as . to which
representation is used is frequently a
function of how the data were captured for
use in the GIS. A vector representation
stores the information in an explicit point,
line, area format, with each object (e.g., a
house, river, or field) " tagged" with its
attributes. This format is used in GIS
applications which require visually
appealing output and/or precise locational
information. Data in this format are
usually captured by manual digitizing or
scanning of existing map data. The raster
format divides an area into a set of grid
cells . These grid cells are generally of

\

797

Wliform size and shape, with the most
common shape being a square. The
attributes are associated with the individual
grid cells. The individual objects no longer
have a distinct identity, rather an object is
implicitly defined in that all the cells of the
object have the same attribute value.
Satellite imagery is the most common type
of data which is in a raster format. The
relative advantages and disadvantages of
these two formats for different applications
have been discussed in [Maffini-87].

There are five basic deficiencies which
exist in most contemporary GISs - as far
as their appropriateness for the
oceanographic data is concerned:

1. The GIS need only two dimensions:
longitude and latitude ; in
oceanographic applications one uses
four and five dimensional spaces.

2. Most GIS systems store the spatial
data separately from the attribute data
[Waugh&Healey-87], which can make
the system inefficient and difficult to
use.

3. Because of the distinct differences
between vector and raster data, most
operational GISs have been built
around one or the other of these two
types , but not both [Keating&al.-87] .
If both types of data are required, two
separate GISs must be used.

4. Many existing systems have been
designed as stand-alone, special
purpose systems with little attention
paid to traditional database
management concerns such as data
protection, security and integrity
[Frank.-88].

5. GISs built using existing commercial
database management systems as a
central core, however, are not well
suited to the requirements of GIS
processmg ([Frank-88] ,

- \

[Keating&al. -87]). The primary
reason for this is the poor performance
of these systems in retrieving spatial
data. The problem is that items that
are located close together
geographically are not stored
physically close together on the
computer disk. This results m
inefficient access to these data.

Much of the research on GIS, which is
useful to our project, in recent years has
focused on quadtrees (trees of quadrants)
([Abel&Smith-86], [Anthony&Corr-88],
[Bell&al.-88], [Gahegan-89], [Gargantini-
82], [lbbs&Stevens-88], [Jackson&Mason-
86], [Jackson&al.-88], [Keating&al. -87],
[Mark&Lauzon-84], [Orenstein&Manola-
88], [Peuquet-84], [Peuquet-86],
[Ripple&Ulshoefer-87], [Samet&al.-84],
[Shaffer&Samet-87], [Shaffer&Samet-90],
[Shaffer&al.-90], [Samet-84], [Samet&al.-
86], [W augh&Healey-87]) and on the use
of the relational model ([Abel&Smith-86] ,
[Abel-89], [Haralick-80], [Lorie&Meier-
84], [Shapiro-80], [VanRoessel-87],
[Waugh&Healey-87]). Deficiencies of the
relational model for use in a GIS have been
noted ([Keating&al.-87], [Lorie&Meier-
84]). Research has also led to questioning
traditional database models, including the
relational model. Significantly, Webster
[Webster-88] noted that "object-oriented
models such as the semantic database
models" will be important in "moving GIS
technology forward from the limited
database architecture to which it is tied."

In our project we expect to use a
multi-dimensional generalization of linear
quadtrees in two ways. First, a linear
quadtree address can used as the primary
spatial index into the database. Use of the
address in this manner will ensure that
measurements close in space-time will be
stored physically close on the computer
disk. Second, linear quadtrees will also be
used as the storage structure for the raster

798

data. When a raster image is first brought
into the system, the image would be
processed to break it into its discrete area
components. These discrete areas would
then be stored as sets of linear quadtree
addresses. A critical portion of this design
is the use of a linear quadtree address as the
spatial search key. A standard quadtree
utilizes pointers to traverse the tree, but
[Gargantini-82] described a pointerless
quadtree which she termed a "linear
quad tree." It is this linear quad tree key
which is most useful in the implementation
of our schema. Her algorithm effectively
maps the two dimensional space into one
dimension, and we generalize it to multi
dimensional input. The use of quadtrees as
integrated spatial indexes, rather than
explicit storage structures, has been
advocated in [Ibbs&Stevens-88] and
[Jackson&al.-88]. Using the semantic
database model of [Rishe-88-DDF] and its
implementation algorithms of [Rishe-89-
EO] in conjunction with the linear quadtree
addresses, we will be able to provide
efficient access to the spatial data.

