

: ..
",..'} ' ' I . ,..._·

PREFACE
-John L. Gustafson, Program Chairman

The Fourth Conference on Hypercubes. Concurrent Computers. and Applications (HCCA4) was held March 6-8, 1989, in
Monterey, California. Over 600 people attended, and about 250 papers were presented. in this fast-growing ar.ea. The number of
institutions actively pursuing distributed-memory computing· has grown from .a~o~t 19 in 1983 to over 100 presently.

The corresponding growth in the size of this conference led to the need to referee. submitted papers by abstr'act. Previous HCCA
conferences have had a 100% acceptance rate, but only 70% of the submitted· papers were accepted. for presentation at HCCA4.
Originality and relevance to distributed-memory comput.ing were the main filtering criteria. ·

·ORGANIZATION OF THE PROCEEDINGS · :

These Proceedings are organized along the same lines as the Conference: the lntrodu'ction by Geoffrey Fox, followed by three
major divisions by topic: Hardware, Softwar.e, and Applications. Within each major division are more specific topics such as Fluid
Dynamics or Neural Networks. Within each· specific topic, papers are ordered alphabetically by first author, except for Mini·
Symposia. To preserve the organization .of ·the Mini-Symposia, papers are ordered in the sequence in which they were given.

The distinction between both major. and speci.fic topics is frequently difficult. Should Matrix Algebra be placed in Software o'r in
Applications? If a paper deals with the performance of a graphical POE solver on a novel architecture, should it be classified
under Performance Evaluation, POE Solvers, Input/Output, or New Hardware? The reader is cautioned that the investigation of
any subject within this Proceedings, such ;as Fast Fourier Transforms, might require. perusal of several ,scattered sections.

HARDWARE

The Hardware section includes Decomposition Methods, Fault Tolerance,lnput/Output, New Hardware, Performance Evalua
tion, Routing and Topologies, and Shared Memory. Many authors who certainly do not consider themselves electrical engineers
or computer designer~ might be surprised to find their papers classified under 1'Hardware." The guiding rule for putting a paper
in this section was that it depended on a knowledQe of a specific underlying. computer architecture, whether that architecture
was the subject of the paper or not. Papers '.on Deco~position Methods or Ro)Jting and Topologies, for example, usually deal with
optimizing the mapping of application topologies to hardware interconnection topologies. Fault'Tolerance can be done with
either hardware or software, but in all cases the faults being tolerated are in the hardware, not the software.

Perhaps the majority of the papers at HCCA ~iscuss ·performance in some respect , but as a means to understanding the value of
some approach . The Performance Evaluation section Includes those papers which centered on the problem of evaluating
computer performance. . . · '

The Shared Memory category deserves some ei<plaAation. While its·existence might seem contradictory in a conference dedi·
cated to distributed memory, several researchers have endeavored to provide a shared memory software environment on
hypercubes and similar computers. The}iqCA focus does not include computers with hardware for shared memory, since many
other forums exist for exploring that appro~ch to parallelism.

SOFTWARE

The Software section includes Algorithms, Databases, Languages, libraries and Tools, load Balancing, Matrix Algebra, MCC
Minisymposium, NP-Hard Problems, and Parallel Environments. Although some of these topics seem more like Applications
(Databases especially), papers in Software tend to focus on the underlying issues (~ernel operations, operating systems, user
interfaces, techniques for efficiency) rather than complete solutions for a particular-application.

The Parallel Environments was the single largest category of papers; having shown th'at hypercubes and similar computers work
and for some things work very well, many people are now turning their energ'ies to making them easier to program and use. The
conflict between performance via novelty and eas~-of-use via compatibility is probably more intense now than at any time in the
history of computing. .· ~? · ·

1 . APPLICATIONS

Dozens of applications w.ere prese.rited.at· HCCA4; adding strength to· the view that "special purpose" might not be an accurate
adjective for distribute(1 ~memory c:Omputf!ts _any more. Among.the clearest successes !lave been Fluid Dynamics, Image Proc
essing . Neural N.etwcirks & Vision,. POE SQivers, and St.ructural Analysis. The Databases papers in Software imply that hyper·
c~bes m\ght soon 'be ready ·to expand, trom scientific applications to matnstream business applications such as transaction
processing. · ' - ·

Where three or more papers on a partiduta~ application were a~cepted, a separate session was organized on that application at
HCCA4. Other papers on applications wete simply categorized as "Other Applications,'' and that same subdivision exists in the
Proceedings.

To echo the sentiments of_Geoffrey:Fox in his lntro·~uction, this is the first year that hypercubes have really made a difference.
They are being used Jo mak~ scie,ntific ~iscoveries that could not be made by other mea'ns; they are being used for production
computing at Fortune SOO co.nip~nies : ·.third-part~ vendors are committing ·to distributed-memory versions of major software
packages. In gene_ral, dis\ributed-~emb.l)' <;ornputers are starting to achieve their l<;>ng-promised higher performance and supe
rior price/performance compared to cdnventional computers. After several false starts , parallel computing is finally blooming.

' I ' '

-John Gustafson
- . . , • . ·.' ·.-

.
. '

'

I
I
r
!

.~~ ' .
~: ' • .t •; r

The Progr·~-~ Committee wishes to extend their appreciation to
the following r"ponsors for their hnancial su·pport of the Conference:

" U.S. Department of Energy, Applied Joint Tactical Fusion Program Office
Mathematical Sciences Program U.S . Air Force, Electronic Systems
Strategic Defense Initiative Division
Organization, -Office of Innovative Air Force Office of Scientific Research
Science and Technology NASA Ames Research Center

And to all the memb~rs of the Organizing C()mmittee who devoted
their precious' time in the planning and implementation of the technical
program:

Don Austin . .
Depart~ent ~f ~nergy.
Tony Chan · ,. - · ·
University o(Cplifornia
at Los Angeles

Terry Cole .
Jet Propulsion Laboratory

Erik DeBenedictis
ATT/Bell Labs

Geoffrey Fox
California Institute of Technology

Michael Heath
Oak Ridge National Laboratory

Paul Messina
California Institute of Technology

Gary Montry
Sandia · National Laboratories

Ed Oliver
Air Force Weapons Lab

Quentin Stout
University of Michigan

And to Sandia National Laboratories, the Host Institution for this
Conference; whose s_upport and guidance were most valued .

':-·

....

The Pr.ogram Committee:

-~ 'Gil Weigand
· General Chairman

· · · · Sandia National Laboratories
: John Gustafson
· .Program Chairman

. Sandia National Laboratories
·. Bill Hickey I

Conference Administration
- ~-.. ..

' \

I

l .

ii . · .. ,. > ~ ·.·: :, .. ··

-------------........ ~..-~~ ·~--- --·-.... __..,_ ... _.--:.,..._ ----·--------~ .. ·-

.. ~ ~ • . r .-.; ·" ' ,I

A Proof of Impossibility of Deadlock in a Fixed-routing
Hypercube N ctwork

Naphtali RiJhe and Qiang Li

School of Computer Science
Florida International University- .

The State University of Florida at Miami
Miami, Florida 33199

Abstract

This paper presents a proof ofthe f~ct that~ a store
and-forward packet-switching l?inarY. :hypercube net
work with the fixed routing a.lgorit'hm is -deadlock
free. A graph model of the network·'~ status is used
for the proof.
Keywords: Hypercube, Deadlock, ; Packef switch
ing, State graph.

1. Definition of the system

Although it is assumed that the readers of this pa
per are familiar with the hypercube networks, it is
important to have a clear defi'niti9n of the network
and the routing algorithm in order to guarantee the
correctness of the proof. In a binary hyperct,tbe, each
node is assigned a unique binai:y number as: it s iden
tification number (id-number) ·Or address iJi the net
work . Two nodes are directly 'connected in ~ a hyper
cube iff their id-numbers differ in exactly one bit.
In a D - dimensiorial binary hypercube, each 'node is
connected to exactly D nodes. A connectioi\ between
two nodes consists of two chaimels, -,one for each di
rection. Therefore, each node · has D • input channels
and D output channels. An input (output) channel
of node N is numbered as the i-th input'· (output)
channel of N if it is connected to node M such that
N and M differ in the i-th bit. ,. Bit positions are