References

[Abel-89] OJ. Abel. SIRO-DBMS : A Database
Tool-Kit for Geographical Information
Systems. Int. J. Geographical Information
Systems, val. 3, no. 2, 1989, pp. 103-116.

[Abel&Smith-86] OJ Abel and J.L. Smith. " A
Relational GIS Database Accomodating
Independent Partitionings of the Region.''
Proceedings: Second Intemational
Symposium On Spatial Data Handling,
1986, pp. 213-224.

[Anthony&Corr-88] S.J Anthony and D.G
Carr. ''Data Structures in an Integrated
Geographical Information System." ESA
Joumal, vol. 12, no. I, 1988, pp. 69-72.

[Bell&al.-88] S.B.M. Bell, B.M. Diaz, and F.C.
Holroyd. Capturing Image Syntax Using
Tesseral Addressing and Arithmetic. In J.
Muller (ed.), Digital Image Processing in

Remote Sensing, Taylor & Francis,
London, 1988.

[Dangermond&Freedman-86] J. Dangermond
and C. Freedman. Findings Regarding a
Conceptual Model of a Municipal
Database and Implications for Software
Design. Geo-Processing, vol. 3, 1986, pp.
31-49.

[Frank-88] A.U. Frank. Requirements for a
Database Management System for a GIS .
Photogrammetric Engineering and
Remote Sensing, vol. 54, no. 11, 1988,
pp. 1557-1564.

[Gahegan-89] M.N. Gahegan. An Efficient Use
of Quadtrees in a Geographical
Information System. Int. J. Geographical
Information Systems. vol. 3, no. 3, 1989,
pp. 201-214.

[Gargantini-82] I. Gargantini. An Effective
Way to Represent Quadtrees.
Communications of the ACM, vol. 25,
no. 12, 1982, pp. 905-910.

[Haralick-80] R.M. Haralick. A Spatial Data
Structure for Geographic Information
Systems. In H. Freeman and G.G. Pieroni
(eds .), Map Data Processing, Academic
Press. New York. 1980.

[Ibbs&Stevens-88] T.J . Ibbs and A. Stevens.
Quadtree Storage of Vector Data. Int. 1.
Geographical Information Systems, vol.
2, no. 1, 1988, pp. 43-56.

[Jackson&al.-88] M.J. Jackson, W.J. James,
and A. Stevens. The Design of
Environmental Geographic Information
Systems. Philosophical Transactions of
the Royal Society of London, series A,
vol. 324, 1988, pp. 373-380.

[Jackson&Mason-86] M.J. Jackson and D.C.
Mason. The Development of Integrated
Geo- Information Systems. Int. J. Remote
Sensing, vol. 7, no. 6, 1986, pp. 723-740.

[Keating&al.-87) T. Keating, W. Phillips, and
K. Ingram. ''An Integrated Topologic
Database Design for Geographic
Information Systems.'' Photogrammetric
Engineering and Remote Sensing, vol. 53,
no. 10, 1987, pp. 1399-1402.

799

[Lorie&Meier-84] R.A. Lorie and A. Meier.
Using a Relational DBMS for
Geographical Databases. Geo-Processing,
vol. 2, 1984, pp. 243-257.

[Maffini-87) G. Maffini . Raster Versus Vector
Data Encoding and Handling: A
Commentary. Photogrammetric
Engineering and Remote Sensing, vol. 53,
no. 10, 1987, pp. 1397-1398.

[Mark&Lauzon-84) D.M. Mark and J.P.
Lauzon. Linear Quadtrees for Geographic
Information Systems. Proceedings of the
International Symposium On Spatial Data
Handling, Volume II, 1984, pp. 412-430.

[Orenstein&Manola-88) J.A. Orenstein and
F.A. Manola. PROBE Spatial data
Modeling and Query Processing in an
Image Database Application. IEEE
Transactions on Software Engineering,
vol. 14, no . 5, 1988, pp. 611-629.