' I '" •

counted from 1 to D. .
The hypercube· net.works . can be used ·~in differ

ent fashions: _ pattern ~appi~1~ or r~dom r;;:t.ore-and
forward packet switching. Wl1en used in th.e pattern
mapping fashion, the ~voidance of deadlocks purely
depends on the c9rrectness of the 'al;gorithm .. On t'he
other hand, when a hypercube network is ·used in a
random store-and-forward packet '· switchin_g fashion,

This research has been supported in part by a grant from
the Florida High Technology and Industry Council.

there are different methods to route the messages in
the network . We are interested in the most straight
forward one, i.e, the fixed routing algorithm as fol
lows.

Algorithm:

Let de sLid be the id-number of the destination node
of a message being received by node my .id.

339

1.. Receive a message

2. If my _id = de sUd then

- Consume the message

3. Else

i := bit position of the lowest bit that
my_id and desLid differ in;

- Send the message to the i-th output
channel.

4. Repeat steps 1-3 forever . #

Like in ()ther store-and-forward packet switching
networks, a hypercube working in this fashion could
potentially hafe a deadlock situation since many
cyclic graphs exist in a hypercube. Effort has been
made to solve the deadlock problem [4,6,2,1,3] . How
ever, additional overhead had to be introduced to
prevent the deadlock. The overhead ran be VE'fV

heavy so..metimes. This paper will prove that the
fixed routing algorithm of a hypercube is deadlock
free, i.e., one can safe ly use the routing algorithm
wi thout illlY deadlock-pre~ention overhead.

The system 'in ques t ion is assumed to work as fol
lows. Figure 1 shows a simplified node in a hyper-
cube. For each input or output channel, there

0 • '

is an independt:nt proces·s to handle the incoming or
outgoing mess.ages. The data transfer between the
processes is through bnfl'ers. There is a buffer for
each of the output rhn.tmels of a node. The buffer is
big enough to hold the longest message. A message

'• ' ·~ .
. ,. ,. .: .

Input channels Output channels

Input process Buffer Output process

Figure 1: A sample node of a h?' J.?·ercul;le
.. ~

packet has a header which contain;·· its destination
address and some other information . . When. node A
wants to send a message m to node :B, A ~ill send
th<' header to B first and B will decode the header. If
B happens to be the destination of m, B will inform
A t o S<'nd the entire message and m will be taken off
the network after the receiving. Otherwise, B will
examine the buffer for the output cha.nnel wlterc the
message m would go. If the buff~r is ·el)'lpty, B, will in
form node A to send the entire message and put the
message into the buffer; a separate mechan;ism will
try to send the message in the b1~ ff.er thro.ugh the
output channel. If the buffer is occupied, the m<'s
sage will have to wait in A's buffer until B is able to

-

accept the message. ·. ~ ·

Although the buffer and process ~etup can vary
from implementation to implementcition, they are
equivalent to the setup we laid out here as . long as
the chann('ls are handled asynchrono-usly.

Since the availability of a buffer is.· indistinguish
able from the availability of the chan~el to which the
huffer is attached, we identify the buffers a the re
sources which ' are requested a rtd used by' rrlessagcs .
Let M i d£'note the number obt'ain~~· ·by flipping thC'
i-th bit of M . We defin~ the following:

. , '\ ·.

• A buffer is denoted by B(M, N)) f. it is .a .buffcr
of node l\1 and is exclusively asso"ciat-ed ';vith the
output channel of M connecti•tg to· node N.

J • \ '

• A buffer B(Af, N) is called an i.-tlh levE'l h~tffer if
M and N differ in the i-th hit ,_ i.e. , N = IH i ·

• A message in an i-th level buff('r is called an i-th
level message at the time it is i~ the buffer.

We further assume .that the buffers aJe non
preemptive and exclusive, i.e., a:message in the buft"er

of an output channel must be sent out before another
message can occupy t he buffer and there can not be
two messages in a buffer at the same time.