[Peuquet-84) D.J. Peuquet. Data Structures for
a Knowledge-Based Geographic
Information System. Proceedings of the
International Symposium On Spatial Data
Handling, Volume II, 1984, pp. 372-391.

[Peuquet-86) D.J. Peuquet. The Use of Spatial
Relationships to Aid Spatial Database
Retrieval. Proceedings : Second
International Symposium On Spatial Data
Handling, 1986, pp. 459-4 71.

[Ripple&Ulshoefer-87) W.J. Ripple and V.S.
Ulshoefer. Expert Systems and Spatial
Data Models for Efficient Geographic
Data Handling. Photogrammetric
Engineering and Remote Sensing, vol. 53,
no. 10, 1987.

[Rishe-88-DDF) N. Rishe. Database Design
Fundamentals: A Structured Introduction
to Databases and a Structured Database
Design Methodology. Prentice-Hall,
Englewood Cliffs, NJ, 1988. 436 pp.

[Rishe-89-EO) N. Rishe. "Efficient

\

Organization of Semantic Databases"
Foundations of Data Organization and
Algorithms. (FOD0-89) W. Litwin and
H.-1. Schek, eds. Springer- Verlag
Lecture Notes in Computer Science, vol.
367, pp. I 14-127, 1989.

- '\

[Rishe-91-FS] N. Rishe. "A File Structure for
Semantic Databases.'' lnfonnation
Systems, 16, 4 (1991), pp. 375-385.

[Rishe-92-DDS] N. Rishe. Database Design:
The Semantic Modeling Approach.
McGraw-Hill, 1992, 528 pp.

[Rishe-93-MT] N. Rishe. "A Methodology
and Tool for Top-down Relational
Database Design.'' Data and Knowledge
Engineering, 10 (1993) 259-291.

[Samet-84] H. Samet, ''The quadtree and
related hierarchical data structures,''
Computing Surveys 16, 1984, 187-260.

[Samet&al.-84] H. Samet, A. Rosenfeld, C.A.
Shaffer. and R.E. Webber. Use of
Hierarchical Data Structures in
Geographical Information Systems.
Proceedings of the International
Symposium On Spatial Data Handling,
Volume II. 1984, pp. 392-411.

[Samet&al.-861 H. Samet, C.A. Shaffer. R.C.
Nelson, Y. Huang, K. Fujimura. and A.
Rosenfeld. Recent Developments in
Quadtree-Based Geographic Information
Systems. Proceedings: Second
International Symposium On Spatial Data
Handling, 1986, pp. 15-32.

[Shaffer&al. -90] C. A. Shaffer, H. Samet, and
R.C. Nelson. QUTL T: A Geographic
Information System Based on Quadtrees.
Int. J. Geographical Information
Systems, vol. 4, no. 2, 1990, pp. 103-
131.

[Shaffer&Samet-87] C.A. Shaffer and H.
Samet. Optimal Quadtree Construction
Algorithms. Computer Vision, Graphics.
and Image Processing, vol. 37, 1987, pp.
402-419.

[Shaffer&Samet-90) C.A. Shaffer and H.
Samet. Set Operations for Unaligned
Linear Quadtrees. Computer Vision,
Graphics, and Image Processing, vol. 50,
1990, pp. 29-49.

[Shapiro-80] L.G. Shapiro. Design of a Spatial
Information System. In H. Freeman and
G.G. Pieroni (eds.), Map Data Processing,
Academic Press, New York, 1980.

BOO

[VanRoessel-87) J.W. Van Roessel. Design of a
Spatial Data Structure Using the
Relational Normal Forms. Int. J.
Geographical Information Systems, vol.
1. no. 1, 1987, pp. 33-50.

[Waugh&Healey-87] T.C. Waugh and R.G.
Healey. The GEOVIEW Design: A
Relational Data Base Approach to
Geographical Data Handling. Int. J.
Geographical Information Systems, vol.
1, no. 2, 1987, pp. 101-118.

[Webster-88) C. Webster. Disaggregated GIS
Architecture: Lessons From Recent
Developments in Multi-Site Database
Management Systems. Int. J.
Geographical Information Systems. vol.
2. no. 1, 1988, pp. 67-79.