It is important to understand that when we nor
mally say that a message is waiting for a channel, the
message is actually waiting for the buffer selected by
the algorithm on the other end of the channel. It
is the waiting for a buffer that plays a basic role in
causing deadlocks. To expose this fact, we need a
modified algorithm which is equivalent to the orig
inal algorithm but expressed in terms of buffers so
that the buffer waiting can be made explicit. The
equivalent algorithm is the following.

Algorithm:

Let dest..id be the id-number of the destination node
of t he message being put into a buffe_r B(M, N).

340

1. Wait until a message is put into buff('r
B(L,M)

2. If M = dest id then

- Take the message out of the network

3. Else

i := bit position of the lowest bit that
M and dest id differ in;

- Wait for B(M, Mi) to be available

Put the message into the buffer
B(M, Ki i) .

4. Repeat steps 1- 3 forever . #

It is not difficult to justify the equivalence of t.his
algorithm and the previous one. We will leave it with
out further elaboration. Notice that this is a virtual
algorithm: although it is functionally equivalent to
the prcvio,us one, it can not be implemented directly.

2. Proof of the Impossibility of Deadlock

A slate- graph G of t he . hypercube network de·
srrib('s thE:> twtwork's stat.us at a given rnomt'nl in
t irnE:> . G is defined ·as a label._,d directed graph as
follows: .

• A vE-rtex F(llf, N) 1s m the state graph G iff
B(M, N) is a buffer of the network.

• Th(' graph contains a dir('ct._,d arc from vert('X
\ ' (L,/11) to F(l'd,N) if there is a message in
buffer B(L, M) requesting the buffer B(M, N).

• A vertex l'(l\f, N) of G is called an i-th level
verte~ if B(M, N) is an i-th level buffer in the
hyper.cube.

.,, .
At differ~nt moments in time, the stale graphs arc
normally different. Their sets of arcs are difrerent,
though their sets of vertices are the same. Notice
that there is a one-to-one correspondence between
the buffers of the network and the vertic-es of the state
graph G. Introduction of the notation Vis merely to
help to build a clear mathematical model.

Lemma 1:

Let G be a state graph of a hypercube with th<'
fixed routing algorithm, and V(L, M) and V(M, N)
be two vertices of G. If the ievel of V (11;/1 N) is
less than that of V(L, M), then 'there.)sj,t~ a~c : from
V(L, M) to V(M, N) in the state gr~pit G. ·.

Proof:
Since the existence of an arc froql V(L, ·M) to

l' (111, N) indicates that a message in B(L, llf) is re
questing buffer B(M, N), it is sufficient to prove that
a message can only request buffers with.a level higher
than its own. We shall prove this by induction 011 the
number of buffers that a message has requested.

Let Dest denote the id-number of the destinat.ion
of the message.

Basis:

A newborn message has level' 0, artd every buffer
has level greater than o.· Therefore, when a new me&·
sage requests the first buffer o~ its . path, th~ buffer
has a higher level number than thaf of the message.

Hypothesis:
Assume that for the first n buffers · on its path, a

message always requests a buffer of higher level than
its own.

Induction:
The message is in its n-th 'buffer· B(L, ~1) and

requesting its (n + 1)-th buffet: B(fv!,N). Suppose
B(L, M) has level i, th.en M ::'"!. Ii- ~ Thus, by clC'fini
tion, the message has currently level i . We:• nced to
show that B(M, N) has a level ,Of at least i + 1.

Since tht> buffer . SC'lerted al~v~ys 'h ~s a lc~ef equal
to position of the fowest diff~rent h~t -.o.f 111 and JJc.~t.,
it is sufficient to show that M aJtd Vest hav~ at least
the lowest i bits the same.

I •

Since B(L, M) has level i, L and · De.st have the
same lowest i- 1 bits, because other\v,ise the tricssagt
would not have been put into B(L·, M) according to
the algorithm. But L and 111 have the same lowest
i- 1 bits since M = Li. Thus, •M a.nd Dest)lave the
same lowest i- (bits. Sin~e L :and Dest differ in the
i-th bit ·and L and M differ in th~ i-th hit, !vi and
Dest must have same i-th bit . Thus, 111 ~nd Dest
have at least the lowes,t i bits the sarfie, i.e. ~N :::: At i

··· ·,- -----···
I

where j > i. Ther~fore, the buffer B(M, N) has level
greater than i which is the level of the message. #

341

Definition:

A directed loop of a state graph of a hypercube net
work is a sequence of vertices V(N1 , N2), V(N2, N3),
.. , V(Nk-l,Nk), V(Nk,Nt) such that there is a di
rected arc from the first vertex to the second vertex
of every two consecutive vertices in the sequence, and
from the last vertex to the first vertex of the sequence.

Lemma 2:

Every directed loop of the state graph G has ver
tices of at least two different levels.

Proof:

Let l'(L, M) and l'(M, N) be two consecutive ver
tices of a directed loop. Then, B(L, M) and B(M, N)
must be two buffers of the hypercube. By the defini
tion of the hypercube, L and 111 can not differ in the
same bit as M arid N do, i.e., M = Li and N = Ai i•

where i i= j. Therefore, B(L,M) and B(M,N) have
diff"erent levels, i.e., V(L, M) and V (M, N) have dif
ferent levels. #

Having proven the above properties of hypercube
with fixed routing algorithm, we now turn to the
deadlock p.roblem. We· have assumed that the buffers
as resources are non-preemptive and exclusive and a
message can hold a buffer and request another. It has
been shown that, under our assumptions, a directed
loop in the state graph is necessary and sufficient
condition for a deadlock[5]. We use this result as our
definition of deadlock.

Definition: ·

The hyJ?ercube network is deadlocked if and only
if there is' a directed loop in the state graph of the
network.

The intuitiv'c iMc~p~etation of the definition is the
fnllowiTrg.· 'J'hC' .hypNcube net\vork is deadlorhd if
and only if lhere is a circle of buffers in the n<.>twork
such that there is a message in each of the buffers
requesting the next buffer in the circle.

WC' now prove tht' n1ain theorem.

Theorem:

Any hypercube network with the fixed routing al
gorithm is deadlock free.

Proof:

If there were a deadlock in the hypercube, there
would be a directed loop in the state graph of the

-- ·----··--- ----·-.. -----·--··-·

network. , 13y.liemrna '2, th~ ·\.~rtJc~~-'·~f tit~ ·loop h~vc .
at least two djfferent levels. Therefore, there must
be two consecutive vertices, l'(L, .M) and V(M, N)
in the loop such that V(L, M) has a higher level than
that l ' (./11 , N) does. But, by Lemma l, then' is never
a directed arc from Y(L, .J\.1) to V(.J\1, N) ;. Therefore,
there ran not be a directed loop in the ~tate graph.
Thus, there is no deadlock in any !'typercll:bc with Uw
fixed routing algorithm. # . ·~~ · ...

Acknowledgement

The authnrs gratefully acknowlengc th.f anvirc of
David Barton, Nagarajan Prahh~karau, Doron Tal
and Sanjay Girimaji.

References

[1] D. Gelernter. A DAG -based .'algorithm for pre
vention of storc-and- forwar~ deadlork in parkd
networks. IEEE Tr,ansaclio'n s on Compule!'.s, C-
30:709- 715, Oct. 1981.

[2J I.S. Gopal. Preventiou uf' store-and-forward
deadlock in computer riC'tw,orks. JEER 1'mns
actions on Communications; OOM-33(12):1258-
1 264, 1985.

[3] K.D. Gunther. Prevetion of deadlocks in packet
switched data transport system. IEEE Tmns
actions on Communications, COM-29:512 524,
April 1981.

[4] J .W. Havender. Avoiding d.eadlod{ in multi · . .
tasking systems. IBM Systems Journal, 71- 84,
2 1968.

[5] E.G. Coffman Jr., M.J. Elphirk, and A. Shoshani .
Sys tem deadlocks. Computer ·Survey, .. 3(2):67- 78,
June 1971. · · ._

[6] A. Shoshani and E.G·. Goff~ap . . prevention, d<>
tcrtion, and recovery. from systcm d<>ndlorks. In
Proc. of 4th Annual Princeton·. Confde.nce on ln
foT·mation Science and System's,, Mar~h 1!)70 .

342

